麻恒,趙曉兵,魏坤霞,羅琪,劉細(xì)良,胡靜
42CrMo4鋼硼氮離子復(fù)合滲與離子滲氮對比研究
麻恒a,b,趙曉兵a,b,魏坤霞a,c,羅琪a,b,劉細(xì)良a,c,胡靜a,c
(常州大學(xué) a.江蘇省材料表面科學(xué)與技術(shù)重點實驗室 b.懷德學(xué)院 c.材料科學(xué)與工程國家級實驗教學(xué)示范中心,江蘇 常州 213164)
為了進(jìn)一步提高42CrMo4鋼離子滲氮層的硬度,研發(fā)硼氮離子復(fù)合滲創(chuàng)新技術(shù),并與離子滲氮層特性進(jìn)行對比研究。在520 ℃、6 h的相同工藝條件下,對42CrMo4鋼分別進(jìn)行硼氮離子復(fù)合滲和離子滲氮處理。利用光學(xué)顯微鏡、XRD、顯微硬度計、摩擦磨損測試機(jī)和電化學(xué)工作站對截面顯微組織、物相、截面硬度、耐磨性和耐蝕性進(jìn)行測試和分析。硼氮離子復(fù)合滲可顯著提高滲氮效率,在520 ℃、6 h工藝條件下,化合物層厚度由18.78 μm增加到29.44 μm,有效硬化層厚度由265 μm增加到355 μm。同時,硼氮離子復(fù)合滲后在滲層形成了硼鐵化合物FeB和Fe2B,顯著提高了滲層的硬度和耐磨性;表面硬度由750HV0.05提高至1 002HV0.05,耐磨性和耐蝕性明顯提高,磨損率由3.06 mg/cm2下降到1.02 mg/cm2;自腐蝕電位由–648.89 mV提高至–494.32 mV。與離子滲氮相比,硼氮離子復(fù)合滲具有顯著優(yōu)勢,不僅可以提高離子滲效率,還可顯著提升滲層性能,包括滲層硬度、耐磨性和耐蝕性。
42CrMo4鋼;硼氮離子復(fù)合滲;離子滲氮;滲層;耐磨性;耐蝕性
離子滲氮是一種應(yīng)用廣泛的表面改性技術(shù),其具有清潔、高效、無污染等顯著優(yōu)勢[1-3]。由于離子滲氮后滲層硬度會受到基材的影響,基材中合金元素含量越低,表層硬度越低[4-7],因此碳素鋼和低合金鋼經(jīng)離子滲氮后,表層硬度很難超過750HV的技術(shù)要求。
文中針對產(chǎn)學(xué)研合作單位遇到的技術(shù)難題提出了創(chuàng)新解決方案,具體技術(shù)難題為:采用現(xiàn)有離子滲氮技術(shù)對42CrMo4柴油機(jī)連桿蓋進(jìn)行表面改性,無法滿足用戶提出的嚴(yán)苛技術(shù)要求(表面硬度大于800HV,芯部具有良好韌性,硬度為280~330HV,有效硬化層深度不小于0.2 mm)。柴油機(jī)連桿蓋外形結(jié)構(gòu)如圖1所示。
圖1 柴油機(jī)連桿蓋
滲硼后,硼化物層具有硬度高、耐磨性高、抗腐蝕、耐高溫氧化等優(yōu)良性能[8-10]。普通碳素鋼和合金鋼滲硼后表層硬度可高達(dá)1 500~2 000HV,由此顯著提高了零件的耐磨性和使用壽命[11-14]。由于常用的固體滲硼所需溫度高達(dá)1 000 ℃左右,且保溫時間長,導(dǎo)致工件變形大,因此固體滲硼技術(shù)存在能耗大、效率低、工件尺寸精度難以保障等不足[15-18]。
基于筆者課題組已研發(fā)的復(fù)合滲技術(shù)(包括軟氮化、氮氧共滲、鈦氮復(fù)合滲等)具有比單一元素離子滲氮更加優(yōu)越的性能[19-21]。結(jié)合離子滲氮和滲硼各自的特點,文中提出將硼化物引入離子滲氮層,達(dá)到揚長避短、提高離子滲層硬度及其他性能的創(chuàng)新思路。
為此,通過在離子滲氮時添加微量硼,探索研究硼氮離子復(fù)合滲技術(shù),并與離子滲氮滲層特性進(jìn)行對比研究,發(fā)現(xiàn)硼氮離子復(fù)合滲比離子滲氮具有顯著優(yōu)勢,不僅可以提高離子滲效率,還可顯著提升滲層性能(包括滲層硬度、耐磨性和耐蝕性)。
實驗材料為調(diào)質(zhì)態(tài)42CrMo4鋼,其化學(xué)成分(質(zhì)量分?jǐn)?shù))包括C(0.39%)、Si(0.28%)、Mo(0.21%)、Mn(0.77%)、Cr(0.89%),其余為Fe,基體硬度為320HV0.05。采用線切割將試樣加工成10 mm×10 mm× 5 mm,并采用180#—2000#的砂紙逐步進(jìn)行打磨,然后將樣品放在無水乙醇中,并用超聲波清洗10 min,以去除油污和雜質(zhì),取出吹干后放入密封袋中待用。
將42CrMo4鋼樣品放入離子滲氮爐中,先采用預(yù)氧化處理活化表面,預(yù)氧化溫度為300 ℃,時間為30 min。預(yù)氧化結(jié)束后分別進(jìn)行相同工藝條件(520 ℃,6 h)硼氮離子復(fù)合滲處理和離子滲氮處理。通過在試樣周圍均勻擺放直徑約為3 mm的顆粒狀硼鐵,進(jìn)行硼氮離子復(fù)合滲處理。硼氮離子復(fù)合處理時每爐放置4個相同尺寸(10 mm×10 mm×5 mm)試樣,每爐硼鐵的添加量為1.6 g。
經(jīng)硼氮離子復(fù)合處理后,采用DMI-3000M型光學(xué)顯微鏡觀察截面顯微組織。采用D/max-2500型X射線衍射儀測試物相組成,使用Cu-Kα射線,波長=0.154 nm,掃描速度設(shè)為5(°)/min,步寬設(shè)定為0.02°,2選定為20°~100°。采用HXD-1000TMC型維氏顯微硬度計,條件為加載載荷0.5 N、加載時間15 s,測量截面顯微硬度,同時采用維氏硬度計對試樣滲層韌性進(jìn)行測試。采用MMV-1A多功能材料摩擦行為測試儀測量耐磨性。對磨材料為GCr15鋼球,直徑為5 mm,轉(zhuǎn)速為250 r/min,加載載荷為4 N,對磨時間為16 min。耐磨性測試結(jié)束后,使用金相顯微鏡觀察試樣表面磨痕形貌,并使用Origin軟件作出摩擦磨損系數(shù)曲線,采用MST-5000電子天平測量摩擦磨損前后失重的數(shù)據(jù)。采用TD7300型電化學(xué)測試系統(tǒng)在NaCl(3.5%)溶液中進(jìn)行,測量硼氮離子復(fù)合處理后的試樣在室溫下的極化曲線,參比電極為飽和甘汞電極(SCE),輔助電極為Pt電極,掃描速度為2.5 mV/s。
42CrMo4鋼在相同工藝參數(shù)下離子滲氮和硼氮離子復(fù)合滲后的截面顯微組織見圖2,可以看出,離子滲氮處理后的化合物層厚度為18.78 μm,而經(jīng)硼氮離子復(fù)合滲處理后,試樣的化合物層厚度得到顯著增加,且化合物層中出現(xiàn)鋸齒狀垂直楔入基體,化合物層的厚度增加到29.44 μm,相較于離子滲氮處理的化合物層厚度增加了57%。
圖2 42CrMo4鋼在相同工藝參數(shù)下離子滲氮和硼氮離子復(fù)合滲顯微組織對比
42CrMo4鋼在相同工藝參數(shù)下離子滲氮和硼氮離子復(fù)合滲處理后的X射線衍射圖譜見圖3。從圖3可見,硼氮離子復(fù)合滲與離子滲氮一樣,滲層中都含有γ?-Fe4N相。同時,硼氮離子復(fù)合滲處理后滲層中新增了FeB和Fe2B,γ?-Fe4N相衍射峰強(qiáng)度明顯降低,富氮相ε-Fe2-3N衍射峰消失。
42CrMo4鋼在相同工藝參數(shù)下離子滲氮和硼氮離子復(fù)合滲的截面顯微硬度曲線見圖4,可以看出,硼氮離子復(fù)合滲試樣表面硬度顯著增加,不同深度截面顯微硬度也都不同程度地提高,有效硬化層逐漸增厚;表面硬度由750HV0.05提高至1 002HV0.05,且硬度梯度較為平緩,有效硬化層厚度由離子滲氮的265 μm增加到355 μm。由此可以說明,與離子滲氮相比,硼氮離子復(fù)合滲不僅提高了截面硬度,也增加了有效硬化層厚度。
圖3 42CrMo4鋼在相同工藝參數(shù)下離子滲氮和硼氮離子復(fù)合滲XRD譜對比
圖4 42CrMo4鋼在相同工藝參數(shù)下離子滲氮和硼氮離子復(fù)合滲截面顯微硬度對比
42CrMo4鋼在相同工藝參數(shù)下離子滲氮和硼氮離子復(fù)合滲復(fù)合處理后的磨痕形貌對比見圖5。從圖5中可以看出,離子滲氮處理后試樣表面出現(xiàn)了較深且較寬的磨損軌跡,而硼氮離子復(fù)合滲處理試樣磨損軌跡較淺且較窄,表面的磨損和破碎痕跡減少。同時,從圖6可以看出,試樣表面的磨損量顯著降低,離子滲氮處理后試樣的磨損率為3.06 mg/cm2,而硼氮離子復(fù)合滲處理后磨損率為1.02 mg/cm2。
圖5 42CrMo4鋼在相同工藝參數(shù)下離子滲氮和硼氮離子復(fù)合滲磨痕的形貌對比
圖6 42CrMo4鋼在相同工藝參數(shù)下離子滲氮與硼氮離子復(fù)合滲試樣磨損失重對比
42CrMo4鋼在相同工藝參數(shù)下離子滲氮和硼氮離子復(fù)合滲處理后的摩擦因數(shù)對比見圖7,可以看出,離子滲氮處理后試樣表面的摩擦因數(shù)較大,約為0.63,而經(jīng)硼氮離子復(fù)合滲處理后試樣表面的摩擦因數(shù)較小,約為0.35,且摩擦因數(shù)曲線較為平穩(wěn)。結(jié)合圖5和圖6可知,硼氮離子復(fù)合滲處理后能顯著提高試樣滲層的耐磨性。
圖7 42CrMo4鋼相同工藝參數(shù)下離子滲氮和硼氮離子復(fù)合滲試樣摩擦因數(shù)對比
42CrMo4鋼在相同工藝參數(shù)下離子滲氮和硼氮離子復(fù)合滲處理后的動電位極化曲線見圖8。結(jié)合表1可以得出,離子滲氮處理后的自腐蝕電位為–648.89 mV,自腐蝕電流密度為2.582 μA/cm2,而經(jīng)硼氮離子復(fù)合滲處理后,對應(yīng)的自腐蝕電位顯著增加,為?494.32 mV,自腐蝕電流密度顯著降低,為1.023 μA/cm2。由此得出,經(jīng)硼氮離子復(fù)合滲處理后的滲層其耐蝕性大大提高。
圖8 42CrMo4鋼在相同工藝參數(shù)下離子滲氮和硼氮離子復(fù)合滲試樣動電位極化曲線對比
表1 離子滲氮和硼氮離子復(fù)合滲對滲層耐蝕性的影響
Tab.1 Effect of PN and PNB on corrosion resistance
綜合上述研究結(jié)果可知,在520 ℃、6 h的相同工藝條件下,硼氮離子復(fù)合滲處理可顯著提高滲氮效率,提高滲層性能,包括硬度、耐磨性和耐蝕性。具體對比情況如表2所示。
由表2可見,相同工藝條件下,在硼氮離子復(fù)合滲過程中,化合物層厚度由離子滲氮處理的18.78 μm增加到29.44 μm,產(chǎn)生這種顯著提高滲速效果的可能原因如下:在硼氮離子復(fù)合滲處理前,對試樣進(jìn)行了預(yù)氧化處理,使得試樣表層形成一定厚度的鐵氧化物;鐵氧化物的存在使基體產(chǎn)生了大量的孔洞等缺陷[22-23],為氮、硼原子的擴(kuò)散提供了有利通道;氮的原子半徑相對較小,而硼的原子半徑較大,故氮的擴(kuò)散能力比硼大,因此活性氮原子優(yōu)先滲入,形成了Fe4N,使試樣表面晶格畸變、位錯密度增加,進(jìn)一步加速了硼原子的吸附過程,并使反應(yīng)擴(kuò)散增強(qiáng)[24-25],從而加快了滲層的形成。
表2 硼氮離子復(fù)合滲離子滲氮滲層特性對比
Tab.2 Comparative study on the characteristics of PN and PNB layer
Note: PN—plasma nitriding; PNB—plasma boron-nitriding; Treating parameters, 520 ℃, 6 h。
經(jīng)硼氮離子復(fù)合滲處理后,其試樣表面硬度由離子滲氮的750HV0.05提高至1 002HV0.05,同時,試樣的耐磨性大大提高。原因是添加硼離子滲氮后,滲層中形成了高硬度FeB和Fe2B硼鐵化合物,均勻分布的硼鐵化合物對滲層起到了第二相強(qiáng)化作用,使表面硬度和耐磨性顯著提高[26-27]。
綜上可知,添加微量硼進(jìn)行硼氮離子復(fù)合滲處理可以快速獲得具有表面硬度、耐磨耐蝕性都高于離子滲氮的滲層組織,具有重要的工程應(yīng)用價值。
在520 ℃、6 h的相同工藝條件下,對42CrMo4鋼進(jìn)行了硼氮離子復(fù)合滲處理,并與離子滲氮進(jìn)行了對比,得出如下結(jié)論。
1)硼氮離子復(fù)合滲處理比離子滲氮效率顯著提高,化合物層厚度由18.78 μm增加到29.44 μm,有效擴(kuò)散層厚度由265 μm增加到355 μm。同時,經(jīng)硼氮離子復(fù)合滲處理后,滲層中形成了硼鐵化合物FeB和Fe2B。
2)硼氮離子復(fù)合滲處理后表面硬度由750HV0.05提高至1 002HV0.05。同時,相同層深處對應(yīng)的截面硬度都顯著提高。
3)硼氮離子復(fù)合滲顯著改善了離子滲氮試樣的耐磨性。硼氮離子復(fù)合滲試樣磨痕較淺、較窄,磨損率由3.06 mg/cm2降低到1.02 mg/cm2;摩擦因數(shù)由0.63降低到0.35。
4)硼氮離子復(fù)合滲顯著改善了離子滲氮試樣的耐蝕性。硼氮離子復(fù)合滲自腐蝕電位由–648.89 mV提高至–494.32 mV,自腐蝕電流密度由2.582 μA/cm2減小到1.023 μA/cm2。
5)42CrMo4柴油機(jī)連桿蓋經(jīng)硼氮離子復(fù)合滲后,各項組織性能指標(biāo)都滿足技術(shù)要求。
[1] 張利, 王洪順, 孟慶華, 等. 45鋼氣體低溫氮硼復(fù)合共滲研究[J]. 沈陽航空工業(yè)學(xué)院學(xué)報, 2008, 25(2): 25-26.
ZHANG Li, WANG Hong-shun, MENG Qing-hua, et al. Study on Binary N-B Co-Penetration Character of No.45 Steel in Lower Temperature Condition[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2008, 25(2): 25-26.
[2] 楊浩鵬, 吳曉春. H13鋼低溫固體滲硼及其熱熔損性能的研究[J]. 上海金屬, 2019, 41(4): 23-28.
YANG Hao-peng, WU Xiao-chun. Study on the Low- Temperature Pack Boriding and Erosion Property of H13 Steel[J]. Shanghai Metals, 2019, 41(4): 23-28.
[3] 梁文萍, 徐重, 繆強(qiáng), 等. Ti2AlNbO相合金雙層輝光等離子滲Mo摩擦性能[J]. 稀有金屬材料與工程, 2006, 35(11): 1826-1829.
LIANG Wen-ping, XU Chong, MIAO Qiang, et al. Tribological Behaviors of Ti2AlNb Orthorhombic Alloy Molybdenized by Double Glow Plasma Surface[J]. Rare Metal Materials and Engineering, 2006, 35(11): 1826-1829.
[4] TANG Lei, JIA Wei-ju, HU Jing. An Enhanced Rapid Plasma Nitriding by Laser Shock Peening[J]. Materials Letters, 2018, 231: 91-93.
[5] 唐磊, 陳堯, 彭甜甜, 等. H13熱沖壓模具無化合物層抗沖擊抗熱疲勞離子滲氮技術(shù)研究與應(yīng)用[J]. 表面技術(shù), 2018, 47(11): 48-53.
TANG Lei, CHEN Yao, PENG Tian-tian, et al. Study and Application of Non-Compound Layer Plasma Nitriding with Impact and Thermal Fatigue Resistance for H13 Hot Stamping Die Steel[J]. Surface Technology, 2018, 47(11): 48-53.
[6] BHADRAIAH D, NOUVEAU C, VEERASWAMI B, et al.Plasma Based Nitriding of Tool Steel for the Enhancement of Hardness[J]. Materials Today: Proceedings, 2021, 46: 940-943.
[7] GATEY A M, HOSMANI S S, FIGUEROA C A, et al. Role of Surface Mechanical Attrition Treatment and Chemical Etching on Plasma Nitriding Behavior of AISI 304L Steel[J]. Surface and Coatings Technology, 2016, 304: 413-424.
[8] LI Jing-cai, YANG Xing-mei, WANG Shu-kai, et al. A Rapid DC Plasma Nitriding Technology Catalyzed by Pre-Oxidation for AISI4140 Steel[J]. Materials Letters, 2014, 116: 199-202.
[9] 李景才, 孫斐, 王樹凱, 等. 離子滲氮前預(yù)氧化催滲作用及機(jī)理[J]. 材料熱處理學(xué)報, 2014, 35(7): 182-186.
LI Jing-cai, SUN Fei, WANG Shu-kai, et al. Catalysis Effect and Mechanism of Pre-Oxidation on Direct Current Plasma Nitriding[J]. Transactions of Materials and Heat Treatment, 2014, 35(7): 182-186.
[10] KOLLECK R, VEIT R, MERKLEIN M, et al. Investigation on Induction Heating for Hot Stamping of Boron Alloyed Steels[J]. CIRP Annals, 2009, 58(1): 275-278.
[11] YE Xue-mei, WU Ji-qiang, ZHU Yong-li, et al. A Study of the Effect of Propane Addition on Plasma Nitrocarburizing for AISI 1045 Steel[J]. Vacuum, 2014, 110: 74-77.
[12] LIU Han, LI Jing-cai, CHAI Ya-ting, et al. A Novel Plasma Oxynitriding by Using Plain Air for AISI 1045 Steel[J]. Vacuum, 2015, 121: 18-21.
[13] 毛長軍, 魏坤霞, 劉細(xì)良, 等. 微量鈦對離子滲氮滲層特性及性能的影響[J]. 中國表面工程, 2020, 33(1): 34-38.
MAO Chang-jun, WEI Kun-xia, LIU Xi-liang, et al. Effects of Trace Titanium on Characteristics and Properties of Plasma Nitriding Layer[J]. China Surface Engineering, 2020, 33(1): 34-38.
[14] TANG Lei, MAO Chang-jun, JIA Wei-ju, et al. The Effect of Novel Composite Pretreatment on Performances of Plasma Nitrided Layer[J]. Journal of Materials Research and Technology, 2020, 9(5): 9531-9536.
[15] KERTSCHER R, BRUNATTO S F. On the Kinetics of Nitride and Diffusion Layer Growth in Niobium Plasma Nitriding[J]. Surface and Coatings Technology, 2020, 401: 126220.
[16] LI Yang, WANG Liang, SHEN Lie, et al. Plasma Nitriding of 42CrMo Low Alloy Steels at Anodic or Cathodic Potentials[J]. Surface and Coatings Technology, 2010, 204(15): 2337-2342.
[17] 陳堯, 宋磊, 張宸愷, 等. 38CrMoAl液壓柱塞無白亮層低溫離子滲氮工藝研究[J]. 機(jī)械工程學(xué)報, 2017, 53(22): 81-86.
CHEN Yao, SONG Lei, ZHANG Chen-kai, et al. Lower Temperature Plasma Nitriding without White Layer for 38CrMoAl Hydraulic Plunger[J]. Journal of Mechanical Engineering, 2017, 53(22): 81-86.
[18] 盧世靜, 孫斐, 繆小吉, 等. 離子滲氮和固溶復(fù)合處理制備深層含氮奧氏體不銹鋼[J]. 表面技術(shù), 2018, 47(10): 180-185.
LU Shi-jing, SUN Fei, MIAO Xiao-ji, et al. Preparation for Deep Nitriding Austenitic Stainless Steel by Complex Treatment of Plasma Nitriding and Solid Solution[J]. Surface Technology, 2018, 47(10): 180-185.
[19] ORTIZ-DOMíNGUEZ M, KEDDAM M, ELIAS- SPINOSA M, et al. Characterization and Boriding Kinetics of AISI T1 Steel[J]. Metallurgical Research & Technology, 2018, 116(1): 102.
[20] 劉保國, 林玥, 張世宏. 離子氮化高速鋼沉積摻鎢類金剛石薄膜的摩擦磨損性能研究[J]. 表面技術(shù), 2016, 45(6): 119-124.
LIU Bao-guo, LIN Yue, ZHANG Shi-hong. Friction and Wear Properties of W Doped Diamond-Like Carbon Film on the Ion Nitriding HSS Substrate[J]. Surface Technology, 2016, 45(6): 119-124.
[21] KOVAC H, HAC?SALIHO?LU ?, YETIM A F, et al. Effects of Shot Peening Pre-Treatment and Plasma Nitriding Parameters on the Structural, Mechanical and Tribological Properties of AISI 4140 Low-Alloy Steel[J]. Surface and Coatings Technology, 2019, 358: 256-265.
[22] DA SILVA SAVONOV G, CAMARINHA M G G, ROCHA L O, et al. Study of the Influence of the RRA Thermal Treatment and Plasma Nitriding on Corrosion Behavior of 7075-T6 Aluminum Alloy[J]. Surface and Coatings Technology, 2019, 374: 736-744.
[23] 劉建睿, 嚴(yán)宏志, 李算, 等. 離子滲氮工藝參數(shù)對4Cr5MoSiV鋼表層組織與性能的影響[J]. 表面技術(shù), 2019, 48(8): 199-205.
LIU Jian-rui, YAN Hong-zhi, LI Suan, et al. Effect of Ion Nitriding Process Parameters on Surface Properties of 4Cr5MoSiV Steel[J]. Surface Technology, 2019, 48(8): 199-205.
[24] ORDO?EZ M F C, AMORIM C L G, KRINDGES I, et al. Microstructure and Micro-Abrasive Wear of Sintered Yttria-Containing 316L Stainless Steel Treated by Plasma Nitriding[J]. Surface and Coatings Technology, 2019, 374: 700-712.
[25] 鐘厲, 馬晨陽, 韓西, 等. 40Cr鋼循環(huán)離子滲氮工藝及滲層硬度研究[J]. 表面技術(shù), 2017, 46(2): 154-158.
ZHONG Li, MA Chen-yang, HAN Xi, et al. Study on Surface Circular Plasma Nitriding Technology and Nitrided Layer Hardness of 40Cr Steel[J]. Surface Technology, 2017, 46(2): 154-158.
[26] BASU A, MAJUMDAR J D, ALPHONSA J, et al. Corrosion Resistance Improvement of High Carbon Low Alloy Steel by Plasma Nitriding[J]. Materials Letters, 2008, 62(17/18): 3117-3120.
[27] 劉元福, 陳吉, 孫彥偉, 等. 表面離子滲氮對SS304耐蝕性的研究[J]. 表面技術(shù), 2016, 45(11): 93-98.
LIU Yuan-fu, CHEN Ji, SUN Yan-wei, et al. Effects of Surface Ion Nitriding on the Corrosion Resistance of SS304[J]. Surface Technology, 2016, 45(11): 93-98.
Comparative Study on Plasma Boron-Nitriding and Plasma Nitriding for 42CrMo4 Steel
a,b,a,b,a,c,a,b,a,c,a,c
(a. Jiangsu Key Laboratory of Materials Surface Science and Technology b. Huaide College c. National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, China)
The work aims to develop plasma boron-nitriding (PNB) technology to further improve the hardness of 42CrMo4 steel nitriding layer and comparatively study the properties of plasma nitriding layer. Under the same technological conditions of 520 ℃ and 6 h, 42CrMo4 steel was treated by plasma boron-nitriding and plasma nitriding, respectively. The cross-sectional microstructures, phase compositions, cross-sectional hardness, wear and corrosion resistance of the nitriding layer was tested and analyzed by optical microscope, XRD, microhardness tester and wear tester and electrochemical workstation. PNB significantly increased the nitriding efficiency. Under the technological conditions of 520 ℃ and 6 h, the thickness of compound layer and effective hardening layer increased from 18.78 μm to 29.44 μm, and 265 μm to 355 μm, respectively. Meanwhile, FeB and Fe2B were formed in the surface layer after plasmaboron-nitriding, which significantly improved the hardness and wear resistance of nitriding layer. The surface hardness increased from 750HV0.05 to 1 002HV0.05, and both wear and corrosion resistance were obviously enhanced. The wear rate was decreased from 3.06 mg/cm2to 1.02 mg/cm2, and the self-corrosion potential was increased from –648.89 mV to –494.32 mV. Compared with plasma nitriding, plasma boron- nitriding has obvious advantages, which can not only improve the efficiency of plasma nitriding, but also significantly improve the properties of the nitriding layer, including hardness, wear resistance and corrosion resistance.
42CrMo4 steel; plasma boron-nitriding; plasma nitriding; nitriding layer; wear resistance; corrosion resistance
TG178
A
1001-3660(2022)04-0121-06
10.16490/j.cnki.issn.1001-3660.2022.04.011
2021-05-18;
2021-08-30
2021-05-18;
2021-08-30
國家自然科學(xué)基金(21978025,51774052);江蘇省優(yōu)勢學(xué)科建設(shè)項目(PAPD-3);江蘇高校品牌專業(yè)建設(shè)工程資助項目(TAPP)
National Natural Science Foundation of China (21978025, 51774052); Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD-3); Top-notch Academic Program Projects of Jiangsu Higher Education Institutions (TAPP)
麻恒(1995—),女,碩士研究生,主要研究方向為表面工程。
MA Heng (1995—), Female, Postgraduate, Research focus: surface engineering.
胡靜(1966—),女,博士,教授,主要研究方向為金屬表面改性。
HU Jing (1966—), Female, Doctor, Professor, Research focus: metal surface modification.
麻恒,趙曉兵,魏坤霞, 等. 42CrMo4鋼硼氮離子復(fù)合滲與離子滲氮對比研究[J]. 表面技術(shù), 2022, 51(4): 121-126.
MA Heng, ZHAO Xiao-bing, WEI Kun-xia, et al. Comparative Study on Plasma Boron-Nitriding and Plasma Nitriding for 42CrMo4 Steel[J]. Surface Technology, 2022, 51(4): 121-126.
責(zé)任編輯:彭颋