范延艮,王域,劉富浩,趙秀秀,向勤锃,張麗霞
茶樹(shù)CsHIPP26.1互作蛋白的篩選與驗(yàn)證
范延艮,王域,劉富浩,趙秀秀,向勤锃,張麗霞*
山東農(nóng)業(yè)大學(xué)園藝科學(xué)與工程學(xué)院/作物生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,山東泰安 271018
【背景】‘黃金芽’屬于光照敏感型黃化茶樹(shù)()品種,葉片色澤呈現(xiàn)強(qiáng)光黃化、弱光復(fù)綠的特點(diǎn),但葉色響應(yīng)光照的黃化機(jī)制并不明確。前期通過(guò)對(duì)黃化葉片、遮陰復(fù)綠葉片以及常綠品種葉片的蛋白組研究發(fā)現(xiàn),重金屬相關(guān)異戊二烯化植物蛋白CsHIPP26.1(TEA000549)的表達(dá)響應(yīng)光照強(qiáng)度,表明CsHIPP26.1可能參與調(diào)控‘黃金芽’葉色黃化的光響應(yīng)過(guò)程?!灸康摹客ㄟ^(guò)篩選與CsHIPP26.1互作的光信號(hào)響應(yīng)相關(guān)的蛋白,為葉片色澤響應(yīng)光照信號(hào)變化提供科學(xué)依據(jù)?!痉椒ā恳浴S金芽’茶樹(shù)1芽2葉為材料進(jìn)行和互作基因的克隆,經(jīng)酵母雙雜交篩庫(kù),然后將篩選得到的目的蛋白進(jìn)行酵母雙雜交點(diǎn)對(duì)點(diǎn)驗(yàn)證、體內(nèi)雙分子熒光互補(bǔ)(BiFC)和體外pull-down等技術(shù)進(jìn)行蛋白互作的進(jìn)一步驗(yàn)證?!窘Y(jié)果】通過(guò)酵母雙雜交對(duì)茶樹(shù)cDNA文庫(kù)進(jìn)行篩選,共篩選到26個(gè)候選互作蛋白,主要集中在細(xì)胞組分、結(jié)合以及催化活性方面發(fā)揮作用,其中生物素合成代謝過(guò)程富集程度較高,與光信號(hào)通路及葉綠素合成相關(guān)的蛋白只有編號(hào)為T(mén)EA026466.1的bHLH30轉(zhuǎn)錄因子。克隆bHLH30轉(zhuǎn)錄因子后發(fā)現(xiàn),該轉(zhuǎn)錄因子與茶樹(shù)光信號(hào)傳導(dǎo)途徑蛋白PIF4處于同一進(jìn)化樹(shù)分支,且含有與茶樹(shù)PIF4蛋白相同的HLH和ACT結(jié)構(gòu)域,將該bHLH30轉(zhuǎn)錄因子命名為CsPIF4.2,GenBank登記號(hào)為MW116834。進(jìn)一步通過(guò)體外Pull-down蛋白互作和體內(nèi)雙分子熒光互補(bǔ)(BiFC)驗(yàn)證發(fā)現(xiàn),CsHIPP26.1和CsPIF4.2蛋白能夠發(fā)生互作,并且發(fā)生互作的部位在細(xì)胞核內(nèi)。【結(jié)論】初步篩選出26個(gè)與CsHIPP26.1互作的蛋白,并驗(yàn)證發(fā)現(xiàn)CsHIPP26.1能夠在細(xì)胞核內(nèi)與其中一個(gè)光敏色素互作因子CsPIF4.2發(fā)生蛋白相互作用。
HIPP;PIF4;蛋白互作;黃化品種;光響應(yīng)
【研究意義】‘黃金芽’屬于光照敏感型黃化茶樹(shù)()品種,葉片色澤受光單一調(diào)控[1-2],呈現(xiàn)“強(qiáng)光黃化,弱光復(fù)綠”的特點(diǎn)[3],但其葉片色澤響應(yīng)光照強(qiáng)度黃化的機(jī)制并不明確?!S金芽’新梢黃化性狀穩(wěn)定[4-5],目前以‘黃金芽’茶樹(shù)品種為母本進(jìn)行雜交選育的后代絕大部分為光照敏感型黃化茶樹(shù)品種[6],因此,研究‘黃金芽’葉色黃化的分子機(jī)制,可以探究光照作為信號(hào)調(diào)控葉片黃化的分子機(jī)制,并且能夠以葉片色澤作為標(biāo)記性狀,后續(xù)開(kāi)發(fā)分子標(biāo)記,加快優(yōu)質(zhì)品種的育種進(jìn)程,提高育種效率?!厩叭搜芯窟M(jìn)展】前期對(duì)光照敏感型黃化茶樹(shù)品種‘黃金芽’不同葉色葉片的篩選以及后續(xù)的蛋白組分析[7-8],發(fā)現(xiàn)一個(gè)響應(yīng)光照強(qiáng)度表達(dá)的重金屬相關(guān)異戊二烯化植物蛋白(heavy metal-associated isoprenylated plant protein,HIPP),該蛋白N端包含金屬結(jié)合域(heavy metal-associated domain,HMA,pfam00403.6),C端存在一個(gè)被異戊二烯化的保守位點(diǎn)[9]。目前對(duì)HIPP的研究較少,僅在模式植物擬南芥中鑒定到45個(gè)HIPP基因[10],根據(jù)已有的研究結(jié)果,擬南芥中HIPP的功能分為兩種:(a)在重金屬穩(wěn)態(tài)和脫毒機(jī)制(特別是鎘耐受性)中發(fā)揮作用[11-14];(b)作為響應(yīng)低溫、干旱和鹽脅迫的調(diào)控元件[15-16]。除此之外,HIPP能夠通過(guò)感知脅迫參與調(diào)控?cái)M南芥開(kāi)花時(shí)間[17]和擬南芥中植物-病原體相互作用的信號(hào)等[18],在植物生長(zhǎng)發(fā)育和逆境適應(yīng)性中發(fā)揮重要作用,但并沒(méi)有HIPP緩解強(qiáng)光脅迫的相關(guān)研究。在前期研究中,將篩選到的克隆后發(fā)現(xiàn),該基因cDNA全長(zhǎng)為465 bp,編碼154個(gè)氨基酸,蛋白分子量為17 kD;理論等電點(diǎn)為9.13,無(wú)跨膜結(jié)構(gòu)域;共有16個(gè)磷酸化位點(diǎn),位于Ser、Thr和Tyr三個(gè)氨基酸殘基上;根據(jù)基因序列號(hào),將該基因命名為(TEA000549),GenBank登錄號(hào):MK654903;亞細(xì)胞定位發(fā)現(xiàn)定位于細(xì)胞核,并且在‘黃金芽’中,的表達(dá)能夠響應(yīng)光照強(qiáng)度,同時(shí)能夠顯著提高轉(zhuǎn)基因蘋(píng)果()愈傷組織的強(qiáng)光耐受性[9],因此,可能參與了‘黃金芽’葉色黃化的光響應(yīng)調(diào)控過(guò)程,但如何參與葉色的光響應(yīng)調(diào)控途徑并不清楚。【本研究切入點(diǎn)】葉色黃化主要是由于葉綠素含量降低造成的葉色失綠,因此,通過(guò)篩選與CsHIPP26.1互作且在調(diào)控葉綠素合成過(guò)程中發(fā)揮作用的蛋白,能夠闡述CsHIPP26.1可能參與的葉色響應(yīng)光照強(qiáng)度的調(diào)控途徑?!緮M解決的關(guān)鍵問(wèn)題】以‘黃金芽’茶樹(shù)品種為試驗(yàn)材料,利用前期克隆獲得的序列,構(gòu)建酵母雙雜交誘餌蛋白載體,通過(guò)酵母雙雜交篩庫(kù)篩選與其互作的光信號(hào)響應(yīng)相關(guān)蛋白,并通過(guò)體內(nèi)、體外等方式驗(yàn)證蛋白相互作用,為進(jìn)一步探究HIPP與光照強(qiáng)度調(diào)控‘黃金芽’葉色之間的關(guān)系提供科學(xué)依據(jù)。
試驗(yàn)材料取自山東省泰安市茶溪谷有限公司茶園,室內(nèi)酵母雙雜交、pull-down等于2019—2020年在山東農(nóng)業(yè)大學(xué)茶學(xué)實(shí)驗(yàn)室進(jìn)行。
茶樹(shù)材料:采摘種植于山東省泰安市茶園的五年生‘黃金芽’茶樹(shù)()一芽二葉,迅速置于液氮中,-80℃保存。
載體:酵母雙雜交載體:pGBKT7(BD載體)和pGADT7(AD載體),購(gòu)自大連寶生物公司;雙分子熒光互補(bǔ)(BiFC)載體:pSPYNE-35s和pSPYCE-35s,購(gòu)自Biovector;Pull-down載體:pET-32a(帶His標(biāo)簽)和PGEX-4T-1(帶GST標(biāo)簽),購(gòu)自上海信裕生物科技有限公司;克隆載體:pEASY BLUNT-Zero,購(gòu)自北京全式金生物公司。
菌株:大腸桿菌DH5α、大腸桿菌BL21(DE3)、酵母Y2H、根癌農(nóng)桿菌GV3101均購(gòu)自上海維地生物技術(shù)有限公司。
試劑:Phusion高保真酶(F530S)、dNTP、I、R I、H I、I內(nèi)切酶、T4連接酶購(gòu)自美國(guó)賽默飛世爾科技公司,多糖多酚RNA提取試劑盒(DP441)和DNA回收試劑盒(DP219)均購(gòu)自北京天根生化科技有限公司,反轉(zhuǎn)錄試劑盒RNA to cDNA EcoDry? Premix購(gòu)自寶生物工程(大連)有限公司。所有引物由上海生工生物工程股份有限公司合成,編號(hào)及序列見(jiàn)表1。
表1 CsHIPP26.1和CsPIF4.2引物
下劃線為酶切位點(diǎn)。The underline is the digestion site.CATATG:I; GGATCC:H I; GAATTC:R I; GTCGAC:I
1.2.1 基因克隆與載體構(gòu)建 以‘黃金芽’茶樹(shù)品種一芽二葉為材料,根據(jù)多糖多酚RNA提取試劑盒(DP441)和反轉(zhuǎn)錄試劑盒(RNA to cDNA EcoDryTMPremix)的說(shuō)明書(shū)進(jìn)行茶樹(shù)RNA的提取和反轉(zhuǎn)錄的操作。以茶樹(shù)小葉種基因組數(shù)據(jù)庫(kù)(http://tpia.teaplant.org/)中的基因序列為模板設(shè)計(jì)(TEA000549)和(TEA026466)的特異性引物(表1)。PCR擴(kuò)增體系為20 μL,包括Phusion(F530S)高保真酶0.2 μL、5×Phusion HF Buffer 4 μL、10 mmol?L-1dNTPs 0.4 μL、正向和反向引物各1 μL、模板DNA 1 μL、ddH2O 12.4 μL。反應(yīng)條件為98℃ 30 s;98℃ 10 s,60℃ 20 s,72℃ 30 s,35個(gè)循環(huán);72℃延伸10 min。采用DNA回收試劑盒(DP219)回收PCR產(chǎn)物后連接至pEASY BLUNT-Zero載體上,然后轉(zhuǎn)化到大腸桿菌感受態(tài)細(xì)胞,經(jīng)篩選抽提質(zhì)粒后送上海生工生物工程股份有限公式進(jìn)行測(cè)序。
將測(cè)序正確的克隆載體質(zhì)粒與相應(yīng)的空表達(dá)載體分別進(jìn)行雙酶切,酶切體系為40 μL,包括質(zhì)粒25 μL、10×FastDigest Buffer 4 μL、各自對(duì)應(yīng)的兩種內(nèi)切酶各2 μL、ddH2O 7 μL。反應(yīng)條件為37℃酶切30 min,然后用DNA回收試劑盒分別回收酶切好的目的基因和空表達(dá)載體。將回收好的目的基因和對(duì)應(yīng)的載體用T4連接酶進(jìn)行連接,連接反應(yīng)體系為10 μL,包括T4 DNA Ligase 0.5 μL、10×T4 Buffer 1 μL、目的片段7.5 μL、表達(dá)載體1 μL。22℃反應(yīng)30 min,轉(zhuǎn)化大腸桿菌感受態(tài)細(xì)胞后,PCR篩選陽(yáng)性重組克隆。
1.2.2 酵母雙雜交 自主激活鑒定:根據(jù)趙強(qiáng)[19]的方法,將構(gòu)建好的BD-載體轉(zhuǎn)入Y2H酵母中,將轉(zhuǎn)化好的酵母細(xì)胞分別平涂到酵母培養(yǎng)板SD/-Trp、SD/-Trp+X-α-Gal、SD/-Trp+X-α-Gal+100 mmol?L-1金擔(dān)子素(Aureobasidin A,AbA)上,30℃倒置培養(yǎng)2—3 d,如果SD/-Trp+X-α-Gal上菌落呈白色或紅色,則無(wú)自主激活活性;如果SD/-Trp+X-α- Gal上菌落變藍(lán),則說(shuō)明有自主激活活性;如果SD/-Trp+X-α-Gal上菌落變藍(lán),而SD/-Trp+X-α-Gal+ 100 mmol?L-1AbA上不生長(zhǎng),則說(shuō)明自主激活活性可以被AbA抑制,后續(xù)雙雜交驗(yàn)證時(shí)需添加一定量的AbA。
酵母雙雜交相互作用的驗(yàn)證:將轉(zhuǎn)化好的酵母細(xì)胞(雙雜交篩庫(kù)以及驗(yàn)證)平涂到酵母培養(yǎng)板SD/-Trp/-Leu(二缺)上;培養(yǎng)2—3 d后,再次活化到酵母培養(yǎng)板SD/-Trp/-Leu/-His/-Ade(四缺)上;如果四缺板上不長(zhǎng),則說(shuō)明蛋白與蛋白可能不互作;如果在四缺板上正常生長(zhǎng),并且在加入X-α-gal和AbA的四缺平板上菌落變藍(lán),則表示蛋白與蛋白發(fā)生互作。
1.2.3 蛋白互作驗(yàn)證 BiFC和Pull-down蛋白互作驗(yàn)證根據(jù)Su等[20]的方法進(jìn)行。
BiFC體內(nèi)蛋白互作驗(yàn)證:分別構(gòu)建pSPYNE- 35s-和pSPYCE-35s-載體,將pSPYNE-35s、pSPYCE-35s空載體和構(gòu)建好的pSPYNE- 35s-、pSPYCE-35s-載體分別轉(zhuǎn)入根癌農(nóng)桿菌GV3101中,并侵染洋蔥()表皮,暗培養(yǎng)2—3 d后,在激光共聚焦顯微鏡下觀察結(jié)果。
Pull-down體外蛋白互作驗(yàn)證:分別構(gòu)建pET-32a- CsHIPP26.1(CsHIPP26.1-His)和PGEX-4T-1-CsPIF4.2(CsPIF4.2-GST)載體,將pET-32a-CsHIPP26.1、PGEX-4T-1-CsPIF4.2、pET-32a和PGEX-4T-1分別轉(zhuǎn)入大腸桿菌BL21中,用IPTG法誘導(dǎo)蛋白,破碎大腸桿菌并用磁珠純化蛋白后,分別上柱共孵化,洗脫后用Western blotting進(jìn)行蛋白檢測(cè)。
1.2.4 生物信息學(xué)預(yù)測(cè) 篩選到的互作蛋白使用OmicShare Tools網(wǎng)站(https://www.omicshare.com/ tools/home/soft/getsoft/p/7.html)進(jìn)行GO功能分析。通過(guò)茶樹(shù)基因組數(shù)據(jù)庫(kù)(http://tpia.teaplant.org/)檢索茶樹(shù)中光敏色素互作因子(phytochrome interacting factor,PIF)的同源家族基因,根據(jù)酵母雙雜交篩選到的bHLH30(TEA026466.1)蛋白,用MEGA7軟件通過(guò)極大似然法(Maximum likelihood)構(gòu)建PIF家族進(jìn)化樹(shù),通過(guò)Clustalx軟件進(jìn)行蛋白序列比對(duì),通過(guò)MEME網(wǎng)站(http://meme-suite.org/tools/meme)預(yù)測(cè)同源家族基因蛋白序列的保守位點(diǎn)。
2.1CsHIPP26.1茶樹(shù)中互作蛋白篩選
通過(guò)自激活驗(yàn)證發(fā)現(xiàn),轉(zhuǎn)入BD-載體的Y2H酵母能夠在SD/-Trp酵母培養(yǎng)基上正常生長(zhǎng),而且能夠在SD/-Trp+x-α-gal的酵母培養(yǎng)基上生長(zhǎng)且變藍(lán)。x-α-gal是酵母半乳糖苷酶(MEL1)的顯色底物,GAL4酵母雙雜交系統(tǒng)的報(bào)告基因激活后,能夠發(fā)生互作的陽(yáng)性克隆直接在含有x-α-gal的固體培養(yǎng)基上呈藍(lán)色[21]。因此,單轉(zhuǎn)BD-的Y2H變藍(lán)表明構(gòu)建于BD載體的具有自激活反應(yīng);AbA是酵母雙雜交陽(yáng)性克隆子篩選用的藥物選擇性標(biāo)記,能夠有效抑制酵母雙雜交中的自激活反應(yīng)[22],在添加了100 mmol?L-1AbA的SD/-Trp+x-α- gal+100 mmol?L-1AbA酵母培養(yǎng)基上,酵母的生長(zhǎng)被抑制,表明100 mmol?L-1濃度的AbA能夠抑制BD-的自激活反應(yīng)(圖1)。
圖1 BD誘餌蛋白自激活檢測(cè)
以AbA濃度為100 mmol?L-1的酵母篩庫(kù)培養(yǎng)基(二缺與四缺)進(jìn)行茶樹(shù)基因文庫(kù)篩選,經(jīng)酵母菌落PCR檢測(cè)并送樣測(cè)序后,初步獲得候選互作蛋白26個(gè)(表2)。分析發(fā)現(xiàn),篩選到的26個(gè)互作蛋白中,共有16個(gè)蛋白能夠注釋到具體KEGG通路中,其中有3個(gè)信號(hào)通路相關(guān)蛋白,3個(gè)類黃酮、花青素相關(guān)通路蛋白,2個(gè)核糖體相關(guān)蛋白,2個(gè)轉(zhuǎn)運(yùn)相關(guān)蛋白,2個(gè)葉酸合成相關(guān)蛋白和1個(gè)生物素合成相關(guān)蛋白;對(duì)26個(gè)篩選蛋白進(jìn)行GO分析發(fā)現(xiàn)(圖2),26個(gè)候選蛋白主要集中在細(xì)胞組分、結(jié)合以及催化活性方面,其中生物素合成代謝過(guò)程富集程度較高。但與光信號(hào)通路及葉綠素合成相關(guān)的蛋白只有編號(hào)為T(mén)EA026466.1的bHLH30轉(zhuǎn)錄因子,因此選擇該蛋白作進(jìn)一步分析。
為進(jìn)一步驗(yàn)證篩選到的與CsHIPP26.1互作的bHLH30(PIF4-like)轉(zhuǎn)錄因子蛋白,首先將該轉(zhuǎn)錄因子(TEA026466)進(jìn)行基因克隆,克隆后發(fā)現(xiàn)其全長(zhǎng)1 098 bp,編碼365個(gè)氨基酸;然后將茶樹(shù)小葉種基因組數(shù)據(jù)庫(kù)(http://tpia.teaplant.org/)找到的PIF蛋白與該轉(zhuǎn)錄因子(TEA026466)進(jìn)行進(jìn)化樹(shù)與結(jié)構(gòu)域分析,發(fā)現(xiàn)篩庫(kù)得到的bHLH30蛋白(TEA026466)與茶樹(shù)PIF4蛋白(TEA016807)處于同一進(jìn)化樹(shù)分支,具有相似的保守結(jié)構(gòu)位點(diǎn)(Motif),并含有與PIF4相似度極高的bHLH和ACT結(jié)構(gòu)域(圖3)。根據(jù)茶樹(shù)小葉種基因組數(shù)據(jù)庫(kù)的預(yù)測(cè)名稱以及基因序列號(hào)大小排序,將篩庫(kù)得到的該蛋白命名為CsPIF4.2(TEA026466),并將克隆到的基因序列提交到NCBI,GenBank登記號(hào):MW116834。
圖3 茶樹(shù)PIFs進(jìn)化樹(shù)分析與蛋白序列比對(duì)
將克隆到的構(gòu)建到pGADT7(AD)質(zhì)粒載體中,然后將pGBKT7::(- BD)和pGADT7::(-AD)質(zhì)粒共同轉(zhuǎn)化進(jìn)酵母感受態(tài)。結(jié)果顯示,在100 mmol?L-1AbA的選擇下,只有共轉(zhuǎn)了-BD和- AD載體的酵母才能正常生長(zhǎng)變藍(lán),而共轉(zhuǎn)- BD和空AD載體的酵母以及共轉(zhuǎn)空BD和- AD載體的酵母在選擇培養(yǎng)基上均不能正常生長(zhǎng)(圖4-A),以上結(jié)果說(shuō)明CsHIPP26.1和CsPIF4.2蛋白能夠在酵母體內(nèi)結(jié)合并啟動(dòng)下游報(bào)告基因的表達(dá),可以在酵母內(nèi)發(fā)生互作。
為進(jìn)一步驗(yàn)證蛋白互作的真實(shí)性,采用體外蛋白互作的方法(Pull-down)和體內(nèi)蛋白互作的方法(雙分子熒光互補(bǔ)技術(shù),BiFC)進(jìn)行互作的進(jìn)一步驗(yàn)證。從圖4-B可以看出,在Input中,第一列CsHIPP26.1蛋白和CsPIF4.2蛋白都加入,但并未經(jīng)過(guò)洗脫,因此上清液中存在這兩種蛋白;第二列CsHIPP26.1蛋白與GST蛋白在沒(méi)有洗脫的情況下也能共存。在Output中,CsPIF4- GST能夠?qū)sHIPP26.1蛋白拉下來(lái),而單獨(dú)的GST蛋白不能將CsHIPP26.1蛋白拉下來(lái),說(shuō)明CsHIPP26.1蛋白能夠在體外與CsPIF4.2蛋白結(jié)合。通過(guò)BiFC驗(yàn)證,激光共聚焦顯微鏡下觀測(cè)發(fā)現(xiàn)(圖4-C),在pSPYNE- 35s::與pSPYCE-35s以及pSPYNE-35s與pSPYCE-35s::共同侵染的洋蔥表皮細(xì)胞中,在激發(fā)光下并無(wú)熒光發(fā)生,說(shuō)明單獨(dú)的N端或者C端并不能引起黃色熒光的激發(fā),從而排除BiFC體系本身失效的影響。而在pSPYNE-35s::與pSPYCE-35s::共同侵染的洋蔥表皮細(xì)胞中,在激發(fā)光下能夠在細(xì)胞核中看到黃色熒光,說(shuō)明CsHIPP26.1蛋白和CsPIF4.2蛋白可以在洋蔥表皮細(xì)胞內(nèi)發(fā)生互作,且發(fā)生互作的部位位于細(xì)胞核內(nèi)。
“+”表示加入,“-”代表不加入,只有CsHIPP26.1-His和CsPIF4.2-GST共同加入后才可以在最后的洗脫液中檢測(cè)到;同時(shí)只有在pSPYNE-35s::CsHIPP26.1與pSPYCE-35s::CsPIF4.2共同侵染的洋蔥表皮細(xì)胞中才能觀察到黃色熒光,說(shuō)明CsHIPP26.1和CsPIF4.2能夠互作
‘黃金芽’屬于光照敏感型黃化茶樹(shù)品種,強(qiáng)光下葉片易出現(xiàn)生理脅迫現(xiàn)象[3,23],而重金屬相關(guān)異戊烯化蛋白(HIPP)則能夠緩解低溫、鹽和干旱等逆境脅迫對(duì)植物的傷害[10],還能夠通過(guò)感知脅迫參與多種植物生理調(diào)控過(guò)程[18]。筆者前期通過(guò)蛋白組分析得到一個(gè)定位于細(xì)胞核且在‘黃金芽’黃化葉片中高表達(dá)的重金屬相關(guān)異戊烯化蛋白CsHIPP26.1(TEA000549),其基因表達(dá)量隨著光照強(qiáng)度的增強(qiáng)而增加[9]。通過(guò)酵母雙雜交對(duì)CsHIPP26.1蛋白進(jìn)行了茶樹(shù)cDNA文庫(kù)篩選(表2),得到一個(gè)與其互作的光敏色素互作因子(CsPIF4.2,TEA026466)蛋白。前人研究發(fā)現(xiàn),PIF4對(duì)光敏色素B(PhyB)介導(dǎo)的光信號(hào)對(duì)細(xì)胞核中葉綠素合成以及光合系統(tǒng)基因的表達(dá)具有負(fù)調(diào)控作用[24-27],例如,在光誘導(dǎo)擬南芥的去黃化過(guò)程中,PIF4能夠抑制葉綠素合成前期、的表達(dá),從而負(fù)調(diào)控葉綠素的合成[28-29]。PIF4作為PhyB直接結(jié)合的下游信號(hào)因子,在細(xì)胞核中與處于生物激活狀態(tài)的PhyB-Pfr結(jié)合后,PIF4蛋白發(fā)生磷酸化,隨后26S蛋白酶體降解磷酸化的PIF4蛋白,被PIF4蛋白抑制的光形態(tài)建成相關(guān)基因開(kāi)始表達(dá)[30-31],由于CsHIPP26.1與CsPIF4.2在細(xì)胞核中發(fā)生蛋白的相互作用,推測(cè)CsPIF4.2通過(guò)與CsHIPP26.1互作以穩(wěn)定CsPIF4.2的蛋白結(jié)構(gòu),從而降低光下26S介導(dǎo)的CsPIF4.2蛋白的降解,最終抑制了‘黃金芽’葉綠素合成以及葉綠體發(fā)育和光合系統(tǒng)的組裝。此外,PIF4在植物抵御逆境脅迫過(guò)程中也發(fā)揮了重要作用,番茄植株中PIF4通過(guò)感知光信號(hào)正調(diào)控植物的耐低溫能力[32];高溫下,PIF4主要通過(guò)影響IAA水平進(jìn)而調(diào)控?cái)M南芥下胚軸伸長(zhǎng)等形態(tài)特征;PIF4還能抑制氣孔發(fā)育正向調(diào)節(jié)因子SPCH(Speechless)的表達(dá),進(jìn)而抑制氣孔張開(kāi),減少高溫對(duì)植物的傷害[33];植株耐高溫特性還受到植株體內(nèi)PIF4積累量以及PIF4對(duì)靶標(biāo)基因的激活能力的制約[34-35]。綜上,CsHIPP26.1通過(guò)與CsPIF4.2發(fā)生蛋白的相互作用,一方面可能通過(guò)穩(wěn)定CsPIF4.2的蛋白結(jié)構(gòu),從而負(fù)調(diào)控葉綠素合成及光和系統(tǒng)基因表達(dá)等光形態(tài)建成過(guò)程;另一方面,還有可能通過(guò)穩(wěn)定蛋白結(jié)構(gòu),從而增強(qiáng)‘黃金芽’黃化葉片的抗逆性。本研究發(fā)現(xiàn),CsHIPP26.1蛋白能夠在細(xì)胞核中與CsPIF4.2蛋白發(fā)生互作,推測(cè)CsHIPP26.1蛋白通過(guò)在細(xì)胞核中結(jié)合CsPIF4.2蛋白并穩(wěn)定其結(jié)構(gòu)。這一結(jié)果為CsHIPP26.1響應(yīng)光強(qiáng)從而調(diào)控下游相關(guān)生理過(guò)程變化提供了科學(xué)依據(jù),但CsHIPP26.1是否能夠促進(jìn)光下CsPIF4.2蛋白的穩(wěn)定性還需做進(jìn)一步探究。
通過(guò)酵母雙雜交,從茶葉cDNA文庫(kù)中篩選到與CsHIPP26.1互作的候選互作蛋白26個(gè)。經(jīng)驗(yàn)證,CsHIPP26.1能夠與光敏色素互作因子CsPIF4.2蛋白互作,并且兩者的蛋白相互作用發(fā)生在細(xì)胞核內(nèi)。
[1] TIAN Y Y, WANG H Y, SUN P, FAN Y G, QIAO M M, ZHANG L X, ZHANG Z Q.Response of leaf color and the expression of photoreceptor genes ofcv.Huangjinya to different light quality conditions.Scientia Horticulturae, 2019, 251: 225-232.
[2] TIAN Y Y, WANG H Y, ZHANG Z Q, ZHAO X X, WANG Y, ZHANG L X.An RNA-seq analysis reveals differential transcriptional responses to different light qualities in leaf color ofcv.Huangjinya.Journal of plant growth regulation.Journal of Plant Growth Regulation, 2001, 19(4): 463-470.doi: 10.1007/s003440010017.
[3] 王開(kāi)榮, 李明, 梁月榮, 張龍杰, 沈立銘, 王盛彬.茶樹(shù)新品種黃金芽選育研究.中國(guó)茶葉, 2008, 30(4): 21-23.doi: 10.3969/j.issn.1000-3150.2008.04.007.
WANG K R, LI M, LIANG Y R, ZHANG L J, SHEN L M, WANG S B.Research on the breeding of new tea variety Huangjinya.China Tea, 2008, 30(4): 21-23.doi: 10.3969/j.issn.1000-3150.2008.04.007.(in Chinese)
[4] 劉丁丁, 梅菊芬, 王君雅, 湯榕津, 陳亮, 馬春雷.茶樹(shù)白化突變研究進(jìn)展.中國(guó)茶葉, 2020, 42(4): 24-35.doi: 10.3969/j.issn.1000- 3150.2020.04.006.
LIU D D, MEI J F, WANG J Y, TANG R J, CHEN L, MA C L.Research progress on albino trait of tea plant.China Tea, 2020, 42(4): 24-35.doi: 10.3969/j.issn.1000-3150.2020.04.006.(in Chinese)
[5] 王開(kāi)榮, 李明, 張龍杰, 梁月榮.白化茶種質(zhì)資源分類研究.茶葉, 2015, 41(3): 126-129.doi: 10.3969/j.issn.0577-8921.2015.03.002.
WANG K R, LI M, ZHANG L J, LIANG Y R.Studies on classification of albino tea resources.Journal of Tea, 2015, 41(3): 126-129.doi: 10.3969/j.issn.0577-8921.2015.03.002.(in Chinese)
[6] 王開(kāi)榮, 李明, 梁月榮.光照敏感型白化茶.杭州: 浙江大學(xué)出版社, 2014.
WANG K R, LI M, LIANG Y R.Light-sensitive albino tea.Hangzhou: Zhejiang University Press, 2014.(in Chinese)
[7] 范延艮, 趙秀秀, 王翰悅, 田月月, 向勤锃, 張麗霞.黃金芽不同色澤葉片生理特性研究.茶葉科學(xué), 2019, 39(5): 530-536.doi: 10.13305/j.cnki.jts.2019.05.004.
FAN Y G, ZHAO X X, WANG H Y, TIAN Y Y, XIANG Q Z, ZHANG L X.Study on physiological characteristics of leaves with different colors of ‘huangjinya’.Journal of Tea Science, 2019, 39(5): 530-536.doi: 10.13305/j.cnki.jts.2019.05.004.(in Chinese)
[8] FAN Y G, ZHAO X X, WANG H Y, TIAN Y Y, XIANG Q Z, ZHANG L X.Effects of light intensity on metabolism of light-harvesting pigment and photosynthetic system inL.cultivar ‘Huangjinya’.Environmental and Experimental Botany, 2019, 166: 103796).
[9] 范延艮, 劉富浩, 趙秀秀, 王域, 張麗霞.茶樹(shù)‘黃金芽’基因克隆與光響應(yīng)表達(dá)分析.植物生理學(xué)報(bào), 2021, 57(5): 1087-1097.doi: 10.13592/j.cnki.ppj.2021.0018.
FAN Y G, LIU F H, ZHAO X X, WANG Y, ZHANG L X.Cloning of‘Huangjinya’ and analysis of its expression level in response to light intensity.Plant Physiology Journal, 2021, 57(5): 1087-1097.doi: 10.13592/j.cnki.ppj.2021.0018.(in Chinese)
[10] DE ABREU-NETO J B, TURCHETTO-ZOLET A C, DE OLIVEIRA L F V, ZANETTINI M H B, MARGIS-PINHEIRO M.Heavy metal-associated isoprenylated plant protein (HIPP): Characterization of a family of proteins exclusive to plants.The FEBS Journal, 2013, 280(7): 1604-1616.doi: 10.1111/febs.12159.
[11] TEHSEEN M, CAIRNS N, SHERSON S, COBBETT C S.Metallochaperone-like genes inthaliana.Metallomics, 2010, 2(8): 556-564.doi: 10.1039/c003484c.
[12] GAO W, XIAO S, LI H Y, TSAO S W, CHYE M L.acyl-CoA-binding protein ACBP2interacts with heavy-metal-binding farnesylated protein AtFP6.The New Phytologist, 2009, 181(1): 89-102.doi: 10.1111/j.1469-8137.2008.02631.x.
[13] CHANDRAN D, SHAROPOVA N, IVASHUTA S, GANTT J S, VANDENBOSCH K A, SAMAC D A.Transcriptome profiling identified novel genes associated with aluminum toxicity, resistance and tolerance in.Planta, 2008, 228(1): 151-166.doi: 10.1007/s00425-008-0726-0.
[14] SUZUKI N, YAMAGUCHI Y, KOIZUMI N, SANO H.Functional characterization of a heavy metal binding protein CdI19 from.The Plant Journal, 2002, 32(2): 165-173.doi: 10.1046/ j.1365-313x.2002.01412.x.
[15] BARTH O, VOGT S, UHLEMANN R, ZSCHIESCHE W, HUMBECK K.Stress induced and nuclear localized HIPP26 frominteracts via its heavy metal associated domain with the drought stress related zinc finger transcription factor ATHB29.Plant Molecular Biology, 2009, 69(1/2): 213-226.doi: 10.1007/ s11103-008-9419-0.
[16] BARTH O, ZSCHIESCHE W, SIERSLEBEN S, HUMBECK K.Isolation of a novel barley cDNA encoding a nuclear protein involved in stress response and leaf senescence.Physiologia Plantarum, 2004, 121(2): 282-293.doi: 10.1111/j.0031-9317.2004.00325.x.
[17] WIEBKE Z, OLAF B, KATHARINA D, SANDRA B, JULIANE R, KLAUS H.The zinc-binding nuclear protein HIPP3acts as an upstream regulator of the salicylate-dependent plant immunity pathway and of flowering time in.The New Phytologist, 2015, 207(4): 1084-96.doi: 10.1111/nph.13419.
[18] RADAKOVIC Z S, ANJAM M S, ESCOBAR E, CHOPRA D, CABRERA J, SILVA A C, ESCOBAR C, SOBCZAK M, GRUNDLER F M W, SIDDIQUE S.HIPP27 is a host susceptibility gene for the beet cyst nematode.Molecular Plant Pathology, 2018: 1917-1928.
[19] 趙強(qiáng).蘋(píng)果BTB-TAZ蛋白MdBTs調(diào)控MdbHLH104影響PMH+-ATP酶的活性和鐵的動(dòng)態(tài)平衡[D].泰安: 山東農(nóng)業(yè)大學(xué), 2015.
ZHAO Q.BTB-TAZ protein MdBTs target MdbHLH104 to regulate the activity of PMH+-ATPase and the homeostasis of iron in apple [D].Taian: Shandong Agricultural University, 2015.(in Chinese)
[20] SU M Y, WANG N, JIANG S H, FANG H C, XU H F, WANG Y C, ZHANG Z, ZHANG J, XU L, ZHANG Z Y, CHEN X S.Molecular characterization and expression analysis of the critical floral gene MdAGL24-like in red-fleshed apple.Plant Science, 2018, 276: 189-198.doi:10.1016/j.plantsci.2018.08.021.
[21] 崔紅軍, 魏玉清.酵母雙雜交系統(tǒng)及其應(yīng)用研究進(jìn)展.安徽農(nóng)業(yè)科學(xué), 2015, 43(13): 45-47.doi: 10.13989/j.cnki.0517-6611.2015.13.152.
CUI H J, WEI Y Q.Review on application status of yeast two hybrid system.Journal of Anhui Agricultural Sciences, 2015, 43(13): 45-47.doi: 10.13989/j.cnki.0517-6611.2015.13.152.(in Chinese)
[22] HASHIDA-OKADO T, OGAWA A, ENDO M, YASUMOTO R, TAKESAKO K, KATO I.AUR1, a novel gene conferring aureobasidin resistance on Saccharomyces cerevisiae: a study of defective morphologies in Aur1p-depleted cells.Molecular and General Genetics, 1996, 251(2): 236-244.doi: 10.1007/BF02172923.
[23] 田月月, 張麗霞, 張正群, 李智, 侯劍, 喬明明.主要?dú)庀笠蜃訉?duì)‘黃金芽’茶樹(shù)葉片日灼傷害的影響.山東農(nóng)業(yè)科學(xué), 2017, 49(7): 42-48.doi: 10.14083/j.issn.1001-4942.2017.07.009.
TIAN Y Y, ZHANG L X, ZHANG Z Q, LI Z, HOU J, QIAO M M.Influences of main meteorological factors on leaf sunburn of tea cultivar ‘huangjinya'.Shandong Agricultural Sciences, 2017, 49(7): 42-48.doi: 10.14083/j.issn.1001-4942.2017.07.009.(in Chinese)
[24] XU D Q.Multifaceted roles of PIF4 in plants.Trends in Plant Science, 2018, 23(9): 749-751.doi: 10.1016/j.tplants.2018.07.003.
[25] HUQ E, QUAIL P H.PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in.The EMBO Journal, 2002, 21(10): 2441-2450.doi: 10.1093/emboj/21.10.2441.
[26] INAGAKI N, KINOSHITA K, KAGAWA T, TANAKA A, UENO O, SHIMADA H, TAKANO M.Phytochrome B mediates the regulation of chlorophyll biosynthesis through transcriptional regulation of ChlH and GUN4 in rice seedlings .PLoS ONE, 2015, 10(8): e0135408.
[27] 趙杰, 周晉軍, 顧建偉, 錢(qián)鳳芹, 謝先芝.光敏色素B正調(diào)控水稻葉綠素合成和葉綠體的發(fā)育.中國(guó)水稻科學(xué), 2012, 26(6): 637-642.doi: 10.3969/j.issn.1001-7216.2012.06.001.
ZHAO J, ZHOU J J, GU J W, QIAN F Q, XIE X Z.Phytochrome B positively regulates chlorophyll biosynthesis and chloroplast development in rice.Chinese Journal of Rice Science, 2012, 26(6): 637-642.doi: 10.3969/j.issn.1001-7216.2012.06.001.(in Chinese)
[28] Toledo-ortiz G, JOHANSSON H, LEE K P, BOU-TORRENT J, STEWART K, STEEL G, RODRIGUEZ-CONCEPEION M, HALLIDAY K J.The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription .PLoS Genetics, 2014, 10(6): e1004416.
[29] TANG W J, WANG W Q, CHEN D Q, JI Q, JING Y J, WANG H Y, LIN R C.Transposase-derived proteins FHY3/FAR1 interact with PHYTOCHROME-INTERACTING FACTOR1 to regulate chlorophyll biosynthesis by modulating HEMB1 during deetiolation in.The Plant Cell, 2012, 24(5): 1984-2000.doi: 10.1105/tpc.112.097022.
[30] LORRAIN S, ALLEN T, DUEK P D, WHITELAM G C, FANKHAUSER C.Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors.The Plant Journal, 2008, 53(2): 312-323.doi: 10.1111/j.1365-313X.2007.03341.x.
[31] MIGUEL D L, JEAN-MICHEL D, MARIANA R F, MARIELA P, MANUEL I P J, SéVERINE L, CHRISTIAN F, ANGEL B M, ELENA T, SALOMé P.A molecular framework for light and gibberellin control of cell elongation.Nature, 2008, 451(7177): 480-484.doi: 10.1038/nature06520.
[32] 陳笑笑.PIF4介導(dǎo)光質(zhì)調(diào)控番茄低溫抗性的作用機(jī)制[D].杭州: 浙江大學(xué), 2019.
CHEN X X.The mechanisms of PIF4-mediated light quality- regulated cold tolerance in tomato [D].Hangzhou: Zhejiang University, 2019.(in Chinese)
[33] LAU O S, SONG Z J, ZHOU Z M, DAVIES K A, CHANG J, YANG X, WANG S Q, LUCYSHYN D, TAY I H Z, WIGGE P A, BERGMANN D C.Direct control of SPEECHLESS by PIF4 in the high-temperature response of stomatal development.Current Biology, 2018, 28(8): 1273-1280.doi: 10.1016/j.cub.2018.02.054.
[34] BO Z, MATTIAS H, SEVERINE L, MIKAEL N, LáSZLó B, CHRISTIAN F, OVE N.Blade-on-petiole proteins act in an e3 ubiquitin ligase complex to regulate phytochrome interacting factor 4 abundance.eLife, 2017, 6: e26759.doi: 10.7554/eLife.26759.
[35] NIETO C, LóPEZ-SALMERóN V, DAVIèRE J M, PRAT S.ELF3-PIF4 interaction regulates plant growth independently of the evening complex.Current Biology, 2015, 25(2): 187-193.doi: 10.1016/j.cub.2014.10.070.
Screening and Verification of CsHIPP26.1 Interaction Protein in Tea Plant
FAN YanGen, WANG Yu, LIU FuHao, ZHAO XiuXiu, XIANG QinZeng, ZHANG LiXia*
College of Horticulture Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong
【Background】Huangjinya is a light sensitive chlorotic tea () variety, the leaf color of which presents yellow under strong light and presents green under weak light, but the chlorotic mechanism of leaf color in response to light is not clear.Previous proteomic studies on etiolated leaves, shaded green leaves and evergreen leaves found that the expression of heavy metal-associated isoprenylated plant protein CsHIPP26.1 (TEA000549) responded to light intensity, indicating that CsHIPP26.1 may be involved in regulating the light response process of leaf color etiolation of Huangjinya.【Objective】The proteins related to the light signal response interacting with CsHIPP26.1 were screened to provide a scientific basis for leaf color response to light signal changes.【Method】The gene were cloned from one bud and two leaves of Huangjinya.And the screened target protein was further verified by yeast two hybrid point-to-point verification,bimolecular fluorescence complementarity (BiFC), andpull-down techniques.【Result】The tea cDNA library was screened by yeast two hybrid, and a total of 26 candidate interaction proteins were screened, which mainly played a role in cell components, binding and catalytic activity.Among them, the enrichment degree of biotin anabolism process was high, and the proteins related to light signal pathway and chlorophyll synthesis were only the bHLH30 transcription factor, and its gene ID was TEA026466.1.After cloning the gene of bHLH30 transcription factor, it was found that the transcription factor was in the same evolutionary tree branch as tea light signal transduction pathway protein PIF4, and contained the same HLH and ACT domains as tea PIF4 protein.Therefore, the bHLH30 transcription factor was named CsPIF4.2, GenBank registration number: MW16834.And through the pull-down protein interactionand bimolecular fluorescence complementarity (BiFC), it was found that CsHIPP26.1 and CsPIF4.2 proteins could indeed interact, and the site of interaction was in the nucleus.【Conclusion】26 proteins interacting with CsHIPP26.1 were preliminarily screened, and it was found that CsHIPP26.1 could interact with one of the phytochrome interacting factors CsPIF4.2 in the nucleus.
HIPP; PIF4; protein interaction; yellowing varieties; light response
2021-08-20;
2021-12-10
山東省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系創(chuàng)新團(tuán)隊(duì)項(xiàng)目(SDAIT-19-05)、山東省“雙一流”獎(jiǎng)補(bǔ)資金項(xiàng)目(SYL2017YY03)、魯渝科技協(xié)作計(jì)劃項(xiàng)目(2020LYXZ005)
范延艮,E-mail:876562801@qq.com。王域,E-mail:1113405407@qq.com。范延艮和王域?yàn)橥蓉暙I(xiàn)作者。通信作者張麗霞,E-mail:lxzhang@sdau.edu.cn
(責(zé)任編輯 趙伶俐)