劉思琪,劉斌,寧玉杰,劉術(shù)輝,解輝,宋軼涵
抗菌低表面能復(fù)合型海洋防污涂料的研究進(jìn)展
劉思琪,劉斌,寧玉杰,劉術(shù)輝,解輝,宋軼涵
(北京化工大學(xué) 材料電化學(xué)過(guò)程與技術(shù)北京市重點(diǎn)實(shí)驗(yàn)室 材料科學(xué)與工程學(xué)院,北京 100029)
海洋生物污損給海洋工程與裝備帶來(lái)了巨大的困難與挑戰(zhàn),低表面能型海洋防污涂料由于環(huán)境友好,近年來(lái)已發(fā)展成為防污涂料研究與開發(fā)的重點(diǎn)。通過(guò)在低表面能防污涂料中引入抗菌劑,制備具有復(fù)合功能的防污涂料,可進(jìn)一步提高涂料的綜合防污能力。針對(duì)該技術(shù)背景,首先對(duì)海洋防污涂料的技術(shù)原理和低表面能防污涂料的研究現(xiàn)狀進(jìn)行了簡(jiǎn)要介紹,分析了該類型防污涂料的技術(shù)優(yōu)勢(shì),同時(shí)提出了其靜態(tài)防污能力差、對(duì)細(xì)菌型污損生物抗污性能弱的技術(shù)短板;然后,圍繞低表面能防污涂料抗菌復(fù)合改性這一焦點(diǎn)問(wèn)題,從添加型和結(jié)構(gòu)型2種抗菌復(fù)合改性方式入手,分別闡述了各自涂料的適用抗菌劑種類、主要制備方式和改性后涂料綜合防污性能的相關(guān)研究成果;在此基礎(chǔ)上,梳理了以上2類抗菌復(fù)合防污涂料存在的問(wèn)題,并提出了針對(duì)性的解決途徑;最后,提出了無(wú)機(jī)抗菌劑、有機(jī)抗菌劑和天然抗菌劑應(yīng)用于防污涂料的未來(lái)研究方向,并對(duì)抗菌低表面能復(fù)合型海洋防污涂料的發(fā)展與應(yīng)用前景進(jìn)行了展望。
抗菌;低表面能;功能復(fù)合;海洋防污涂料
海洋占據(jù)了地球表面約70%的面積,蘊(yùn)藏著極其豐富的各類資源,包括礦物資源、化學(xué)資源、生物資源等,海洋資源的開發(fā)與利用具有廣闊的發(fā)展前景,海洋經(jīng)濟(jì)和海洋產(chǎn)業(yè)對(duì)人類社會(huì)的發(fā)展起著極為重要的作用。走向海洋是中國(guó)經(jīng)濟(jì)繼續(xù)發(fā)展的重要戰(zhàn)略步驟。海洋環(huán)境的特殊性使海洋生物種類繁多,部分海洋生物常會(huì)附著在船舶水線以下或海洋設(shè)備的表面,帶來(lái)一系列的嚴(yán)重問(wèn)題,如使船舶速度降低、油耗增加、水下結(jié)構(gòu)被腐蝕破壞、浮標(biāo)及航海設(shè)施質(zhì)量增加、設(shè)備移動(dòng)部件失靈、水下管線阻塞等[1-2],因此如何有效避免海洋生物污損是目前海洋科學(xué)領(lǐng)域的熱點(diǎn)和難點(diǎn)問(wèn)題。目前機(jī)械防污、電化學(xué)防污、超聲波防污、涂層防污等防污技術(shù)均已得到實(shí)際應(yīng)用,而在海洋裝備或設(shè)備表面涂覆防污涂料,仍是解決海洋生物污染問(wèn)題的重要技術(shù)途徑。
海洋生物污損防護(hù)技術(shù)的需求與目前防污技術(shù)的發(fā)展水平呈現(xiàn)較為明顯的不對(duì)稱性,即防污需求日益迫切,技術(shù)要求日益提高,技術(shù)挑戰(zhàn)性越來(lái)越大,而防污技術(shù)的研究與開發(fā)則難以與之匹配。近年來(lái),低表面能防污涂料相關(guān)工藝由于具有環(huán)境友好性而取得了較快發(fā)展,也逐漸發(fā)展成為國(guó)際海洋防污的主流。但是,低表面能防污涂料尚存在一些技術(shù)短板,其中靜態(tài)防污能力差、對(duì)細(xì)菌型污損生物抗污性能弱限制了其進(jìn)一步的應(yīng)用和發(fā)展。海洋生物附著的初始階段是細(xì)菌等微生物的附著和繁殖,通過(guò)向低表面能涂料中引入抗菌劑,制備具有抗菌復(fù)合功能的防污涂料,可從源頭抑制海洋生物的污染,提高涂料的防污性能。文中針對(duì)該技術(shù)背景,對(duì)抗菌型低表面能海洋防污涂料的研究進(jìn)展進(jìn)行了系統(tǒng)分析與評(píng)述。
理想的防污涂料可提供一個(gè)在有效期內(nèi)無(wú)生物附著的表面,起到防止海生物附著的作用,其防污的基本原理可分為2種:一種是防污涂層材料中釋放出可殺死或干擾海生物幼體生長(zhǎng)的物質(zhì),阻止污損生物在其表面生長(zhǎng);另一種是依據(jù)污損生物在附著過(guò)程中對(duì)涂層材料表面結(jié)構(gòu)的選擇性,來(lái)開發(fā)具有某些表面物理特性的材料,阻止污損生物在其表面附著生長(zhǎng)[3-4]。
傳統(tǒng)防污涂料中的防污劑通常為毒性較大的有機(jī)物、重金屬及其化合物,但這些防污劑的大量使用嚴(yán)重污染了海洋環(huán)境,因而逐漸被禁用[5-6]。目前,國(guó)內(nèi)外海洋船舶防污涂料的研究方向?yàn)榄h(huán)保低毒或無(wú)毒的防污涂料,主要包括:無(wú)錫自拋光防污涂料;以有機(jī)硅、有機(jī)氟聚合物為主的低表面能防污涂料;以生物激素或生物酶等為防污劑的生物防污涂料及仿生防污涂料;通過(guò)電解海水防污的導(dǎo)電防污涂料;以可溶性硅酸鹽為主的高堿性表面無(wú)毒防污涂料等[7-9]。其中低表面能涂料的防污原理為利用涂層較低的表面能并在水流剪切力的共同作用下達(dá)到防污的效果(見圖1),其實(shí)施過(guò)程中沒有任何有毒物質(zhì)的釋放,是目前無(wú)毒環(huán)保海洋防污涂料領(lǐng)域的重點(diǎn)研究方向。
圖1 低表面能防污涂料作用原理示意圖[10]
低表面能防污涂料具有很低的表面能,海洋生物難以在上面附著,即使附著后在水流或其他外力作用下也很容易脫落。因此,低表面能防污涂料可防止海洋生物附著,不存在毒性物質(zhì)的釋放,能起到長(zhǎng)期防污的作用[11-12]。由Baier曲線(見圖2)可知,材料表面的相對(duì)附著力隨表面能的增大呈現(xiàn)出先減小后增大的趨勢(shì),約在20~25 mJ/m2時(shí)達(dá)到最低值。
圖2 Baier曲線[13]
低表面能防污涂料自身性質(zhì)對(duì)防污效果影響很大,除較低的表面能外,性能優(yōu)良的低表面能涂料還需要具備以下特性:較高的鏈段柔性,有助于活性鏈段遷移到涂層表面;較低的彈性模量,利于已附著的污損生物在較小的外力作用下以剝離的方式脫落;適宜的涂層厚度,以降低附著生物脫落的臨界剝離力;光滑的表面,避免因?yàn)橥繉颖砻娲嬖谖⒖椎却植诮Y(jié)構(gòu)使污損生物附著[13-14]。船用低表面能防污涂料主要分為有機(jī)硅系列和有機(jī)氟系列,如聚硅氧烷、含氟聚氨酯、硅氧烷聚氨酯、氟有機(jī)硅等[15-17]。
有關(guān)有機(jī)硅低表面能涂料樹脂的研究非?;钴S,主要可分為向樹脂中添加小分子硅油和對(duì)樹脂基體進(jìn)行有機(jī)硅改性2種類型。添加小分子硅油操作簡(jiǎn)單,且經(jīng)測(cè)試發(fā)現(xiàn)硅油能夠遷移到涂料表面,有效降低部分海洋生物的附著率,但硅油的種類和添加量會(huì)影響涂料的防污性能和力學(xué)性能,且使用過(guò)程中硅油會(huì)不斷滲出造成海水污染以及防污效果的減退[13]。改性硅樹脂盡管制備操作復(fù)雜且成本較高,但獲得的涂料防污效果優(yōu)良,使用壽命長(zhǎng),因而逐步受到研究人員的重視。
最簡(jiǎn)單的有機(jī)硅聚合物是聚硅氧烷,主鏈中的硅氧鍵使其具有優(yōu)良的憎水性和耐候性,表現(xiàn)出優(yōu)良的防污性能[18-19]。但聚硅氧烷力學(xué)性能較差和基體的黏結(jié)性能不好等問(wèn)題導(dǎo)致其應(yīng)用受到一定限制,而通過(guò)共混共聚、接枝等方法,用其他樹脂對(duì)硅樹脂進(jìn)行改性可以解決該問(wèn)題,例如借助聚氨酯改性硅樹脂來(lái)提高力學(xué)性能,借助環(huán)氧樹脂改性硅樹脂來(lái)提高耐熱性和對(duì)底材的附著力,借助丙烯酸樹脂改性硅樹脂來(lái)提高耐溶劑性等[20-23]。董耀華等[24]在丙烯酸樹脂中引入聚硅氧烷側(cè)鏈,經(jīng)表征發(fā)現(xiàn)涂層具有良好的低表面能防污特性。Zhang等[25]、Sommer等[26]、Naghash等[27]發(fā)現(xiàn)聚硅氧烷–聚氨酯樹脂涂層力學(xué)性能優(yōu)良,同時(shí)具備優(yōu)良的低表面能防污特性,但對(duì)有機(jī)硅樹脂的改性過(guò)程可能會(huì)對(duì)涂料本身的性能產(chǎn)生影響,因而如何平衡改性有機(jī)硅涂料的防污性能與力學(xué)性能是目前研究的重點(diǎn)之一。
聚四氟乙烯的水接觸角高達(dá)114°,但由于其涂層致密性差,表面有大量微孔,很容易被微生物附著,因而不能直接用于防污涂料,需借助其他樹脂作為載體。國(guó)內(nèi)外研究人員發(fā)現(xiàn)將聚四氟乙烯等氟化物添加至聚氨酯、環(huán)氧樹脂中,制備出的涂料具有優(yōu)良的防污性能[24]。將有機(jī)氟引入樹脂基體的分子鏈中,利用氟原子電負(fù)性大、鍵能高的特點(diǎn),使含氟樹脂中的碳原子被氟原子包圍,可以提高樹脂的疏水性[28-29],如全氟烷基丙烯酸乙酯改性的丙烯酸樹脂具有良好的硬度、抗沖擊性能和較低的表面能[30]。然而有機(jī)氟樹脂價(jià)格昂貴、成型溫度高,且含氟樹脂中的碳鏈剛性較大,清理表面附著的生物時(shí)需要較高的能量,因此在實(shí)際應(yīng)用中也存在諸多限制[31]。
將有機(jī)硅和有機(jī)氟綜合運(yùn)用可以有效改善防污涂層的綜合性能。有研究人員研發(fā)出了一種新型低表面能防污材料氟代聚硅氧烷[28],主鏈中的硅氧鍵具備高彈性和高流動(dòng)性,側(cè)鏈的含氟基團(tuán)顯著降低了材料的表面能,因而兼有機(jī)硅樹脂和氟樹脂的優(yōu)良防污性能。Sun等[32]發(fā)現(xiàn)在丙烯酸樹脂中同時(shí)引入有機(jī)硅和有機(jī)氟,得到的涂層綜合性能較為優(yōu)良。
低表面能防污涂料能夠有效降低海洋生物的附著率,但其靜態(tài)防污能力較差,對(duì)細(xì)菌等污損生物的防污效果較差。為了制備性能更加綜合的防污涂料,研究人員開始嘗試使用抗菌劑對(duì)低表面能涂料進(jìn)行改性,得到的新型復(fù)合防污涂料能夠從源頭阻斷海洋生物的附著過(guò)程,預(yù)期可獲得更加優(yōu)良的防污效果。
低表面能防污涂料的技術(shù)已較為成熟,因此復(fù)合防污涂料的制備通常采用向低表面能涂料中引入合適的抗菌劑來(lái)實(shí)現(xiàn)??咕鷦┦蔷哂袣⒕蛞志阅艿幕瘜W(xué)試劑的統(tǒng)稱,向涂料中引入合適的抗菌劑,能夠有效提高涂料的抗菌性能。目前可以用作抗菌劑的物質(zhì)主要分為無(wú)機(jī)抗菌劑、有機(jī)抗菌劑、天然抗菌劑等。
無(wú)機(jī)抗菌劑是利用銀、銅、鈦等金屬及其離子的殺菌或抑菌功能制備的抗菌劑,根據(jù)抗菌機(jī)理的不同可分為以銀系抗菌劑為代表的接觸型抗菌劑和以氧化鋅、二氧化鈦為代表的光催化型抗菌劑2種。接觸型抗菌劑中的金屬離子在接觸到細(xì)菌表面后,能夠穿過(guò)細(xì)胞膜進(jìn)入細(xì)菌內(nèi)部,與細(xì)菌內(nèi)部的羧基、羥基、氨基等官能團(tuán)發(fā)生反應(yīng),使蛋白質(zhì)變性,阻礙細(xì)菌的正常生命活動(dòng),從而達(dá)到殺菌效果[16,33]。光催化型抗菌劑在光的照射下發(fā)生電子躍遷,同時(shí)使周圍環(huán)境中的水分子和氧氣轉(zhuǎn)化為羥基自由基和氧負(fù)離子,它們能夠破壞細(xì)菌的細(xì)胞結(jié)構(gòu)和細(xì)菌內(nèi)的有機(jī)物,使其失去生命活性,達(dá)到殺菌的效果[33-34]。有機(jī)抗菌劑種類眾多,主要有季銨鹽、雙胍類、酚、醇、異噻唑啉酮類等[33-35],其主要作用機(jī)理為通過(guò)化學(xué)作用破壞細(xì)菌的細(xì)胞膜等結(jié)構(gòu),例如季銨鹽類抗菌劑或進(jìn)入細(xì)菌內(nèi)部破壞蛋白質(zhì)等物質(zhì)會(huì)影響其正常生命活動(dòng),從而起到殺菌作用,例如醇類抗菌劑[33,36-37]。天然抗菌劑是指直接從動(dòng)植物或微生物中提取的具有抗菌活性的物質(zhì),是最早得到應(yīng)用的抗菌劑,主要包括殼聚糖、魚精蛋白、大蒜素、山梨酸等[33,35,38-39]。其中,殼聚糖及其衍生物是目前應(yīng)用較為廣泛的天然抗菌劑。研究表明,低分子的殼聚糖可以進(jìn)入細(xì)菌內(nèi)部,阻斷細(xì)菌遺傳物質(zhì)的合成和轉(zhuǎn)化,從而阻斷細(xì)菌的繁殖;高分子的殼聚糖可以吸附在細(xì)菌表面,阻斷細(xì)菌的物質(zhì)交換,破壞細(xì)菌的細(xì)胞膜等結(jié)構(gòu),從而達(dá)到抗菌的目的[40-41]。
如何將較低的表面能和優(yōu)良的抗菌作用結(jié)合起來(lái)制備性能更加綜合的防污涂料,且不影響涂料的力學(xué)性能,是目前復(fù)合防污涂料的重點(diǎn)研究方向。根據(jù)向低表面能涂料中引入抗菌劑的方式不同,可分為添加型抗菌復(fù)合防污涂料和結(jié)構(gòu)型抗菌復(fù)合防污涂料2種類型。
最初得到應(yīng)用的抗菌改性方式為將抗菌劑作為填料直接加入低表面能涂料基體中,制備出具有一定抗菌能力的新型復(fù)合防污涂料。制備添加型復(fù)合涂料的關(guān)鍵在于抗菌劑的選擇,其中具有廣譜殺菌效果且不易產(chǎn)生抗藥性的無(wú)機(jī)金屬抗菌劑是最常用的添加型抗菌劑。
Oktay等[42]將納米銀加入聚硅氧烷涂料中,在不影響涂層表面靜態(tài)水接觸角的同時(shí),對(duì)大腸桿菌和金色葡萄球菌的殺菌率達(dá)到了99%以上。Zhai等[43]制備的疏水性全氟烷氧基樹脂/納米銀涂層具備優(yōu)良的低表面能特性和抗菌性能。李善文等[44]、Qu等[45]發(fā)現(xiàn)納米二氧化鈦改性的硅丙樹脂涂料具有優(yōu)良的復(fù)合防污效果。尤文卉[46]在氟硅改性的丙烯酸乳液中引入載銀二氧化鈦粉末,在改善涂層表面粗糙度、提高水接觸角的同時(shí),大幅提高了涂料的抗菌性能。
除無(wú)機(jī)金屬抗菌劑外,有機(jī)抗菌劑和天然抗菌劑也能夠作為填料應(yīng)用在低表面能涂料中。仇春紅[47]將3種不同季銨鹽添加至有機(jī)硅樹脂中,制得的涂料水接觸角均在120°以上,同時(shí)對(duì)大腸桿菌的抑菌率達(dá)到了99%。趙萍萍[48]將改性后的2,4–噻唑烷二酮(TDZ)加入有機(jī)硅丙烯酸樹脂中,經(jīng)實(shí)驗(yàn)室和實(shí)海掛板測(cè)試驗(yàn)證,該涂料復(fù)合防污效果良好。廖道鵬等[49]利用天然抗菌劑間苯三酚的單寧特性,將其應(yīng)用于改性丙烯酸樹脂中,制備得到的涂層的水接觸角達(dá)到了130°(見圖3),同時(shí)抗菌效果優(yōu)良(見圖4),表現(xiàn)出了優(yōu)良的復(fù)合防污特性。
圖3 水接觸角[49]
結(jié)構(gòu)型抗菌復(fù)合防污涂料的制備原理是借助化學(xué)反應(yīng)將抗菌劑(多為小分子有機(jī)抗菌劑)引入涂料樹脂的高分子鏈中,同時(shí)不破壞抗菌劑中的抗菌基團(tuán),這樣制備得到的抗菌涂料使用壽命長(zhǎng),且避免了抗菌劑的析出損失和對(duì)環(huán)境造成的污染,制得的抗菌涂料更加綠色環(huán)保[50]。
圖4 純樹脂涂層(a)和添加質(zhì)量分?jǐn)?shù)為6%的間苯三酚樹脂涂層(b)的抑菌圈對(duì)比[49]
趙玻[51]將胍基型二羥甲基丙酰胺作為擴(kuò)鏈劑引入氟化聚氨酯中,得到的聚氨酯涂層具有上層抗菌、次層疏水的優(yōu)良防污性能。Wang等[52]在丙烯酸乳液中引入有機(jī)硅樹脂和三甲基氯化銨,得到的涂層防污性能優(yōu)良。付昱晨[53]采用季銨鹽改性的含氟聚合物和聚脲醛納米粒子來(lái)改性聚氨酯,制備的涂層在含氟聚合物和由納米粒子形成的微觀疏水結(jié)構(gòu)的共同作用下具有優(yōu)良的疏水性能,同時(shí)抗菌效果優(yōu)良。Ferreira等[54]將溴代吡咯腈用異氰酸酯功能化后與聚硅氧烷反應(yīng)構(gòu)建防污涂層,實(shí)海掛板測(cè)試結(jié)果表明涂層表現(xiàn)出了優(yōu)良的防污效果。Zhang等[55-56]、劉海龍[57]將季銨鹽改性的聚硅氧烷和異佛爾酮異氰酸酯三聚體共聚,制備得到的涂層綜合防污性能優(yōu)良。羅建斌等[58]將側(cè)鏈含有氟化雙季銨鹽的二胺引入聚氨酯硬段,得到的系列聚氨酯的水接觸角均在100°以上(見表1),同時(shí)涂層對(duì)大腸桿菌和金色葡萄球菌均具有良好的殺菌效果(見圖5)。
表1 不同氟化雙季銨鹽含量聚氨酯的水接觸角[58]
Tab.1 Water contact angle of polyurethane with different content of fluorinated bis-quaternary ammonium salt[58]
除了將抗菌劑直接引入高分子主鏈外,還可以采用接枝的方式引入抗菌劑,這樣可以最大程度避免破壞原分子鏈段結(jié)構(gòu),進(jìn)而減小對(duì)原涂料力學(xué)性能的影響。例如對(duì)涂層進(jìn)行表面功能化處理后,將有機(jī)硅接枝在涂層表面并進(jìn)行季銨化處理,使涂層具備抗菌性能[59]。黃饒[60]合成了石墨烯接枝聚乳酸嵌段聚氨酯共聚物,通過(guò)引入石墨烯來(lái)提高涂料的抗菌性能,并在聚氨酯鏈段中引入羥基聚二甲基硅烷來(lái)降低材料的表面能,獲得具有復(fù)合防污效果的涂層。Wang等[61]將聚硅氧烷和聚氨酯共聚并接枝到改性碳納米管上,制備得到的涂料具有優(yōu)良的低表面能特性和抗菌性能,同時(shí)避免了直接加入碳納米管所引起的團(tuán)聚現(xiàn)象[62]。
圖5 氟化雙季銨鹽系列聚氨酯對(duì)(a)金色葡萄球菌和(b)大腸桿菌的抗菌效果[58]
目前,結(jié)構(gòu)型抗菌復(fù)合防污涂料領(lǐng)域中應(yīng)用較多的抗菌劑多為小分子有機(jī)抗菌劑,將殼聚糖等天然抗菌劑引入涂層高分子鏈的研究正在開展,預(yù)期在不久的將來(lái)也將取得令人滿意的成果。
將抗菌物質(zhì)直接加入涂料中制備的添加型抗菌復(fù)合防污涂料操作簡(jiǎn)便,加工成本低,但由于工藝和抗菌劑本身的性質(zhì)缺陷,使添加型防污涂料仍存在一定問(wèn)題。
對(duì)于無(wú)機(jī)金屬抗菌劑,二氧化鈦抗菌劑只能在有一定光照強(qiáng)度的環(huán)境中使用,黑暗條件下幾乎不具備抗菌效果;銀系抗菌劑易團(tuán)聚、分散效果不佳、不穩(wěn)定、易變色且成本較高[34]。小分子有機(jī)抗菌劑毒性相對(duì)較高,易析出造成環(huán)境污染、降低涂層的使用壽命;高分子有機(jī)抗菌劑與涂料相容性不佳,使涂料的防污效果達(dá)不到預(yù)期。天然抗菌劑存在提純工藝復(fù)雜、耐熱性差、抗菌活性有限且易受環(huán)境因素影響、難以人工合成等問(wèn)題,故不能規(guī)模化生產(chǎn)[34,36,63]。
為改善無(wú)機(jī)金屬抗菌劑的作用效果,研究人員不斷嘗試對(duì)其進(jìn)行改性處理。例如將金屬抗菌劑制備成納米粒子,通過(guò)增大表面效應(yīng)來(lái)減少用量,進(jìn)而改善抗菌劑在涂料中的分散性,避免應(yīng)力集中現(xiàn)象對(duì)涂層造成破壞;將金屬抗菌劑固定在涂層表面,或借助沸石等多孔材料制備載體金屬抗菌劑,來(lái)減少抗菌劑的析出損失[64]。Song等[65]利用改性二氧化鈦來(lái)負(fù)載納米銀離子,成功拓寬了二氧化鈦的光催化響應(yīng)區(qū),提高了抗菌劑的作用效果。Tian 等[66]制備了納米銀復(fù)合水凝膠,減少銀用量的同時(shí),利用水凝膠改善了納米銀粒子在樹脂基底中的分散性,使涂料具有優(yōu)良的防污性能。Sileika等[67]、Xu等[68]在聚氨酯涂層表面涂覆聚多巴胺薄膜用以還原并固定納米銀粒子,有效避免了銀離子的析出損失,提高了涂層的防污性能。有機(jī)抗菌劑和天然抗菌劑在添加型復(fù)合防污涂料中的應(yīng)用較為有限,為拓寬其應(yīng)用范圍,研究人員在改性研究的過(guò)程中發(fā)現(xiàn),若將2種及以上不同種類的抗菌劑復(fù)合使用,利用不同成分之間的協(xié)同作用,可制備得到性能更加優(yōu)良的復(fù)合抗菌劑。姚劍松等[69]制備的季銨化殼聚糖微球的抗菌性能,相較于純殼聚糖得到了有效提高,使殼聚糖能夠在更加廣泛的pH值范圍內(nèi)得到應(yīng)用。吳會(huì)敏[70]制備的胍基化殼聚糖不僅具有優(yōu)良的抗菌性能,還成功改善了材料的力學(xué)性能和殼聚糖在樹脂中的相容性。
綜上所述,盡管添加型抗菌復(fù)合涂料存在一定問(wèn)題,但相關(guān)研究起步較早,因此相對(duì)發(fā)展較為完善,在海洋防污領(lǐng)域仍占據(jù)比較重要的位置。繼續(xù)加強(qiáng)相關(guān)研究工作,可以有效解決目前存在的問(wèn)題。制備納米金屬粒子抗菌劑和載體抗菌劑的技術(shù)手段日漸成熟,是目前應(yīng)用最為廣泛的金屬抗菌劑改性方式,可以將其作為多數(shù)添加型復(fù)合防污涂料用抗菌劑的首選;多種抗菌劑協(xié)同使用的復(fù)合抗菌劑也因其綜合性能顯著優(yōu)于單獨(dú)使用抗菌劑時(shí)而逐漸受到重視,應(yīng)進(jìn)一步加大對(duì)其的研究和應(yīng)用力度。
將有機(jī)抗菌劑固定在分子鏈中能夠有效解決抗菌劑的析出損失問(wèn)題,延長(zhǎng)涂層的防污壽命。但有機(jī)抗菌劑的引入通常會(huì)對(duì)涂料的其他性能造成一定程度的不良影響。例如季銨鹽本身具有一定的極性和親水性,引入后會(huì)影響涂層的表面能和穩(wěn)定性[71];N–(2,4,6–三氯苯基)馬來(lái)酰亞胺中的剛性苯環(huán)會(huì)增大涂層的模量,不利于涂層表面附著的海洋生物在海水沖刷下的剪切剝離,使涂層的防污性能受到影響[72]。因此,在向樹脂基體的分子鏈中引入抗菌劑時(shí),應(yīng)著重考慮抗菌性能與表面能、力學(xué)性能等的平衡,通過(guò)試驗(yàn)篩選出綜合性能優(yōu)良的涂料配方。Zhang等[56]發(fā)現(xiàn)聚氨酯改性有機(jī)硅涂層的靜態(tài)水接觸角和抗菌性能,與涂層表面硅原子和氮離子的濃度基本呈正相關(guān),并通過(guò)試驗(yàn)驗(yàn)證了共聚物中有機(jī)硅鏈段中鏈節(jié)數(shù)為90、季銨鹽質(zhì)量分?jǐn)?shù)為20%時(shí)具有最佳的綜合性能。
結(jié)構(gòu)型復(fù)合抗菌防污涂料正逐步成為海洋防污涂料的研究熱點(diǎn),應(yīng)加強(qiáng)和聚焦相關(guān)研究工作,以更好地解決以上問(wèn)題。為避免抗菌劑對(duì)涂料性能造成不利影響,應(yīng)根據(jù)性能需要選擇合適的抗菌劑,同時(shí)在分子鏈結(jié)構(gòu)中引入有機(jī)抗菌劑時(shí),應(yīng)嚴(yán)格控制其用量,通過(guò)實(shí)驗(yàn)確定抗菌性能和力學(xué)性能兼具的最佳配方;針對(duì)天然抗菌劑,由于從生物中直接提取天然抗菌劑的抗菌機(jī)理較為復(fù)雜,應(yīng)將研究重點(diǎn)聚焦在如何將其引入涂料樹脂的分子鏈后而仍能繼續(xù)保持其抗菌性能和樹脂的防污性能。另外,目前抗菌劑的選擇主要集中在小分子有機(jī)抗菌劑領(lǐng)域,后續(xù)應(yīng)加強(qiáng)針對(duì)其他抗菌劑引入樹脂分子鏈的相關(guān)研究工作。
低表面能涂料技術(shù)已經(jīng)取得實(shí)際應(yīng)用成果,抗菌劑的研究也在不斷進(jìn)步,抗菌低表面能復(fù)合防污涂料的優(yōu)點(diǎn)逐漸顯露并已得到研究人員的重視。無(wú)機(jī)抗菌劑具備廣譜殺菌效果且不易產(chǎn)生抗藥性,已在復(fù)合防污涂料中得到應(yīng)用,未來(lái)的研究方向主要為解決金屬抗菌劑在涂料中的分散性和穩(wěn)定性的問(wèn)題,例如制備載體無(wú)機(jī)抗菌劑等。小分子有機(jī)抗菌劑具有一定毒性,析出后會(huì)對(duì)環(huán)境和人體帶來(lái)危害,因此不適合用于制備添加型抗菌涂料;高分子有機(jī)抗菌劑和涂料基體的相容性較差,抗菌效果不好,而將有機(jī)抗菌劑引入結(jié)構(gòu)型抗菌涂料可以避免以上問(wèn)題,同時(shí)有效延長(zhǎng)涂料的使用壽命。無(wú)毒環(huán)保的天然抗菌劑將會(huì)逐漸成為抗菌涂料研究領(lǐng)域的熱點(diǎn)研究方向,但天然抗菌劑的應(yīng)用尚在起步階段,未來(lái)的主要研究方向?yàn)閷ぞ厶堑忍烊豢咕鷦┮氲捅砻婺芡苛蠘渲母叻肿渔溨?,?gòu)建無(wú)毒環(huán)保的結(jié)構(gòu)型抗菌防污涂料,其中的難點(diǎn)為天然抗菌劑與涂料基體的反應(yīng),以及天然抗菌劑的活性保持等問(wèn)題。
新型抗菌低表面能復(fù)合防污涂料對(duì)海洋防污領(lǐng)域有著非常重要的意義,我國(guó)在相關(guān)領(lǐng)域的研究尚處于起步階段,相信在不久的將來(lái),抗菌低表面能復(fù)合防污涂料能夠順利走出實(shí)驗(yàn)室,取得令人滿意的實(shí)際應(yīng)用業(yè)績(jī)。
[1] 陶宇, 李亞冰. 海洋防污涂料技術(shù)的研究現(xiàn)狀及展望[J]. 化學(xué)與黏合, 2012, 34(5): 67-71.
TAO Yu, LI Ya-bing. Present Status and Developing Pro-spect of Marine Antifouling Paints Technology[J]. Che-mistry and Adhesion, 2012, 34(5): 67-71.
[2] ALI A, JAMIL M I, JIANG Jing-xian, et al. An Overview of Controlled-Biocide-Release Coating Based on Polymer Resin for Marine Antifouling Applications[J]. Journal of Polymer Research, 2020, 27(4): 1-17.
[3] CAO Shan, WANG Jia-dao, CHEN Hao-sheng, et al. Pro-gress of Marine Biofouling and Antifouling Technologies [J]. Chinese Science Bulletin, 2011, 56(7): 598-612.
[4] COOPER S P, FINLAY J A, CONE G, et al. Engineered Antifouling Microtopographies: Kinetic Analysis of the Attachment of Zoospores of the Green Alga Ulva to Silicone Elastomers[J]. Biofouling, 2011, 27(8): 881-892.
[5] AMARA I, MILED W, SLAMA R B, et al. Antifouling Processes and Toxicity Effects of Antifouling Paints on Marine Environment. a Review[J]. Environmental Toxi-cology and Pharmacology, 2018, 57: 115-130.
[6] DAFFORN K A, LEWIS J A, JOHNSTON E L. Anti-fouling Strategies: History and Regulation, Ecological Impacts and Mitigation[J]. Marine Pollution Bulletin, 2011, 62(3): 453-465.
[7] CALLOW J A, CALLOW M E. Trends in the Develop-ment of Environmentally Friendly Fouling-Resistant Marine Coatings[J]. Nature Communications, 2011, 2(1): 244.
[8] SELIM M S, SHENASHEN M A, EL-SAFTY S A, et al. Recent Progress in Marine Foul-Release Polymeric Nano-composite Coatings[J]. Progress in Materials Science, 2017, 87: 1-32.
[9] SILVA E R, FERREIRA O, RAMALHO P A, et al. Eco- Friendly Non-Biocide-Release Coatings for Marine Bio-fouling Prevention[J]. Science of the Total Environment, 2019, 650(2): 2499-2511.
[10] HU Peng, XIE Qing-yi, MA Chun-feng, et al. Silicone- Based Fouling-Release Coatings for Marine Antifouling [J]. Langmuir, 2020, 36(9): 2170-2183.
[11] 馬英華, 宋振偉, 何遙, 等. 低表面能防污涂料防污機(jī)理探討[J]. 上海涂料, 2013, 51(5): 15-18.
MA Ying-hua, SONG Zhen-wei, HE Yao, et al. Discus-sing about Antifouling Mechanism of Antifouling Coa-tings with Low Surface Energy[J]. Shanghai Coatings, 2013, 51(5): 15-18.
[12] MARLèNE L, ANDRé M, CHRISTINE B. Fouling Re-lease Coatings: A Nontoxic Alternative to Biocidal Anti-fouling Coatings[J]. Chemical Reviews, 2012, 112(8): 4347-4390.
[13] 桂泰江, 王科. 低表面能海洋防污涂料的現(xiàn)狀和發(fā)展趨勢(shì)[J]. 現(xiàn)代涂料與涂裝, 2010, 13(11): 32-35.
GUI Tai-jiang, WANG Ke. The Present Situation and Development Trend of Low Surface Marine Antifouling Coating[J]. Modern Paint & Finishing, 2010, 13(11): 32-35.
[14] NURIOGLU A G, ESTEVES A C C, DE W G. Non-Toxic, Non-Biocide-Release Antifouling Coatings Based on Molecular Structure Design for Marine Applications[J]. Journal of Materials Chemistry B, 2015, 3(32): 6547- 6570.
[15] KRóL B, KRóL P, BYCZY?SKI ?, et al. Methods of Increasing Hydrophobicity of Polyurethane Materials: Important Applications of Coatings with Low Surface Free Energy[J]. Colloid and Polymer Science, 2017, 295(12): 2309-2321.
[16] CIRIMINNA R, BRIGHT F V, PAGLIARO M. Eco-friendly Antifouling Marine Coatings[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(4): 559-565.
[17] BUSKENS P, WOUTERS M, RENTROP C, et al. A Brief Review of Environmentally Benign Antifouling and Foul- Release Coatings for Marine Applications[J]. Journal of Coatings Technology and Research, 2013, 10(1): 29-36.
[18] HY D T, JEAN-FRAN?OIS B, ANDRé M, et al. Polysi-loxane-Based Block Copolymers with Marine Bacterial Anti-Adhesion Properties[J]. ACS Applied Materials & Interfaces, 2015, 7(28): 15578-86.
[19] LEI H, XIONG M, XIAO J, et al. Fluorine-Free Coating with Low Surface Rnergy and Anti-Biofouling Properties [J]. Progress in Organic Coatings, 2018, 124: 158-164
[20] 劉廣娟, 左禹, 趙景茂. 環(huán)氧改性有機(jī)硅涂料耐熱耐蝕性研究[J]. 腐蝕與防護(hù), 2004, 25(6): 238-241.
LIU Guang-juan, ZUO Yu, ZHAO Jing-mao. Heat Resi-stance and Corrosion Resistance of Epoxy-Silicone Based Coating[J]. Corrosion & Protection, 2004, 25(6): 238-241.
[21] 夏杰. 聚氨酯改性有機(jī)硅船舶防污涂料研究[D]. 北京: 北京化工大學(xué), 2020: 31.
XIA Jie. Research of Silicone Modified Polyurethane Marine Antifouling Coatings[D]. Beijing: Beijing Univer-sity of Chemical Technology, 2020: 31.
[22] LEJARS M, MARGAILLAN A, BRESSY C. Siloxy Silylester Methacrylate Diblock Copolymer-Based Coa-tings with Tunable Erosion and Marine Antifouling Pro-perties[J]. ACS Applied Polymer Materials, 2020, 2(8): 3291-3300.
[23] SUN Xun, CHEN Rong-rong, GAO Xiang, et al. Fabrica-tion of Epoxy Modified Polysiloxane with Enhanced Mechanical Properties for Marine Antifouling Applica-tion[J]. European Polymer Journal, 2019, 117: 77-85.
[24] 董耀華, 郭娜, 劉濤, 等. 載銀自拋光/低表面能環(huán)保涂層的制備及其耐微生物附著性能研究[J]. 表面技術(shù), 2015, 44(3): 100-106.
DONG Yao-hua, GUO Na, LIU Tao, et al. Research on the Preparation of Ag-Loaded Self-Polishing/Low Surface Energy Coating and Its Antifouling Ability[J]. Surface Technology, 2015, 44(3): 100-106.
[25] ZHANG Zhan-ping, SONG Xiao-fei, CUI Li-ying, et al. Synthesis of Polydimethylsiloxane-Modified Polyurethane and the Structure and Properties of Its Antifouling Coa-tings[J]. Coatings, 2018, 8(5): 157.
[26] SOMMER S, EKIN A, WEBSTER D C, et al. A Preli-minary Study on the Properties and Fouling-Release Per-formance of Siloxane-Polyurethane Coatings Prepared from Poly (Dimethylsiloxane) (PDMS) Macromers[J]. Biofouling, 2010, 26(8): 961-972.
[27] NAGHASH H J, MOHAMMADIDEHCHESHMEH I, MEHRNIA M. Synthesis and Characterization of a Novel Hydroxy Terminated Polydimethylsiloxane and Its App-lication in the Waterborne Polysiloxane-Urethane Disper-sion for Potential Marine Coatings[J]. Polymers for Adva-nced Technologies, 2013, 24(3): 307-317.
[28] 王強(qiáng), 李昌誠(chéng), 閆雪峰, 等. 低表面能海洋防污涂層技術(shù)及其評(píng)價(jià)方法[J]. 材料導(dǎo)報(bào), 2008, 22(10): 84-87.
WANG Qiang, LI Chang-cheng, YAN Xue-feng, et al. Marine Antifouling Coating Technology with Low Sur-face Energy and Its Evaluation Methods[J]. Materials Review, 2008, 22(10): 84-87.
[29] 許麗敏. 有機(jī)氟改性丙烯酸樹脂的合成及其涂料的研究[D]. 大連: 大連交通大學(xué), 2010: 5-45.
XU Li-min. Research of Synthetic Organic Fluorine Mo-dified Acrylic Resin and Coating[D]. Dalian: Dalian Jiao-tong University, 2010: 5-45.
[30] ZHANG Yan, ZHANG Zhan ping, QI Yu hong, et al. The Polymerization and Performance of Fluorinated Acrylic Copolymer with Low Surface Energy[J]. Materials Science Forum, 2011, 1300(687): 562-566.
[31] GITTENS J E, SMITH T J, SULEIMAN R, et al. Current and Emerging Environmentally-Friendly Systems for Fouling Control in the Marine Environment[J]. Biotech-nology Advances, 2013, 31(8): 1738-1753.
[32] SUN X, ZHANG F, CHEN Y, et al. Preparation and Properties of Crosslinked Network Coatings Based on Perfluoropolyether/Poly(Dimethyl Siloxane)/Acrylic Polyols for Marine Fouling-Release Applications[J]. Journal of Applied Polymer Science, 2015, 132(17): 41860.
[33] 汪子翔, 張坤, 衛(wèi)金皓, 等. 抗菌材料及抗菌劑的研究現(xiàn)狀及前景展望[J]. 橡塑技術(shù)與裝備, 2021, 47(12): 22-29.
WANG Zi-xiang, ZHANG Kun, WEI Jin-hao, et al. The Present Situation and Prospect of Antibacterial Materials and Antimicrobial Agents[J]. China Rubber/Plastics Technology and Equipment, 2021, 47(12): 22-29.
[34] 張小吉, 鄭成. 抗菌涂料的研究應(yīng)用進(jìn)展[J]. 廣東化工, 2016, 43(24): 83-84.
ZHANG Xiao-ji, ZHENG Cheng. The Research Progress of Antibacterial Coatings[J]. Guangdong Chemical In-dustry, 2016, 43(24): 83-84.
[35] MU?OZ-BONILLA A, FERNáNDEZ-GARCíA M. Poly-meric Materials with Antimicrobial Activity[J]. Progress in Polymer Science, 2011, 37(2): 281-339.
[36] 張國(guó)銘, 黎彧, 鄒訓(xùn)重, 等. 抗菌涂料的研究進(jìn)展[J]. 廣東微量元素科學(xué), 2015, 22(11): 6-9.
ZHANG Guo-ming, LI Yu, ZOU Xun-zhong, et al. The Research Progress of Antibacterial Coatings[J]. Guang-dong Trace Elements Science, 2015, 22(11): 6-9.
[37] 敖曉娟, 楊育農(nóng), 王浩江, 等. 聚丙烯酸酯抗菌涂料研究進(jìn)展[J]. 合成材料老化與應(yīng)用, 2019, 48(5): 122-126.
AO Xiao-juan, YANG Yu-nong, WANG Hao-jiang, et al. Research Progress on Antibacterial Coatings of Polyacry-late[J]. Synthetic Materials Aging and Application, 2019, 48(5): 122-126.
[38] QIAN Pei-yuan, XU Ying, NOBUSHINO F. Natural Products as Antifouling Compounds: Recent Progress and Future Perspectives[J]. Biofouling, 2010, 26(2): 223-234.
[39] MA Chun-feng, ZHANG Wei-peng, ZHANG Guang-zhao, et al. Environmentally Friendly Antifouling Coatings Based on Biodegradable Polymer and Natural Antifoulant [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(7): 6304-6309.
[40] 李恩宇. 天然殼聚糖的改性制備及其在防污涂層中的應(yīng)用研究[D]. 哈爾濱: 哈爾濱工程大學(xué), 2018: 12.
LI En-yu. Modification of Natural Chitosan and Its Application in Antifouling Coatings[D]. Harbin: Harbin Engineering University, 2018: 12.
[41] NIGMATULLIN R, KONOVALOVA V, POBIGAY G. Development of Antimicrobial Membranes via the Sur-face Tethering of Chitosan[J]. Journal of Applied Polymer Science, 2009, 111(4): 1697-1705.
[42] OKTAY B, KAYAMAN-APOHAN N. Polydimethylsilo-xane (PDMS)-Based Antibacterial Organic-Inorganic Hybrid Coatings[J]. Journal of Coatings Technology and Rese-arch, 2013, 10(6): 785-798.
[43] ZHAI Meng-jiao, GONG Yong-feng, CHEN Xiu-yong, et al. Mass-Producible Hydrophobic Perfluoroalkoxy/Nano- Silver Coatings by Suspension Flame Spraying for Antifouling and Drag Reduction Applications[J]. Surface & Coatings Technology, 2017, 328: 115-120.
[44] 李善文, 陳美玲, 楊莉, 等. 環(huán)保友好納米二氧化鈦低表面能船舶防污涂料[J]. 功能材料, 2008, 39(5): 853- 856.
LI Shan-wen, CHEN Mei-ling, YANG Li, et al. Pre-paration of Environmentally Benign Low Surface Energy Antifouling Coatings with Nano-Titanium Oxide Powder on Seagoing Vessels[J]. Journal of Functional Materials, 2008, 39(5): 853-856.
[45] QU Yuan-yuan, HUANG Hao-fei. Study of Novel Low Surface Energy Antifouling Coating Prepared with Silicon- Modified Acrylic Resin and Nano-TiO2[J]. Asian Journal of Chemistry, 2015, 27(4): 1212-1214.
[46] 尤文卉. 銀系疏水抗菌涂層制備及其性能研究[D]. 杭州: 浙江大學(xué), 2014: 29-42.
YOU Wen-hui. Preparation and Properties of the Ag- Based Hydrophobic Antibacterial Coating[D]. Hangzhou: Zhejiang University, 2014: 29-42.
[47] 仇春紅. 季銨鹽海洋防污涂層研究[D]. 大連: 大連海事大學(xué), 2012: 33-61.
QIU Chun-hong. Investigation of Marine Antifouling Coatings Based on Quaternary Ammonium Salts[D]. Dalian: Dalian Maritime University, 2012: 33-61.
[48] 趙萍萍. 噻唑烷二酮類抗菌劑在海洋防污涂料中的研究[D]. 淮北: 淮北師范大學(xué), 2019: 21-28.
ZHAO Ping-ping. Application of TZDS Antimicrobials in Marine Antifouling Coatings[D]. Huaibei: Huaibei Normal University, 2019: 21-28.
[49] 廖道鵬, 陳美玲, 張羽生, 等. 天然防污劑間苯三酚在低表面能海洋涂料中的應(yīng)用[J]. 化工新型材料, 2015, 43(4): 226-228.
LIAO Dao-peng, CHEN Mei-ling, ZHANG Yu-sheng, et al. Application of Natural Antifouling Agent Phloroglu-cinol in Marine Coatings with Low Surface Energy[J]. New Chemical Materials, 2015, 43(4): 226-228.
[50] KUGEL A, STAFSLIEN S, CHISHOLM B J. Antimicro-bial Coatings Produced by “Tethering” Biocides to the Coating Matrix: A Comprehensive Review[J]. Progress in Organic Coatings, 2011, 72(3): 222-252.
[51] 趙玻. 純水性聚氨酯納米乳液及其抗菌與超疏水涂層的制備與研究[D]. 上海: 上海應(yīng)用技術(shù)大學(xué), 2019: 19-33.
ZHAO Bo. Preparation and Study of Waterborne Polyure- Thane Nano-Emulsion and Its Antibacterial and Superhy-drophobic Coatings[D]. Shanghai: Shanghai Institute of Technology, 2019: 19-33.
[52] WANG B, WU Z, ZHANG D, et al. Antibacterial Sili-cylacrylate Copolymer Emulsion for Sntifouling Coatings [J]. Progress in Organic Coatings, 2018: 122-128.
[53] 付昱晨. 多功能超疏水抗菌材料的制備及其表面性能的研究[D]. 杭州: 浙江大學(xué), 2017: 26-46.
FU Yu-chen. Synthesis of Multifunctional Superhydro-phobic Antibacterial Materials and Studies on Their Surface Properties[D]. Hangzhou: Zhejiang University, 2017: 26-46.
[54] FERREIRA O, RIJO P, GOMES J F, et al. Biofouling Inhibition with Grafted Econea Biocide: Toward a Non-releasing Eco-Friendly Multiresistant Antifouling Coa-ting[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(1): 12-17.
[55] ZHANG Q, LIU H, CHEN X, et al. Preparation, Surface Properties, and Antibacterial Activity of a Poly(Dimethyl Siloxane) Network Containing a Quaternary Ammonium Salt Side Chain[J]. Journal of Applied Polymer Science, 2015, 132(14): 5-8.
[56] ZHANG Qing-hua, LIU Hai-long, ZHAN Xiao-li, et al. Microstructure and Antibacterial Performance of Function-alized Polyurethane Based on Polysiloxane Tethered Ca-tionic Biocides[J]. RSC Advances, 2015, 5(95): 77508- 77517.
[57] 劉海龍. 抗菌改性聚硅氧烷低表面能涂層材料的制備與性能研究[D]. 杭州: 浙江大學(xué), 2014: 25-69.
LIU Hai-long. Preparation and Performance of Polysilo-xane Coating Material Modified by Antibacterial Groups [D]. Hangzhou: Zhejiang University, 2014: 25-69.
[58] 羅建斌, 馬晨, 廖戎, 等. 硬段側(cè)鏈含有氟化雙季銨鹽的聚氨酯表面性能及抗菌性能分析[J]. 高等學(xué)?;瘜W(xué)學(xué)報(bào), 2010, 31(6): 1268-1273.
LUO Jian-bin, MA Chen, LIAO Rong, et al. Surface and Antibacterial Properties of Polyurethane with Fluorinated Bis-Ammonium Salts Attached to Hard Segments[J]. Chemical Journal of Chinese Universities, 2010, 31(6): 1268-1273.
[59] YANG Wen-jing, NEOH K G, KANG En-tang, et al. Polymer Brush Coatings for Combating Marine Biofou-ling[J]. Progress in Polymer Science, 2014, 39(5): 1017- 1042.
[60] 黃饒. 可降解低表面能海洋防污聚氨酯復(fù)合材料的制備及性能研究[D]. 湘潭: 湖南科技大學(xué), 2016: 27-36.
HUANG Rao. The Synthesis and Performance of Deg-radable Polyurethane Hybrid Materials with Low Surface Energy[D]. Xiangtan: Hunan University of Science and Technology, 2016: 27-36.
[61] WANG S, LIU X, YU L, et al. Low Surface Energy Self-Polishing Polymer Grafted MWNTs for Antibacterial Coating and Controlled-Release Property of Cu2O[J]. Journal of Applied Polymer Science, 2020, 138(16): 50267.
[62] ALEXANDRE B, ROSICA M, PETTITT M E, et al. Marine Fouling Release Silicone/Carbon Nanotube Nano-composite Coatings: On the Importance of the Nanotube Dispersion State[J]. Journal of Nanoscience and Nano-technology, 2010, 10(5): 2972-2978.
[63] 譚生, 郭軍紅, 崔錦峰, 等. 抗菌涂料的研究現(xiàn)狀及發(fā)展趨勢(shì)[J]. 中國(guó)涂料, 2011, 26(2): 16-20.
TAN Sheng, GUO Jun-hong, CUI Jin-feng, et al. Rese-arch Status and Development Trend of Antibacterial Coa-tings[J]. China Coatings, 2011, 26(2): 16-20.
[64] 高黨鴿, 趙洲洋, 呂斌, 等. 超疏水抗菌表面的研究進(jìn)展[J]. 精細(xì)化工, 2021, 38(5): 874-881.
GAO Dang-ge, ZHAO Zhou-yang, LYU Bin, et al. Rese-arch Process of Superhydrophobic Antibacterial Surfaces [J]. Fine Chemicals, 2021, 38(5): 874-881.
[65] SONG Yan-yan, YANG Ting, CAO Jing, et al. Protein- Mediated Synthesis of Antibacterial Silver Nanoparticles Deposited on Titanium Dioxide Nanotube Arrays[J]. Microchimica Acta, 2012, 177(1/2): 129-135.
[66] TIAN Shu, JIANG Dao-yi, PU Ji-bin, et al. A New Hybrid Silicone-Based Antifouling Coating with Nanoco-mposite Hydrogel for Durable Antifouling Properties[J]. Chemical Engineering Journal, 2019, 370: 1-9.
[67] SILEIKA T S, KIM H D, MANIAK P, et al. Antibacterial Performance of Polydopamine-Modified Polymer Surfaces Containing Passive and Active Components[J]. ACS Applied Materials & Interfaces, 2011, 3(12): 4602-4610.
[68] XU De-qiu, SU Yu-ling, ZHAO Li-li, et al. Antibacterial and Antifouling Properties of a Polyurethane Surface Modified with Perfluoroalkyl and Silver Nanoparticles[J]. Journal of Biomedical Materials Research Part A, 2017, 105(2): 531-538.
[69] 姚劍松, 左華江, 徐然, 等. 殼聚糖微球的季銨化及其抗菌性能的研究[J]. 化工新型材料, 2021, 49(2): 103- 106.
YAO Jian-song, ZUO Hua-jiang, XU Ran, et al. Quater-nary Ammoniation of Chitosan Microsphere and Their Antimicrobial Property[J]. New Chemical Materials, 2021, 49(2): 103-106.
[70] 吳會(huì)敏. 含胍基化殼聚糖水性聚氨酯涂料的制備研究[D]. 天津: 天津大學(xué), 2018: 39-49.
WU Hui-min. Preparation of Waterborne Polyurethane Coatings Modified by Guanidinated Chitosan[D]. Tianjin: Tianjin University, 2018: 39-49.
[71] MAJUMDAR P, LEE E, PATEL N, et al. Development of Environmentally Friendly, Antifouling Coatings Based on Tethered Quaternary Ammonium Salts in a Crosslinked Polydimethylsiloxane Matrix[J]. Journal of Coatings Technology and Research, 2008, 5(4): 405-417.
[72] XIE Qing-yi, MA Chun-feng, LIU Chao, et al. Poly (Dimethylsiloxane)-Based Polyurethane with Chemically Attached Antifoulants for Durable Marine Antibiofouling [J]. ACS Applied Materials & Interfaces, 2015, 7(38): 21030-21037.
Progress in the Antibacterial and Low Surface Energy Composite Marine Antifouling Coatings
,,,,,
(Beijing Key Laboratory of Materials Electrochemical Process and Technology, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China)
Marine economy and industry play an extremely important role in the development of human society, while the fouling problem of marine organisms brings great difficulties and challenges to marine engineering and equipment. How to effectively avoid marine biological fouling has become a hot and difficult issue. At present, antifouling technologies such as mechanical antifouling, electrochemical antifouling and antifouling coatings have been applied in practice. Among them, coating antifouling technology is the most widely used. Traditional antifouling coatings made use of antifouling agents to kill marine organisms, which will cause irreversible pollution to marine ecological environment. As a result, more research is being concentrated on developing more environmentally acceptable antifouling coatings. The low surface energy antifouling coatings could eliminate marine fouling organisms without releasing hazardous compounds, owing to its lower surface energy and the shear force by water flow. Due to the environment-friendly characteristic, low surface energy marine antifouling coatings have become the focus of research in recent years. To improve the antifouling coatings with more comprehensive properties, researchers try to modify the antifouling coatings with low surface energy unceasingly. Since the starting point of marine biological pollution is the attachment and growth of bacteria, antifouling coatings with antibacterial properties could prevent marine biological pollution at the initial stage. By introducing antimicrobial agents into low surface energy coatings, antifouling coatings with composite function could be prepared to further improve the comprehensive antifouling ability of coatings. According to this background, the technical principle of marine antifouling coatings and the research status of low surface energy antifouling coatings were briefly introduced firstly in this paper, and then the technical advantages of this type of antifouling coatings were analyzed. Meanwhile, the technical shortcomings of poor static antifouling ability and weak antifouling performance to bacterial fouling organisms were proposed. These disadvantages limit the wide application of low surface energy antifouling coatings, which need to be further modified to obtain better antifouling performance. Focusing on the antibacterial composite modification of low surface energy antifouling coatings and starting with two antibacterial composite modification methods of additives and structure, the applicable types of antibacterial agents, main preparation methods and relevant research results of comprehensive antifouling properties of modified coatings were described respectively. The research on adding antibacterial agents to low surface energy antifouling coatings started early, which is relatively well developed and occupies an important position in the field of marine antifouling. By fixing organic antibacterial agent in molecular chain, the problem of precipitation loss of antibacterial agent could be solved effectively and the service life of antifouling coatings could be prolonged. At the same time, the problems of the above two kinds of antibacterial composite antifouling coatings were discussed and the corresponding solutions were put forward. For example, nanoscale metal antibacterial agent and carrier antibacterial agent could be prepared and added to antifouling coatings. Finally, the future research directions of inorganic antibacterial agents, organic antibacterial agents and natural antibacterial agents in antifouling coatings were put forward, and the development and application of antibacterial low surface energy composite marine antifouling coatings have prospected.
antibacterial; low surface energy; composite function; marine antifouling coating
TQ637.2
A
1001-3660(2022)05-0265-09
10.16490/j.cnki.issn.1001-3660.2022.05.027
2021–11–03;
2022–04–28
2021-11-03;
2022-04-28
劉思琪(1999—),女,碩士研究生,主要研究方向?yàn)榭咕捅砻婺軓?fù)合防污涂料。
LIU Si-qi (1999-), Female, Postgraduate, Research focus: antibacterial low surface energy composite antifouling coatings.
劉斌(1973—),男,博士,教授,主要研究方向?yàn)楹Q笱b備防腐與防污。
LIU Bin (1973-), Male, Doctor, Professor, Research focus: anticorrosion and antifouling of marine equipment.
劉思琪, 劉斌, 寧玉杰, 等. 抗菌低表面能復(fù)合型海洋防污涂料的研究進(jìn)展[J]. 表面技術(shù), 2022, 51(5): 265-273.
LIU Si-qi, LIU Bin, NING Yu-jie, et al. Progress in the Antibacterial and Low Surface Energy Composite Marine Antifouling Coatings[J]. Surface Technology, 2022, 51(5): 265-273.
責(zé)任編輯:蔣紅晨