張心純 陸澤磊 周歷 任文輝 馬彥陽(yáng)
摘要:鋼桁架廣泛用于組合結(jié)構(gòu)工程建造中,針對(duì)鋼桁架結(jié)構(gòu)在平推施工過(guò)程中的失穩(wěn)破壞,選取三跨鋼桁架-混凝土組合結(jié)構(gòu)(3 m×80 m)作為研究對(duì)象。采用空間有限元軟件構(gòu)建鋼桁架結(jié)構(gòu)的三維精細(xì)化模型,結(jié)合鋼桁架實(shí)際平推過(guò)程進(jìn)行特征值屈曲分析,計(jì)算平推過(guò)程中結(jié)構(gòu)的臨界荷載系數(shù)和臨界活載系數(shù)ω,對(duì)比分析平推過(guò)程最大懸臂狀態(tài)和成橋狀態(tài)下鋼桁架結(jié)構(gòu)的穩(wěn)定性能,深入探究導(dǎo)跨比對(duì)桿件受力性能和鋼桁架結(jié)構(gòu)穩(wěn)定性能的影響。結(jié)果表明:鋼桁架結(jié)構(gòu)平推過(guò)程最大懸臂狀態(tài)較成橋狀態(tài)時(shí)更容易失穩(wěn),平推狀態(tài)第一階臨界荷載系數(shù)較成橋狀態(tài)降低了13.14%,第一階臨界活載系數(shù)較成橋狀態(tài)降低了10.49%。鋼桁架平推過(guò)程中,弦桿以受軸向壓力為主,腹桿以受剪力為主,各桿件均承受一定彎矩,桿件內(nèi)力隨導(dǎo)跨比的增大呈現(xiàn)下降趨勢(shì)。導(dǎo)跨比從0.600增加到0.750時(shí),鋼桁架結(jié)構(gòu)一階屈曲特征值提高了87.43%,對(duì)結(jié)構(gòu)穩(wěn)定承載能力有顯著影響,該成果將為鋼桁架結(jié)構(gòu)平推施工的精細(xì)化控制提供理論支持,提高平推施工過(guò)程的安全與質(zhì)量。
關(guān)鍵詞:結(jié)構(gòu)工程;鋼桁架結(jié)構(gòu);數(shù)值預(yù)測(cè);平推過(guò)程;穩(wěn)定性能
中圖分類號(hào):TU 391文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1672-9315(2022)04-0716-08
DOI:10.13800/j.cnki.xakjdxxb.2022.0411
Study on stability of steel truss structure in
incremental launching processZHANG Xinchun LU Zelei ZHOU Li REN Wenhui MA Yanyang
(1.China Railway Construction Shaanxi Expressway Co.,Ltd.,Xian 710064,China;
2.School of Highway,Changan University,Xian 710064,China)Abstract:Steel truss is widely used in the construction of composite structure engineering.For the stability failure of steel truss structure during incremental launching construction,three spans steel truss-concrete composite structure(3 m×80 m)was selected as a research object.The three-dimensional refined model of steel truss structure was constructed by using spatial finite element software.The eigenvalue buckling analysis was carried out with the actual incremental launching process of steel-truss in view.Then the critical load coefficient(φ)and the critical live load coefficient(ω)were calculated in the process of structure incremental launching.Furthermore,the stability performance of steel-truss structure between construction maximum cantilever state and completed bridge state was compared and analyzed.Especially,the influence of launching nose-span radio on the mechanical properties of members and stability of steel truss structure were deeply explored.The results show that steel truss structure in construction maximum cantilever state is easier to lose stability than that in the completed bridge state.Compared to completed bridge state,the first-order critical load coefficient is reduced by 13.14% in incremental launching state,and the first-order critical live load coefficient is reduced by 10.49% in incremental launching state.During incremental launching process of steel truss,the chord mainly bears axial pressure,and the web member mainly bears shearing force.Each member bears a certain bending moment,and the internal force of members shows a downward trend with the increase of launching nose-span ratio.When the launching nose-span ratio increases from 0.600 to 0.750,the first-order buckling eigenvalue of steel truss structure increases by 87.43%,which has a significant impact on the stable capacity of steel truss structure.The research results would provide a theoretical guidance for the fine control steel-truss structure in incremental launching process,so as to improve the safety and quality of incremental launching process.
Key words:structural engineering;steel-truss structure;numerical prediction;incremental launching process;stability performance
0引言
鋼桁架廣泛用于組合結(jié)構(gòu)工程建造中,例如煤礦運(yùn)輸專線、大空間結(jié)構(gòu)等。鋼桁架-混凝土組合結(jié)構(gòu)是將鋼桁架與混凝土橋面板通過(guò)剪力釘連接形成整體結(jié)構(gòu),能夠充分利用鋼桁架的空間穩(wěn)定性能和混凝土的高品質(zhì)抗壓性能,使其共同受力,變形協(xié)調(diào),實(shí)現(xiàn)了優(yōu)質(zhì)組合,具有自重輕、跨越能力強(qiáng)、施工速度快、施工質(zhì)量高等優(yōu)點(diǎn)[1-2]。鋼桁架的應(yīng)用不僅減少用鋼量,提升經(jīng)濟(jì)效益,更積極響應(yīng)國(guó)家結(jié)構(gòu)工程建設(shè)綠色發(fā)展的時(shí)代號(hào)召,在工程結(jié)構(gòu)產(chǎn)業(yè)轉(zhuǎn)型升級(jí)中具有較強(qiáng)的競(jìng)爭(zhēng)力。
工程結(jié)構(gòu)平推施工體系與施工工藝的不斷完善與創(chuàng)新,推動(dòng)了平推施工建造技術(shù)的應(yīng)用。對(duì)于大跨度鋼桁架結(jié)構(gòu)體系,輕盈纖細(xì)的特點(diǎn)使得結(jié)構(gòu)穩(wěn)定問題成為平推施工過(guò)程中無(wú)法忽略的重要問題。結(jié)構(gòu)失穩(wěn)破壞具有突發(fā)性、破壞性大等特點(diǎn),常造成橋梁結(jié)構(gòu)垮塌等嚴(yán)重的安全事故,帶來(lái)重大的生命財(cái)產(chǎn)損失和惡劣的社會(huì)影響。
目前,有許多學(xué)者對(duì)結(jié)構(gòu)的穩(wěn)定性能及失穩(wěn)破壞機(jī)理進(jìn)行研究。YU等以新黃河大橋?yàn)榘咐龑?duì)簡(jiǎn)支鋼桁梁橋的受力性能進(jìn)行了研究,對(duì)軌道-橋梁相互作用引起的地震反應(yīng)進(jìn)行了分析[3]。趙曼等建立了128 m跨徑的鐵路應(yīng)急鋼桁梁非線性數(shù)值模型,系統(tǒng)分析不同荷載組合與非線性因素對(duì)結(jié)構(gòu)穩(wěn)定性能的影響,研究不同損傷狀態(tài)下的極限荷載[4-5]。施洲等基于鋼桁梁柔性拱橋有限元模型,考慮幾何和材料雙重非線性因素的影響,探究橋梁結(jié)構(gòu)的穩(wěn)定性能,系統(tǒng)分析鋼桁梁柔性拱橋的極限承載力[6-7]。夏正春等對(duì)鋼桁梁在恒載和活載作用下的穩(wěn)定性能進(jìn)行研究,指出加載方式對(duì)結(jié)構(gòu)的穩(wěn)定性能影響較大,隔跨布置活載對(duì)結(jié)構(gòu)受力最不利[8]。趙雷等基于靜力試驗(yàn)和數(shù)值模擬,探究初始幾何缺陷對(duì)桁架穩(wěn)定性能的影響[9]。鄧海等基于車橋耦合振動(dòng)理論,結(jié)合荷載試驗(yàn)?zāi)M分析鋼桁架在車輛荷載作用下桿件的軸力時(shí)程曲線[10]。張明等考慮多種關(guān)鍵因素影響確定桁架結(jié)構(gòu)的最不利桿件,提出結(jié)構(gòu)彈塑性屈曲承載力的計(jì)算方法[11]。ZHANG等通過(guò)風(fēng)洞試驗(yàn)和有限元模擬,研究了大跨徑板桁組合梁的顫振穩(wěn)定性[12]。
在工程結(jié)構(gòu)平推施工技術(shù)方面,趙人達(dá)等總結(jié)國(guó)內(nèi)外橋梁頂推施工技術(shù)的發(fā)展概況,對(duì)頂推施工中導(dǎo)梁參數(shù)、施工控制等關(guān)鍵技術(shù)進(jìn)行分析,探討未來(lái)發(fā)展趨勢(shì)[13]。CHACN等對(duì)鋼橋頂推施工過(guò)程進(jìn)行試驗(yàn)研究,并通過(guò)數(shù)值模擬對(duì)比分析結(jié)構(gòu)的力學(xué)響應(yīng)[14]。梁崇雙、王盛銘等分別提出不同鋼桁-混凝土組合梁施工及控制方案,探討頂推系統(tǒng)的設(shè)計(jì)方案[15-16]。DING等總結(jié)某連續(xù)鋼桁梁橋的懸索加勁弦桿頂推施工技術(shù),并采用數(shù)值分析進(jìn)行施工控制[17]。冀偉等研究在頂推施工過(guò)程在主梁內(nèi)力的變化規(guī)律,提出導(dǎo)梁參數(shù)優(yōu)化計(jì)算方法[18]。王金良等深入探究多跨鋼桁梁頂推施工中的偏移問題,通過(guò)數(shù)值仿真計(jì)算揭示軸線偏移對(duì)鋼桁梁桿件內(nèi)力的影響規(guī)律[19]。時(shí)曉曄等計(jì)算分析鋼箱梁頂推施工過(guò)程中導(dǎo)梁屈曲變形特性,探究不同加固方案對(duì)導(dǎo)梁穩(wěn)定性能的影響程度[20]。閆紓梅等對(duì)某鋼桁梁斜拉橋在施工最大單懸臂、雙懸臂及成橋等關(guān)鍵階段中的穩(wěn)定性能進(jìn)行研究,指出非線性因素對(duì)結(jié)構(gòu)穩(wěn)定性能影響明顯[21]。
文中選取某三跨鋼桁架-混凝土組合結(jié)構(gòu)并建立精細(xì)化數(shù)值模型,針對(duì)鋼桁架結(jié)構(gòu)平推施工過(guò)程的穩(wěn)定問題進(jìn)行深入研究,探究了導(dǎo)梁長(zhǎng)度對(duì)結(jié)構(gòu)受力與穩(wěn)定性能的影響,提出了導(dǎo)跨比的合理范圍,對(duì)鋼桁架-混凝土組合結(jié)構(gòu)的設(shè)計(jì)與施工提供了理論參考。
1工程背景
選取煤礦運(yùn)輸專線上某三跨鋼桁架-混凝土組合結(jié)構(gòu)為研究對(duì)象,跨徑布置為3 m×80 m,單幅橋面寬12.5 m,雙幅橋面寬26 m,設(shè)計(jì)荷載等級(jí)公路-Ⅰ級(jí)。鋼桁架高度為8.3 m,其中桁高為7.8 m,混凝土橋面板板厚為0.4 m。鋼桁架一般構(gòu)造圖如圖1所示。鋼桁架由箱型弦桿、箱型腹桿和工字型平聯(lián)組成,采用Q345qDNH高強(qiáng)度耐候鋼,在現(xiàn)場(chǎng)先焊接拼接后進(jìn)行平推施工。鋼主桁的兩榀桁架之間通過(guò)工字型平聯(lián)進(jìn)行橫向加強(qiáng),在支點(diǎn)處截面采用斜向支撐加強(qiáng)橫向聯(lián)系,桁架間標(biāo)準(zhǔn)間距為6.7 m,各桿件關(guān)鍵截面構(gòu)造參數(shù)見表1。橋面板采用預(yù)制C55高強(qiáng)度混凝土和1860級(jí)低松弛鋼絞線,行車道板寬12.5 m,承托處板厚0.4 m,懸臂處板厚0.24 m,鋼桁架之間處板厚0.3 m,通過(guò)與預(yù)留在鋼梁上翼緣的集束式焊釘聯(lián)結(jié)形成整體受力結(jié)構(gòu)。
2模型建立
為研究鋼桁架結(jié)構(gòu)平推過(guò)程的穩(wěn)定性能,選取與導(dǎo)梁連接的部分鋼桁架梁段作為研究對(duì)象,通過(guò)空間有限元軟件ANSYS建立鋼桁架模型,對(duì)端部支點(diǎn)處桁桿進(jìn)行分析,鋼桁架-混凝土組合結(jié)構(gòu)模型如圖2所示[22-27]。鋼桁架梁段模型通過(guò)桿件組裝的方式建立,鋼桁采用BEAM 188單元模擬,混凝土橋面板采用SOLID 65單元模擬,采用COMBIN 39非線性彈簧單元模擬桿件連接處的轉(zhuǎn)動(dòng)剛度變化,在桿件之間建立傳力路徑使之共同受力。在模型建立時(shí),不考慮橋面板與鋼桁架之間的剪力釘滑移效應(yīng),在橋面板與鋼桁架弦桿之間采用共節(jié)點(diǎn)連接,并忽略實(shí)際拼接過(guò)程中造成的桿件初始變位與焊接初始缺陷。
3平推過(guò)程梁段屈曲分析
在鋼桁架平推施工時(shí),鋼桁各節(jié)段在聚四氟乙烯板和不銹鋼板滑道上現(xiàn)場(chǎng)拼接,采用步履式平推設(shè)備多點(diǎn)同步平推,每個(gè)梁段平推結(jié)束都均進(jìn)行臨時(shí)約束。在平推過(guò)程中,鋼桁架的結(jié)構(gòu)體系隨著節(jié)段前進(jìn)不斷變化,桁架支點(diǎn)與導(dǎo)梁連接處桿件受力復(fù)雜多變。導(dǎo)梁作為平推施工體系中重要的施工輔助結(jié)構(gòu),不僅大幅減小了鋼桁架懸臂長(zhǎng)度,有效降低了懸臂負(fù)彎矩峰值,對(duì)結(jié)構(gòu)穩(wěn)定性能的影響不容忽視。
選取導(dǎo)梁長(zhǎng)度為0.6倍鋼桁結(jié)構(gòu)主跨徑時(shí),鋼桁架最大懸臂為32 m,結(jié)合鋼桁架實(shí)際平推過(guò)程,對(duì)鋼桁架結(jié)構(gòu)采用特征值屈曲分析,得到其作為理想彈性結(jié)構(gòu)的屈曲荷載,計(jì)算了結(jié)構(gòu)在平推過(guò)程中的臨界荷載系數(shù)和臨界活載系數(shù)ω,并與鋼桁架成橋狀態(tài)時(shí)進(jìn)行對(duì)比。
臨界荷載系數(shù)的含義為結(jié)構(gòu)在荷載乘以此系數(shù)后的作用下可能出現(xiàn)失穩(wěn)問題(屈曲),假定結(jié)構(gòu)全過(guò)程都處于線彈性工作狀態(tài),采用特征值屈曲分析的方法求出結(jié)構(gòu)發(fā)生第1類失穩(wěn)時(shí)的臨界荷載系數(shù)。此時(shí)結(jié)構(gòu)的屈曲荷載=臨界荷載系數(shù)×(恒載+活載)。臨界活載系數(shù)ω的含義為結(jié)構(gòu)活載乘以此系數(shù)后的作用下可能出現(xiàn)失穩(wěn)問題(屈曲),采用臨界活載系數(shù)ω是因?yàn)榻Y(jié)構(gòu)恒載在全壽命期間基本不發(fā)生改變,需要進(jìn)一步分析活載作用下的屈曲荷載,通過(guò)不斷迭代計(jì)算的方法使得臨界荷載系數(shù)等于1,此時(shí)屈曲荷載=1.0×(恒載+臨界活載系數(shù)ω×活載)。
圖3為平推過(guò)程中最大懸臂狀態(tài)與成橋狀態(tài)梁段臨界系數(shù)值與模態(tài)關(guān)系圖,由圖3可知,當(dāng)鋼桁架處于平推施工階段的最大懸臂狀態(tài)時(shí),更容易出現(xiàn)失穩(wěn)破壞,平推過(guò)程中鋼桁架節(jié)段最大懸臂狀態(tài)時(shí)的前三階臨界荷載系數(shù)相比成橋狀態(tài)時(shí),分別降低了13.14%,10.41%,10.85%,結(jié)構(gòu)穩(wěn)定性能下降明顯。成橋狀態(tài)下的各階臨界荷載系數(shù)波動(dòng)較小,保持在4.8左右,而平推施工過(guò)程的節(jié)段最大懸臂狀態(tài)的臨界荷載系數(shù)隨著階數(shù)的增大呈現(xiàn)增加趨勢(shì)。組合結(jié)構(gòu)的臨界活載系數(shù)隨各階模態(tài)的波動(dòng)較大,平推施工過(guò)程中鋼桁架節(jié)段最大懸臂狀態(tài)時(shí)的前三階臨界活載系數(shù)相比成橋狀態(tài)時(shí),分別降低了10.49%,8.72%,11.19%,對(duì)結(jié)構(gòu)的穩(wěn)定性能影響顯著。隨著模態(tài)階數(shù)的增大,降低幅度在減小,平推過(guò)程最大懸臂狀態(tài)第六階模態(tài)的臨界活載系數(shù)較成橋狀態(tài)減小了3.06%。
4導(dǎo)梁長(zhǎng)度影響分析
在鋼桁架平推施工過(guò)程中,導(dǎo)梁長(zhǎng)度對(duì)鋼桁架懸臂梁段的桿件內(nèi)力和結(jié)構(gòu)的穩(wěn)定性能均有較大影響,對(duì)平推施工順利進(jìn)行起控制作用。為探究鋼桁架桿件和穩(wěn)定性能在導(dǎo)梁長(zhǎng)度影響下的變化規(guī)律,明確導(dǎo)梁長(zhǎng)度的合理范圍,選取不同導(dǎo)梁長(zhǎng)度與鋼桁架計(jì)算跨徑的比值α(導(dǎo)跨比)對(duì)桿件內(nèi)力和梁段的穩(wěn)定性能進(jìn)行分析,桿件的選取如圖4所示。
4.1導(dǎo)跨比對(duì)桿件內(nèi)力的影響
為研究導(dǎo)跨比對(duì)桿件內(nèi)力的影響,分別取導(dǎo)跨比為0.600,0.625,0.650,0.675,0.700,0.725,0.750,建立鋼桁架精細(xì)化模型對(duì)平推過(guò)程最大懸臂狀態(tài)進(jìn)行數(shù)值分析,計(jì)算分析各導(dǎo)跨比下鋼桁梁平推到最大懸臂階段時(shí)端支點(diǎn)處梁段各弦桿、腹桿和平聯(lián)內(nèi)力值。圖5為不同導(dǎo)跨比鋼桁梁各桿件內(nèi)力值。
由圖5可知,在鋼桁架平推施工過(guò)程中,最大懸臂狀態(tài)下的弦桿以受軸力為主,壓力最高可達(dá)到9 528.9 kN,腹桿以受剪力為主,剪力最高可達(dá)到6 133 kN,各桿件均受到一定程度的彎矩,平聯(lián)僅受極少?gòu)澗赜绊?。?dǎo)跨比從0.600增大到0.750時(shí),前弦桿所受軸向壓力從9 528.9 kN降低到4 387.8 kN,后弦桿受軸向壓力從7 509.4 kN降低到3 571 kN,降低幅度分別達(dá)到53.95%,52.44%;腹桿所受剪力從2 097.5 kN降低到1 508.7 kN,后腹桿所受剪力從6 133.1 kN降低到3 206.6 kN,降低幅度分別達(dá)到28.07%,47.72%。這是由于導(dǎo)跨比的增大,最大懸臂狀態(tài)下導(dǎo)梁的長(zhǎng)度增長(zhǎng),而鋼桁架的長(zhǎng)度減小,結(jié)構(gòu)自重的變化導(dǎo)致懸臂狀態(tài)的彎矩減小,桿件內(nèi)力得到優(yōu)化。后弦桿所受軸力相比前弦桿減小幅度超過(guò)20%,前腹桿所受剪力相比后腹桿減小幅度超過(guò)50%,說(shuō)明桿件間節(jié)點(diǎn)剛度對(duì)內(nèi)力的分配有一定影響。
前弦桿和前腹桿的彎矩?cái)?shù)值大小和變化趨勢(shì)相近,都隨著導(dǎo)跨比的增加而減小,且導(dǎo)跨比越大,減小幅度越多,導(dǎo)跨比從0.600增大到0.750時(shí),前弦桿所受彎矩從389.3 kN·m降低到120.9 kN·m,前腹桿受彎矩從424.7 kN·m降低到149.7 kN·m,降低幅度分別達(dá)到68.94%,64.75%。后弦桿和后腹桿的彎矩變化較大,隨著導(dǎo)跨比的增加也呈現(xiàn)減小的趨勢(shì),但是在導(dǎo)跨比較小時(shí),彎矩變化幅度較大,在導(dǎo)跨比α=0.700時(shí)出現(xiàn)峰值,之后彎矩呈現(xiàn)隨著導(dǎo)跨比的增加而增大的趨勢(shì)。
4.2導(dǎo)跨比對(duì)穩(wěn)定性能的影響
鋼桁架作為橋梁結(jié)構(gòu)的主體,在關(guān)注結(jié)構(gòu)設(shè)計(jì)強(qiáng)度和剛度的同時(shí),其穩(wěn)定性能的重要性不容忽視,在荷載滿足材料設(shè)計(jì)強(qiáng)度的情況下,失穩(wěn)破壞是結(jié)構(gòu)主要破壞模式。鋼桁架穩(wěn)定性能的影響因素,包括設(shè)計(jì)參數(shù)、結(jié)構(gòu)尺寸、施工技術(shù)水平等。為研究平推過(guò)程中導(dǎo)跨比對(duì)鋼桁架結(jié)構(gòu)穩(wěn)定性能的影響,仍選取導(dǎo)跨比為0.600,0.625,0.650,0.675,0.700,0.725,0.750,對(duì)鋼桁架模型進(jìn)行特征值屈曲分析,對(duì)比分析不同導(dǎo)跨比工況下鋼桁架的屈曲特征值。圖6為不同導(dǎo)跨比屈曲特征值-模態(tài)關(guān)系圖。
由圖6可知,在同一導(dǎo)跨比下,結(jié)構(gòu)的屈曲特征值均隨模態(tài)階數(shù)的增大而增大,且隨著導(dǎo)跨比的增大,結(jié)構(gòu)屈曲特征值有不同程度的增大趨勢(shì)。從結(jié)構(gòu)各階失穩(wěn)模態(tài)發(fā)現(xiàn),鋼桁架的破壞形態(tài)均是由桿件的局部屈曲造成的結(jié)構(gòu)失穩(wěn)破壞,導(dǎo)跨比的選取對(duì)結(jié)構(gòu)屈曲破壞模式的影響較小,但對(duì)鋼桁架的穩(wěn)定承載能力有較大的影響。
鋼桁架的屈曲特征值隨著導(dǎo)跨比的增大而增加,當(dāng)導(dǎo)跨比從0.600增加到0.750時(shí),結(jié)構(gòu)的一階屈曲特征值分別提高了6.82%,20.44%,33.48%,68.08%,77.20%,87.43%,表明提高導(dǎo)跨比能夠有效提高結(jié)構(gòu)平推時(shí)的穩(wěn)定性能,且當(dāng)導(dǎo)跨比從0.675增加到0.700時(shí),結(jié)構(gòu)臨界荷載系數(shù)增加幅度超過(guò)25%。結(jié)合計(jì)算結(jié)果與實(shí)際工程中導(dǎo)梁長(zhǎng)度對(duì)其自身穩(wěn)定性能的影響,建議在鋼桁架平推施工時(shí)導(dǎo)跨比的取值范圍在0.650~0.700之間。當(dāng)導(dǎo)跨比因?qū)嶋H問題受限而小于0.600時(shí),應(yīng)采取設(shè)置臨時(shí)支架等措施提高結(jié)構(gòu)穩(wěn)定性能。
5結(jié)論
1)在平推施工階段的最大懸臂狀態(tài)時(shí),鋼桁架結(jié)構(gòu)的臨界荷載系數(shù)和臨界活載系數(shù)相比成橋狀態(tài)均較小,結(jié)構(gòu)穩(wěn)定性能下降明顯,結(jié)構(gòu)更容易出現(xiàn)失穩(wěn)破壞。隨著失穩(wěn)模態(tài)階數(shù)的增加,平推施工狀態(tài)的臨界荷載系數(shù)和臨界活載系數(shù)逐漸增大,較成橋狀態(tài)的降低幅度不斷減小,結(jié)構(gòu)穩(wěn)定性能有所提升。
2)鋼桁架在平推施工的最大懸臂狀態(tài)時(shí),端支點(diǎn)處弦桿以受軸向壓力為主,腹桿以受剪力為主,平聯(lián)基本不承擔(dān)軸力和剪力,僅受彎矩影響。
3)當(dāng)導(dǎo)跨比從0.600增大到0.750時(shí),結(jié)構(gòu)自重的變化導(dǎo)致弦桿所受軸力和腹桿所受剪力均出現(xiàn)下降,前弦桿、后弦桿和前腹桿、后腹桿的降低幅度分別達(dá)到53.95%,52.44%,28.07%,47.72%。弦桿和腹桿的彎矩都隨著導(dǎo)跨比的增加而減小,其中后弦桿和后腹桿的彎矩導(dǎo)跨比α=0.700時(shí)出現(xiàn)峰值,之后彎矩呈現(xiàn)增大趨勢(shì)。
4)平推施工階段不同導(dǎo)跨比對(duì)結(jié)構(gòu)屈曲破壞模式的影響較小,但對(duì)鋼桁架的穩(wěn)定承載能力有較大的影響。當(dāng)導(dǎo)跨比從0.600增加到0.750時(shí),結(jié)構(gòu)臨界荷載系數(shù)提高了87.43%,且當(dāng)導(dǎo)跨比從0.675增加到0.700時(shí),結(jié)構(gòu)穩(wěn)定承載能力提升幅度較大。
5)僅通過(guò)特征值屈曲分析方法研究鋼桁架結(jié)構(gòu)平推過(guò)程的穩(wěn)定性能,未考慮材料非線性和幾何非線性對(duì)結(jié)構(gòu)穩(wěn)定計(jì)算的影響,下一步將采用考慮結(jié)構(gòu)初始缺陷的非線性屈曲分析方法研究鋼桁架結(jié)構(gòu)的穩(wěn)定性能。
參考文獻(xiàn)(References):
[1]楊綠峰,宋沙沙,劉嘉達(dá)仁.鋼桁架結(jié)構(gòu)穩(wěn)定性與兩層面強(qiáng)度優(yōu)化設(shè)計(jì)研究[J].工程力學(xué),2020,37(1):207-217,256.YANG Lufeng,SONG Shasha,LIU Jiadaren.Stability and optimum design of two-level strength for steel trusses[J].Engineering Mechanics,2020,37(1):207-217,256.
[2]周歷.鋼桁-混凝土組合連續(xù)梁復(fù)雜節(jié)點(diǎn)域剛度計(jì)算及穩(wěn)定性能研究[D].西安:長(zhǎng)安大學(xué),2021.ZHOU Li.Method of complex joint region in steel truss-concrete composite continuous bridge girders calculation and stability[D].Xian:Changan University,2021.
[3]YU X D,DENG Y L,YAN B.Case study of the 156 m simply supported steel truss railway bridge[J].Structural Engineering International,2017,27(4):563-568.
[4]趙曼,陳士通,孫志星,等.新型大跨鐵路應(yīng)急鋼桁梁穩(wěn)定性研究[J].鐵道學(xué)報(bào),2022,44(1):119-127.ZHAO Man,CHEN Shitong,SUN Zhixing,et al.Study on stability of new long-span railway emergency steel truss girder[J].Journal of the China Railway Society,2022,44(1):119-127.
[5]趙曼,陳士通,孫志星,等.128 m大跨度鐵路應(yīng)急鋼桁梁極限荷載[J].中國(guó)鐵道科學(xué),2021,42(5):85-93.ZHAO Man,CHEN Shitong,SUN Zhixing,et al.Ultimate load of 128m large span railway emergency steel truss girder[J].China Railway Science,2021,42(5):85-93.
[6]施洲,張勇,張育智,等.大跨度鐵路下承式鋼桁梁柔性拱橋穩(wěn)定性研究[J].中國(guó)鐵道科學(xué),2019,40(4):52-58.SHI Zhou,ZHANG Yong,ZHANG Yuzhi,et al.Study on stability of long-span railway through bridge with steel truss girder and flexible arch[J].China Railway Science,2019,40(4):52-58.
[7]施洲,張曉珂,楊仕力,等.大跨度鐵路鋼桁梁柔性拱橋極限承載能力研究[J].鐵道工程學(xué)報(bào),2018,35(5):30-35.SHI Zhou,ZHANG Xiaoke,YANG Shili,et al.Research on the ultimate bearing capacity of the railway long-span steel-truss bridge stiffened by flexible arch[J].Journal of Railway Engineering Society,2018,35(5):30-35.
[8]夏正春.大跨度鋼桁梁柔性拱橋穩(wěn)定性能研究[J].鐵道標(biāo)準(zhǔn)設(shè)計(jì),2017,61(6):73-76.XIA Zhengchun.Study on stability of large-span continuous steel-truss bridge stiffened by flexible arch[J].Railway Standard Design,2017,61(6):73-76.
[9]趙雷,齊欣,鄭騰虎,等.初始幾何缺陷對(duì)跨層平面桁架穩(wěn)定承載力的影響[J/OL].建筑鋼結(jié)構(gòu)進(jìn)展:1-8[2022-03-30].ZHAO Lei,QI Xin,ZHENG Tenghu,et al.Influence of initial geometric imperfection on the stability bearing capacity of a cross-layer plane truss[J/OL].Progress in Steel Building Structures:1-8[2022-03-30].
[10]鄧海,許宏偉.車輛荷載作用下的裝配式鋼桁架橋應(yīng)力分析與試驗(yàn)研究[J].兵器裝備工程學(xué)報(bào),2020,41(12):127-131.DENG Hai,XU Hongwei.Stress analysis of fabricated steel truss bridge under vehicle load with numerical calculation and experimental research[J].Journal of Ordnance Equipment Engineering,2020,41(12):127-131.
[11]張明,谷任奇,童萬(wàn)波.桁架結(jié)構(gòu)彈塑性屈曲承載力計(jì)算方法[J].哈爾濱工程大學(xué)學(xué)報(bào),2020,41(9):1281-1286.ZHANG Ming,GU Renqi,TONG Wanbo.A new method for calculating the elastoplastic buckling strength of simple truss structures[J].Journal of Harbin Engineering University,2020,41(9):1281-1286.
[12]ZHANG T Y,LI M,LEI Y F,et al.Flutter stability of long-span bridges with plate-truss separated and composite girders:Comparative study[J].Journal of Bridge Engineering,2022,27(5):9.
[13]趙人達(dá),張雙洋.橋梁頂推法施工研究現(xiàn)狀及發(fā)展趨勢(shì)[J].中國(guó)公路學(xué)報(bào),2016,29(2):32-43.ZHAO Renda,ZHANG Shuangyang.Research status and development trend on incremental launching construction of bridges[J].China Journal of Highway and Transport,2016,29(2):32-43.
[14]CHACN R,URIBE N,OLLER S.Numerical validation of the incremental launching method of a steel bridge through a small-scale experimental study[J].Experimental Techniques,2016,40(1):333-346.
[15]梁崇雙.公鐵兩用三主桁連續(xù)鋼桁梁頂推施工新技術(shù)[J].鐵道工程學(xué)報(bào),2021,38(3):41-47.LIANG Chongshuang.The new incremental launching construction craftsmanship of continuous steel truss girder with three main trusses for both highway and railway[J].Journal of Railway Engineering Society,2021,38(3):41-47.
[16]王盛銘,董勤軍,彭志輝.甌江北口大橋北引橋鋼-混組合梁施工及控制關(guān)鍵技術(shù)[J].公路,2021,66(1):175-179.WANG Shengming,DONG Qinjun,PENG Zhihui.Key techniques for construction and control of steel-mixed composite beams of north approach bridge of oujiang beikou bridge[J].Highway,2021,66(1):175-179.
[17]DING S H,F(xiàn)ANG J,ZHANG S L,et al.A construction technique of incremental launching for a continuous steel truss girder bridge with suspension cable stiffening chords[J].Structural Engineering International,2021,31(1):93-98.
[18]冀偉,邵天彥.多跨連續(xù)梁橋頂推施工雙導(dǎo)梁的優(yōu)化分析[J].浙江大學(xué)學(xué)報(bào)(工學(xué)版),2021,55(7):1289-1298.JI Wei,SHAO Tianyan.Optimization analysis of double launching noses during launching construction of multi-span continuous girder bridge[J].Journal of Zhejiang University(Engineering Science),2021,55(7):1289-1298.
[19]王金良,陳士通,陳樹禮,等.軸線偏移對(duì)多跨鋼桁梁頂推施工應(yīng)力影響分析[J].鐵道標(biāo)準(zhǔn)設(shè)計(jì),2020,64(11):86-90.WANG Jinliang,CHEN Shitong,CHEN Shuli,et al.Analysis of the influence of axis deviation on the stress of multi-span steel truss girder during pushing construction[J].Railway Standard Design,2020,64(11):86-90.
[20]時(shí)曉曄,梁巖,萬(wàn)德坤,等.橋梁頂推施工導(dǎo)梁屈曲分析及加固措施研究[J].鄭州大學(xué)學(xué)報(bào)(工學(xué)版),2021,42(5):74-78.SHI Xiaoye,LIANG Yan,WAN Dekun,et al.Buckling analysis of guide beams in bridge jacking construction and study on reinforcement measures[J].Journal of Zhengzhou University(Engineering Science),2021,42(5):74-78.
[21]閆紓梅.鋼桁梁斜拉橋主梁施工期結(jié)構(gòu)穩(wěn)定性分析[J].公路工程,2019,44(6):140-146.YAN Shumei.Research on aerostatic stability and flutter characteristics of steel truss girder cable-stayed bridge in the mountainous area[J].Highway Engineering,2019,44(6):140-146.
[22]張崗,賀拴海,宋超杰,等.鋼結(jié)構(gòu)橋梁抗火研究綜述[J].中國(guó)公路學(xué)報(bào),2021,34(1):1-11.ZHANG Gang,HE Shuanhai,SONG Chaojie,et al.Review on fire resistance of steel structural bridge girders[J].China Journal of Highway and Transport,2021,34(1):1-11.
[23]張崗,宋超杰,李徐陽(yáng),等.碳?xì)浠馂?zāi)下鋼-混組合梁破壞試驗(yàn)研究[J].中國(guó)公路學(xué)報(bào),2022,35(6):135-146.ZHANG Gang,SONG Chaojie,LI Xuyang,et al.Experimental study on failure of steel-concrete composite bridge girders under hudrocarbon fire expose conditions[J].China Journal of Highway and Transport,2022,35(1):210-221.
[24]ZHANG Gang,KODUR V K,SONG Chaojie,et al.A numerical method for evaluating fire resistance of composite box bridge girders[J].Journal of Constructional Steel Research,2020,165:105823.
[25]SONG Chaojie,ZHANG Gang,LI Xuyang,et al.Experimental study on failure mechanism of steel-concrete composite bridge girders under fuel fire exposure[J].Engineering Structure,2021,247:113230.
[26]ZHANG Gang,ZHAO Xiaocui,LU Zelei,et al.Review and discussion on fire behavior of bridge girders[J].Journal of Traffic and Transportation Engineering(English Edition),2022,9(3):422-446.
[27]李徐陽(yáng),張崗,宋超杰,等.復(fù)雜環(huán)境下連續(xù)彎鋼箱梁耐火性能提升方法[J].中國(guó)公路學(xué)報(bào),2022,35(6):192-204.LI Xuyang,ZHANG Gang,SONG Chaojie,et al.Methods for improving five resistance of continuous curved steel box bridge girders exposed to complex environments[J].China Journal of Highway and Transport,2022,35(6):192-204.