国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

蝦肝腸胞蟲感染對脊尾白蝦腸道菌群的影響*

2022-06-15 02:31段健誠胡吉卉沈宇航鄧高威張慶起
漁業(yè)科學進展 2022年3期
關鍵詞:菌門弧菌聚類

段健誠 胡吉卉 沈宇航 鄧高威 高 威 牟 華,2,3 張慶起 高 煥,2,3

蝦肝腸胞蟲感染對脊尾白蝦腸道菌群的影響*

段健誠1胡吉卉1沈宇航1鄧高威1高 威1牟 華1,2,3張慶起4高 煥1,2,3①

(1. 江蘇海洋大學海洋科學與水產(chǎn)學院 江蘇省海洋生物技術重點實驗室 江蘇 連云港 222005; 2. 江蘇省海洋生物產(chǎn)業(yè)技術協(xié)同創(chuàng)新中心 江蘇 連云港 222005;3. 江蘇省農(nóng)業(yè)種質資源保護與利用平臺 江蘇 南京 210014;4. 連云港贛榆佳信水產(chǎn)開發(fā)有限公司 江蘇 連云港 222100)

為探究蝦肝腸胞蟲(, EHP)感染對脊尾白蝦()腸道菌群的影響,本研究基于16S rRNA基因的測序結果,對感染EHP的脊尾白蝦腸道菌群進行了分析。結果顯示,感染蝦與健康蝦腸道菌群差異較大,且其腸道菌群結構多樣性顯著低于健康蝦。研究發(fā)現(xiàn),病蝦中歸屬于變形菌門(Proteobacteria)的脫硫弧菌科(Desulfovibrionaceae)、弧菌科(Vibrionaceae)、未分類藍細菌科(unidentified Cyanobacteria)、支原體科(Mycoplasmataceae)和未分類α變形菌科(unidentified Alphaproteobacteria)為優(yōu)勢菌,而歸屬于厚壁菌門(Firmicutes)的乳桿菌科(Lactobacillaceae)、雙歧桿菌科(Bifidobacteriaceae)、芽孢桿菌科(Bacillaceae)及噬幾丁質桿菌科(Chitinophagaceae)細菌在健康蝦中占據(jù)優(yōu)勢地位。EHP侵蝕導致感染蝦腸道內潛在致病菌顯著增加(<0.05),增加了其他疾病的易感性。此外,通過Tax4Fun功能預測,發(fā)現(xiàn)感染蝦腸道菌群主要用于新陳代謝,從而抵抗EHP侵染,維持機體正常功能;健康蝦腸道菌群則多用于個體生長與環(huán)境信息處理,進而保證生長與存活。本研究從蝦腸道菌群結構方面入手,進一步探究了EHP感染對脊尾白蝦腸道菌群的影響,以期為EHP的防治提供幫助。

蝦肝腸胞蟲;脊尾白蝦;腸道菌群多樣性;功能預測

腸道微生物在對蝦生長發(fā)育過程中發(fā)揮調控宿主營養(yǎng)代謝與抵抗病原菌侵染的作用,同時對其免疫功能也有重要影響(Rungrassamee, 2016)。而病原微生物的侵染則會破壞腸道菌群結構,使其功能失常,從而引發(fā)其他疾病。研究表明,腸道菌群結構及其代謝物的改變與甲殼類的生長和疾病有著密切聯(lián)系,不同生長階段和不同健康狀態(tài)的蝦體腸道菌群豐度與多樣性存在一定差異,健康蝦的腸道菌群多樣性顯著高于病蝦(Xiong, 2015; Zheng, 2016; Gao2019)。

脊尾白蝦()是我國池塘單養(yǎng)和蝦蟹混養(yǎng)模式常見的一種小型經(jīng)濟蝦類,主要分布于黃渤海海域的淺海近岸水域,具有廣溫廣鹽、環(huán)境適應性強、繁殖能力強、生長快等優(yōu)點(Zhang, 2015)。然而,隨著高密度養(yǎng)殖模式與混合養(yǎng)殖模式的發(fā)展,病害的發(fā)生呈上升趨勢,嚴重制約了蝦蟹混養(yǎng)等養(yǎng)殖模式(Xu, 2010; 李新蒼等, 2012; 王元等, 2013)。蝦肝腸胞蟲(, EHP)是一種高傳染性細胞內寄生的微孢子蟲,主要寄生于蝦的肝胰腺和腸道中,可通過攝取宿主細胞內的ATP進行繁殖(Santhoshkumar, 2017; Boakye, 2017; Aranguren, 2017; 程東遠等, 2018)。EHP孢子肉眼不可見,感染EHP的個體前期無明顯的感染癥狀,患病后期可發(fā)現(xiàn)群體內病蝦體型大小不一,總體生長遲緩甚至停止生長(劉雅梅等, 2017; Singh, 2018)。近年來,在脊尾白蝦養(yǎng)殖過程中也有發(fā)現(xiàn)EHP感染,對脊尾白蝦養(yǎng)殖業(yè)造成了一定的損失。

研究健康蝦和病蝦腸道菌群結構之間的差異及功能有助于闡明疾病的致病機理,指示宿主的健康狀態(tài)(郁維娜等, 2018)。利用高通量測序技術對病蝦的腸道微生物和免疫基因分析,可以從生物學角度對腸道菌群結構、免疫應答以及蝦體生長之間的相互作用機制進行闡釋(Zhou, 2019)。蔣葛等(2019)研究表明,患有急性肝胰腺壞死病(acute hepatopancreatic necrosis disease, AHPND)的凡納濱對蝦()腸道菌群結構單一,弧菌屬細菌在病蝦腸道中占據(jù)優(yōu)勢地位。本研究擬采用Illumina MiSeq高通量測序技術,對感染EHP的脊尾白蝦與健康蝦腸道菌群進行16S rRNA基因測序,比較其腸道菌群結構多樣性與群落差異,并利用Tax4Fun對腸道群落功能進行預測,進一步探究EHP感染對脊尾白蝦腸道菌群的影響,以期為EHP的防治提供幫助。

1 材料與方法

1.1 樣品采集與EHP人工感染

健康蝦取自江蘇省南通市如東縣養(yǎng)殖池塘,體長為(4.5±0.3) cm,體重為(1.3±0.3) g。運回實驗室后,隨機選取3尾,利用巢式PCR方法檢測是否感染EHP,在水溫24℃、鹽度28、pH 7.9±0.2的條件下暫養(yǎng)1周。暫養(yǎng)期間連續(xù)曝氣,每日按體重的5%投喂2次人工配合飼料(海大集團海龍牌),并及時清除殘餌和排泄物,暫養(yǎng)結束后饑餓24 h。

隨機抽取60尾健康個體用于人工感染,健康組與感染組各30尾分別置于50 L的塑料箱中,水溫為24℃,鹽度為28,pH為7.9±0.2,感染期間連續(xù)曝氣。健康組正常投喂人工配合飼料,感染組投喂新鮮的EHP病蝦肝胰腺及肌肉組織。病蝦來源于實驗室擴大培養(yǎng)的感染EHP脊尾白蝦,體長為(4.8± 0.5) cm,體重為(1.7±0.6) g,投喂前將病蝦腸道去除,剪碎肝胰腺和肌肉組織,并充分混勻,按體重的5%每日投喂2次,投喂2 h后及時清理殘餌及糞便。每隔2 d換水1次,換水量為總量的1/3。連續(xù)感染10 d后,隨機選取健康蝦與感染蝦各9尾,在無菌環(huán)境下用無菌刀片與鑷子分別取其肝胰腺和腸道組織,3尾蝦組織混為1個樣品,共3個平行,肝胰腺樣品用于PCR檢測,腸道樣品用于高通量測序,樣品置于–80℃保存?zhèn)溆谩?/p>

1.2 EHP巢式PCR檢測

取25 mg蝦肝胰腺組織,按照Ezup柱式動物基因組DNA抽提試劑盒[生工生物工程(上海)股份有限公司]說明書進行DNA抽提,DNA洗脫溶解后于–20℃保存。

根據(jù)GenBank KF362130.1設計巢式PCR引物(外引物:EX-F: AAA AGC CAT TGA GTT TGT TG, EX-R: TTG CCT TCT CCC TCC TGT; 內引物:In-F: TAG CGG AAC GGA TAG GGA, In-R: CCA GCA TTG TCG GCA TAG) (已驗證特異性);PCR反應體系(南京諾唯贊)為10 μL,包含3.8 μL ddH2O、5 μL 2×Mix Ⅱ、EX-F/In-F和EX-R/In-R各0.4 μL、0.4 μL DNA。PCR反應程序:94℃預變性5 min,94℃ 45 s、55℃ 45 s、72℃ 1 min,共35個循環(huán),最后72℃延伸7 min。第2輪PCR模板為第1輪產(chǎn)物,體系和程序與第1輪相同。PCR產(chǎn)物用1%瓊脂糖凝膠電泳檢測,送生工生物工程(上海)股份有限公司進行序列測定。

1.3 腸道總DNA提取與PCR擴增

采用CTAB法提取健康蝦(J組)和感染蝦(G組)腸道總DNA,之后用1%瓊脂糖凝膠電泳與分光光度計檢測DNA純度與濃度,將樣品用無菌水稀釋至1 ng/μL作DNA模板,用Phusion?High-Fidelity PCR Master Mix with GC Buffer (New England Biolabs)和高效高保真酶,PCR擴增引物為:515-F (5′-GTG CCA GCM CCG CGG TAA-3′)和806-R (5′-GGA CTA CHV GGG TWT CTA AT-3′)。所得PCR產(chǎn)物用2%瓊脂糖凝膠電泳檢測,采用QIAquick膠回收試劑盒(QIAGEN, 德國)回收目的條帶。

1.4 上機測序與測序數(shù)據(jù)處理

使用TruSeq DNA PCR-Free Sample Preparation Kit (Illumina)構建文庫,文庫質檢合格后使用NovaSeq 6000進行上機測序(北京諾禾致源生物信息科技有限公司)。對下機數(shù)據(jù)使用FLASH (V1.2.7, http://ccb.jhu. edu/software/FLASH/)對樣品的reads進行拼接、過濾,得到高質量Tags,參照QIIME (quantitative insights into microbial ecology, V1.7.0, http://qiime.org/)流程對Tags進行質控,去除嵌合體序列后得到有效數(shù)據(jù)(Caporaso, 2010)。

1.5 OTU聚類注釋與多樣性分析

利用Uparse軟件(V7.0.1001, http://www.drive5. com)對樣品的全部Tags以97%的一致性將序列聚類成OTUs (operational taxonomic units)(Haas, 2011)。根據(jù)聚類結果,篩選出OTUs中出現(xiàn)頻率最高的序列尾代表序列,參考Mothur方法與SILVA132 (http://www.arb-silva.de/)的SSUrRNA數(shù)據(jù)庫進行物種注釋分析(設定閾值為0.8~1) (Wang, 2007; Edgar, 2013)。

利用QIIME (V1.9.1)軟件計算Observed-OTUs、Chao1、Shannon、Simpson和ACE等指數(shù),使用R (V2.15.3)軟件繪制稀釋曲線和Rank abundance曲線,并進行Alpha多樣性和Beta多樣性指數(shù)組間差異分析。

1.6 腸道菌群功能預測

采用Tax4Fun對腸道菌群功能進行預測,基于最小16S rRNA序列相似度的最近鄰居法實現(xiàn)。經(jīng)提取KEGG數(shù)據(jù)庫原核生物全基因組16S rRNA基因序列與SILVA SSU Ref NR數(shù)據(jù)庫進行比對并建立數(shù)據(jù)庫,將KEGG數(shù)據(jù)庫原核生物全基因組功能信息通過UProC和PAUDA兩種方法進行注釋并對應到SILVA數(shù)據(jù)庫中,實現(xiàn)SILVA數(shù)據(jù)庫功能注釋。隨后以SILVA數(shù)據(jù)庫序列為參考序列聚類出OTU,進而獲取功能注釋信息(A?hauer, 2015)。

2 結果與分析

2.1 EHP感染檢測結果

對健康蝦與感染蝦進行巢式PCR檢測,PCR產(chǎn)物經(jīng)1%瓊脂糖凝膠電泳驗證(圖1),膠回收產(chǎn)物測序后通過GenBank BLAST同源檢索分析,結果與GenBank KF362130.1序列一致。

圖1 樣品EHP檢測

M:DL 2000 DNA分子量標準;1:陰性對照; 2~4:健康蝦;5:陽性對照;6~8:感染蝦

M: DL 2000 DNA marker; 1: Negative control; 2~4: Healthy shrimp; 5: Positive control; 6~8: Diseased shrimp

2.2 腸道菌群結構分析

實驗蝦腸道微生物樣品在97%的相似性水平上共獲得2314個OTUs (472 451個reads)。歸屬于35個門、55個綱、122個目、233個科、542個屬、318個種。如圖2a所示,感染蝦中主要菌群為變形菌門(Proteobacteria)、厚壁菌門(Firmicutes)、軟壁菌門(Tenericutes)、擬桿菌門(Bacteroidetes)和放線菌門(Actinobacteria),其相對豐度分別為92.64%、2.39%、1.88%、0.88%和0.24%,占細菌總量的98%。感染蝦中變形菌門與擬桿菌門豐度顯著高于健康蝦(<0.05),而厚壁菌門、擬桿菌門和放線菌門豐度顯著低于健康蝦(<0.05)。

如圖2b和圖2c所示,感染蝦中優(yōu)勢菌為勞森菌屬()、發(fā)光桿菌屬()、未分類α變形菌屬(unidentified Alphaproteobacteria)、不動桿菌屬()和沙雷氏菌屬()等,主要歸屬于脫疏弧菌科(Desulfovibrionaceae)、弧菌科(Vibrionaceae)、莫拉式菌科(Moraxellaceae)和腸桿菌科(Enterobacteriaceae),分別歸屬于變形菌門和厚壁菌門。感染蝦中變形菌門豐度顯著高于健康蝦(<0.05),而厚壁菌門豐度則顯著低于健康蝦(<0.05)。

根據(jù)所有樣本在科水平的物種注釋及豐度信息,選取豐度排名前35的科,根據(jù)其在每個樣本中的豐度信息,從物種和樣本2個層面進行聚類,繪制成熱圖(圖3),感染蝦共有5個優(yōu)勢菌科,健康蝦共有30個優(yōu)勢菌科,分別歸屬于7個門。健康蝦的30個優(yōu)勢菌科中共有4個潛在益生菌科,分別是乳桿菌科(Lactobacillaceae)、雙歧桿菌科(Bifidobacteriaceae)、芽孢桿菌科和噬幾丁質桿菌科(Chitinophagaceae)。感染蝦中5個優(yōu)勢菌科分別是脫硫弧菌科、弧菌科、未分類藍細菌科(unidentified Cyanobacteria)、支原體科(Mycoplasmataceae)和未分類α變形菌科(unidentified Alphaproteobacteria)。

圖2 健康蝦與感染蝦腸道主要細菌物種相對豐度(n=3,±SD)

a:細菌門水平上物種相對豐度;b:細菌科水平上物種相對豐度;c:細菌屬水平上物種相對豐度

a: Relative abundance of species at bacterial phylum level; b: Relative abundance of species at bacterial family level; c: Relative abundance of species at bacterial genus level

2.3 腸道菌群結構多樣性分析

對不同樣品在97%一致性閾值下的多樣性分析指數(shù)進行統(tǒng)計分析(表1),結果顯示,樣品覆蓋率大于99%。對Shannon指數(shù)、Simpson指數(shù)、Chao1指數(shù)和ACE指數(shù)進行比較,感染組各指數(shù)均低于健康組,通過分析比較可以發(fā)現(xiàn),感染組個體的腸道菌群多樣性顯著低于健康蝦(<0.05)。

稀釋曲線和等級聚類曲線可反映測序數(shù)據(jù)量的合理性,直觀反映樣品中物種的豐富度和均勻度(Lundberg, 2013)。圖4a為樣品稀釋曲線,由圖4a可見,稀釋曲線趨于平緩,說明測序數(shù)據(jù)合理。圖4b為樣品等級聚類曲線,曲線越寬說明樣品豐富度越高,越平坦說明樣品分布越均勻。由圖4b可見,與感染蝦相比,健康蝦的曲線更寬、更平緩。這與α多樣性分析結果一致,可見感染蝦腸道菌群多樣性與豐富度顯著低于健康蝦(<0.05)。

2.4 腸道菌群功能預測

功能注釋聚類熱圖(Level 1)的結果顯示(圖5),健康蝦腸道菌群的主要功能包括細胞過程、未分類、環(huán)境信息處理、有機系統(tǒng)等,感染蝦腸道菌群的主要功能包括新陳代謝、人類疾病和遺傳信息處理。-test檢驗結果顯示,二組之間并無顯著性差異(>0.05)。

3 討論

3.1 蝦腸道菌群結構分析

腸道菌群在蝦體健康生長發(fā)育與非特異性免疫調控過程中扮演重要角色,可促進蝦體對營養(yǎng)的吸收及新陳代謝,為其抵抗病害侵襲提供屏障(Nie, 2017; Libertucci, 2018)。研究表明,凡納濱對蝦腸道菌群中豐度較高的菌群為變形菌門、擬桿菌門和厚壁菌門,主要包括弧菌屬()、假單胞菌屬()、擬桿菌屬()和藍細菌(Cyanobacteria)等,同時與蝦體不同健康狀況有關(Zheng, 2016; Landsman, 2019; Zeng, 2020),這與本研究結果相似。本研究中,感染蝦與健康蝦腸道菌群豐度差異較大,感染蝦腸道優(yōu)勢菌多歸屬于變形菌門與擬桿菌門,其豐度顯著高于健康蝦,而健康蝦中厚壁菌門豐度則顯著高于感染蝦。研究發(fā)現(xiàn),脊尾白蝦腸道優(yōu)勢菌群為變形菌門和厚壁菌門,其中豐度較高的有假單胞菌屬、腸桿菌屬()、弧菌屬、赤桿菌屬()等(沈輝等, 2015)。本研究中,弧菌科(變形菌綱)豐度在感染蝦中屬于優(yōu)勢菌,弧菌病可對蝦類產(chǎn)生較大的傷害,破壞其組織器官,造成非特異性免疫與代謝功能下降,導致大量死亡(Khimmakthong, 2017)。

圖3 健康蝦與感染蝦物種豐度聚類圖(科水平)(n=3,±SD)

Tab.1 Alpha diversity indices table (n=3;±SD)

Xiong等(2014)研究表明,從科水平上可簡單有效對蝦體健康進行預測。本研究對科水平OTUs分類熱圖進行分析,發(fā)現(xiàn)感染蝦中優(yōu)勢潛在致病菌為脫硫弧菌科、弧菌科、未分類藍細菌科、支原體科和未命名α_變形菌科,其弧菌科豐度顯著高于健康蝦(<0.05),可能是EHP的侵染破壞了蝦腸道菌群結構,益生菌群的抑菌功能遭破壞,以至于致病菌群占據(jù)優(yōu)勢,增加了弧菌病的發(fā)病幾率(Zokaeifar, 2014; Santhoshkumar, 2017; Aranguren, 2017)。健康蝦中的乳桿菌科、芽孢桿菌科、雙歧桿菌科的某些屬可分泌多種胞外酶和抗菌肽,不僅可抑制致病菌繁殖,還可改善水質,提高水產(chǎn)動物的非特異性免疫(Zokaeifar, 2014; Lugli, 2017)。因此,推測在EHP感染初期向養(yǎng)殖水體或飼料中添加這些益生菌有望減緩或抑制EHP的傳播(寧梓健等, 2020)。

圖4 健康蝦與感染蝦樣品物種多樣性曲線(n=3,±SD)

a:樣品稀釋曲線;b:等級聚類曲線

a: Rarefaction curve of sample; b: Rank abundance of sample

圖5 Tax4Fun功能注釋聚類熱圖(Level 1)(n=3,±SD)

3.2 腸道微生物多樣性分析

Zhou (2019)研究發(fā)現(xiàn),“棉花狀”的凡納濱對蝦腸道與健康蝦腸道中優(yōu)勢菌群分屬于變形菌門、軟壁菌門和擬桿菌門,健康蝦腸道菌群多樣性顯著高于病蝦組,與本研究結果相似。吳金鳳等(2016)通過高通量測序技術對凡納濱對蝦腸道及養(yǎng)殖水體進行檢測,同樣發(fā)現(xiàn)健康蝦腸道微生物多樣性顯著高于病蝦。在本研究中,受EHP感染的個體腸道微生物多樣性顯著低于健康個體,表明EHP的侵染對脊尾白蝦腸道菌群多樣性造成了一定的影響。EHP多和其他疾病共同發(fā)現(xiàn),腸道菌群結構遭到破壞后,變形菌門豐度顯著增加,厚壁菌門豐度顯著降低,導致潛在致病菌暴發(fā)幾率增加,感染蝦更容易暴發(fā)弧菌病等疾病(Aranguren, 2017)。

蝦腸道菌群多樣性關系到蝦體腸道群落生態(tài)功能穩(wěn)定性,多樣性越高說明腸道菌群越穩(wěn)定,抗病能力越強(金若晨等, 2020)。本研究中,健康蝦腸道內也存在多種潛在致病菌,但并沒有出現(xiàn)患病癥狀,這與健康蝦腸道菌群結構有一定關聯(lián)。通過物種稀釋曲線與等級聚類曲線可以看出,健康蝦腸道菌群多樣性更高,這與Shannon-Wiener指數(shù)和Simpson指數(shù)等多樣性指數(shù)所表達的結果也一致。因此,健康蝦腸道菌群結構更為完整,對致病菌的抑制能力更強。

3.3 腸道功能預測

蝦體感染EHP后群體間個體差異較大,出現(xiàn)生長緩慢甚至停止生長的現(xiàn)象。通過Tax4Fun功能預測,發(fā)現(xiàn)感染蝦的腸道主要功能為新陳代謝和人類疾病,可能由于感染蝦分配更多的能量用于抵抗EHP的侵染和其他疾病,減少了用于生長相關的能量;而從健康蝦的功能預測中可以看出,其將更多的能量用于生長和對環(huán)境的適應,從而保證安全存活與繁殖(Zhou, 2019)。

4 結論

綜上所述,健康蝦與感染EHP蝦的腸道菌群差異較大,其中感染蝦腸道菌群結構多樣性顯著低于健康蝦。通過16S rRNA基因測序分析,發(fā)現(xiàn)病蝦中歸屬于變形菌門的脫硫弧菌科、弧菌科、未分類藍細菌科、支原體科和未分類α變形菌科為優(yōu)勢菌,而歸屬于厚壁菌門的乳桿菌科、雙歧桿菌科、芽孢桿菌科和噬幾丁質菌科細菌在健康蝦中占據(jù)優(yōu)勢地位。由此可見,EHP的侵蝕破壞了脊尾白蝦腸道菌群結構,導致潛在致病菌豐度增加。

ARANGUREN L F, HAN J E, TANG K F J.(EHP) is a risk factor for acute hepatopancreatic necrosis disease (AHPND) and septic hepatopancreatic necrosis (SHPN) in the Pacific white shrimp. Aquaculture, 2017, 471: 37–42

A?HAUER K P, WEMHEUER B, DANIEL R,. Tax4Fun: Predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics, 2015, 31(17): 2882–2884

BOAKYE D W, JAROENLAK P, PRACHUMWAT A,. Decay of the glycolytic pathway and adaptation to intranuclear parasitism within Enterocytozoonidae microsporidia. Environmental Microbiology, 2017, 19(5): 2077–2089

CAPORASO J G, KUCZYNSKI J, STOMBAUGH J,. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 2010, 7(5): 335–336

CHENG D Y, QIU L, SONG Z L,. Differences between populations and tissues ofinfected with. Progress in Fishery Sciences, 2018, 39(4): 83–92 [程東遠, 邱亮, 宋增磊, 等. 凡納濱對蝦感染蝦肝腸胞蟲的群體及組織間差異性分析. 漁業(yè)科學進展, 2018, 39(4): 83–92]

EDGAR R C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 2013, 10(10): 996–998

GAO S, PAN L Q, HUANG F,. Metagenomic insights into the structure and function of intestinal microbiota of the farmed Pacific white shrimp (). Aquaculture, 2019, 499: 109–118

HAAS B J, GEVERS D, EARL A M,. Chimeric 16S rRNA sequence formation and detection in Sanger and 454- pyrosequenced PCR amplicons. Genome Research, 2011, 21(3): 494–504

JIANG G, SHEN H, WAN X H,. Difference analysis of intestinal flora between healthyand acute hepatopancreatic necrosis syndrome. Jiangsu Journal of Agricultural Sciences, 2019, 35(1): 142–148 [蔣葛, 沈輝, 萬夕和, 等. 凡納濱對蝦急性肝胰腺壞死綜合癥病蝦與健康蝦腸道優(yōu)勢菌群比較分析. 江蘇農(nóng)業(yè)學報, 2019, 35(1): 142–148]

JIN R C, JIANG M, SUN S Y,. Microbial community in theintestine and its aquaculture environment. Journal of Fisheries of China, 2020, 44(12): 2037–2054 [金若晨, 江敏, 孫世玉, 等. 凡納濱對蝦養(yǎng)殖環(huán)境及腸道微生物群落特征分析. 水產(chǎn)學報, 2020, 44(12): 2037–2054]

KHIMMAKTHONG U, SUKKARUN P. The spread ofin tissues of the Pacific white shrimpanalyzed by PCR and histopathology. Microbial Pathogenesis, 2017, 113: 107–112

LANDSMAN A, ST-PIERRE B, ROSALES-LEIJA M,. Impact of aquaculture practices on intestinal bacterial profiles of Pacific whiteleg shrimp. Microorganisms, 2019, 7(4): 93

LI X C, ZHOU J F, FANG W H,. Development and application of an economical real-time PCR for WSSV detection and quantification in ridgetail white prawns (). Journal of Fisheries of China, 2012, 36(10): 1554–1562 [李新蒼, 周俊芳, 房文紅, 等. 實用WSSV定量檢測方法的建立及其應用于脊尾白蝦病毒感染規(guī)律的研究. 水產(chǎn)學報, 2012, 36(10): 1554–1562]

LIBERTUCCI J, YOUNG V B. The role of the microbiota in infectious diseases. Nature Microbiology, 2018, 4(1): 35–45

LIU Y M, QIU L, CHENG D Y,. The relationship of body length and weight in thepopulations detectedProgress in Fishery Sciences, 2017, 38(4): 96–103 [劉雅梅, 邱亮, 程東遠, 等. 檢出蝦肝腸胞蟲()的凡納濱對蝦()群體的體長和體重關系. 漁業(yè)科學進展, 2017, 38(4): 96–103]

LUGLI G A, MILANI C, TURRONI F,. Comparative genomic and phylogenomic analyses of the Bifidobacteriaceae family. BMC Genomics, 2017, 18: 568

LUNDBERG D S, YOURSTONE S, MIECZKOWSKI P,. Practical innovations for high-throughput amplicon sequencing. Nature Methods, 2013, 10(10): 999–1002

NIE L, ZHOU Q J, QIAO Y,. Interplay between the gut microbiota and immune responses of ayu () duringinfection. Fish and Shellfish Immunology, 2017, 68: 479–487

NING Z J, JIANG H B, LIU Q,. Genome-wide prediction and analysis of secreted proteins of. Progress in Fishery Sciences, 2020, 41(6): 165–173 [寧梓健, 姜宏波, 劉琦, 等. 蝦肝腸胞蟲全基因組分泌蛋白的預測分析. 漁業(yè)科學進展, 2020, 41(6): 165–173]

RUNGRASSAMEE W, KLANCHUI A, MAIBUNKAEW S,. Bacterial dynamics in intestines of the black tiger shrimp and the Pacific white shrimp duringexposure. Journal of Invertebrate Pathology, 2016, 133: 12–19

SANTHOSHKUMAR S, SIVAKUMAR S, VIMAL S,. Biochemical changes and tissue distribution of(EHP) in naturally and experimentally EHP-infected whiteleg shrimp,(Boone, 1931), in India. Journal of Fish Diseases, 2017, 40(4): 529–539

SHEN H, WAN X H, HE P M,. Bacterial community structure in the intestine ofHolehuis. Microbiology, 2015, 42(10): 1922–1928 [沈輝, 萬夕和, 何培民, 等. 脊尾白蝦腸道微生物菌群結構. 微生物學通報, 2015, 42(10): 1922–1928]

SINGH M, SINGH P.: A microsporidian in the midst of serious threat to shrimp aquaculture. Journal of Entomology and Zoology Studies, 2018, 6(6): 936–939

WANG Q, GARRITY G M, TIEDJE J M,. Na?ve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 2007, 73(16): 5261–5267

WANG Y, FANG W H, ZHOU J F,. Pathogenic and pathological analysis of the muscular microsporidiasis of. Journal of Shanghai Ocean University, 2013, 22(5): 726–733 [王元, 房文紅, 周俊芳, 等. 脊尾白蝦肌肉微孢子蟲病的病原和病理分析. 上海海洋大學學報, 2013, 22(5): 726–733]

WU J F, XIONG J B, WANG X,. Intestinal bacterial community is indicative for the healthy status of. Chinese Journal of Applied Ecology, 2016, 27(2): 611–621 [吳金鳳, 熊金波, 王欣, 等. 腸道菌群對凡納濱對蝦健康的指示作用. 應用生態(tài)學報, 2016, 27(2): 611–621]

XIONG J B, WANG K, WU J F,. Changes in intestinal bacterial communities are closely associated with shrimp disease severity. Applied Microbiology and Biotechnology, 2015, 99(16): 6911–6919

XIONG J B, ZHU J L, ZHANG D M. The application of bacterial indicator phylotypes to predict shrimp health status. Applied Microbiology and Biotechnology, 2014, 98(19): 8291–8299

XU W J, XIE J J, SHI H,. Hematodinium infections in cultured ridgetail white prawns,, in eastern China. Aquaculture, 2010, 300(1/2/3/4): 25–31

YU W N, DAI W F, TAO Z,. Characterizing the compositional and functional structures of intestinal micro-flora between healthy and diseased. Journal of Fisheries of China, 2018, 42(3): 399–409 [郁維娜, 戴文芳, 陶震, 等. 健康與患病凡納濱對蝦腸道菌群結構及功能差異研究. 水產(chǎn)學報, 2018, 42(3): 399–409]

ZENG S Z, KHORUAMKID S, KONGPAKDEE W,. Dissimilarity of microbial diversity of pond water, shrimp intestine and sediment in aquamimicry system. AMB Express, 2020, 10: 180

ZHANG C S, LI Z G, LI F H,. Effects of starvation on survival, growth and development oflarvae. Aquaculture Research, 2015, 46(9): 2289–2299

ZHENG Y F, YU M, LIU Y,. Comparison of cultivable bacterial communities associated with Pacific white shrimp () larvae at different health statuses and growth stages. Aquaculture, 2016, 451: 163–169

ZHOU L, CHEN C Z, XIE J,. Intestinal bacterial signatures of the“cotton shrimp-like”disease explain the change of growth performance and immune responses in Pacific white shrimp (). Fish and Shellfish Immunology, 2019, 92: 629–636

ZOKAEIFAR H, BABAEI N, SAAD C R,. Administration ofstrains in the rearing water enhances the water quality, growth performance, immune response, and resistance againstinfection in juvenile white shrimp,. Fish and Shellfish Immunology, 2014, 36(1): 68–74

Effect ofInfection on the Intestinal Microflora of

DUAN Jiancheng1, HU Jihui1, SHEN Yuhang1, DENG Gaowei1, GAO Wei1, MU Hua1,2,3, ZHANG Qingqi4, GAO Huan1,2,3①

(1. School of Marine Science and Fisheries, Jiangsu Ocean University, Jiangsu Key Laboratory of Marine Biotechnology, Lianyungang, Jiangsu 222005, China; 2. Jiangsu Marine Biological Industry Technology Collaborative Innovation Center, Lianyungang, Jiangsu 222005, China; 3. Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, Jiangsu 210014, China; 4. Lianyungang Ganyu Jiaxin Aquatic Products Development Co., Ltd., Lianyungang, Jiangsu 222100, China)

(EHP) is a highly infectious intracellular parasite that primarily parasitizes the hepatopancreas, intestine, and muscle of shrimp. It can reproduce by consuming ATP from the host cells, resulting in growth retardation or even growth cessation of the host and increasing individual differences within a population. In recent years, we discovered EHP infection in the breeding process ofculture, which has caused losses to theculture industry. Intestinal microorganisms, which play a very important role in the growth and development of shrimp, can regulate nutritional metabolism, resist pathogen infection, and also have an important impact on the host immune function. Therefore, it is helpful to clarify the pathogenesis of EHP by exploring the differences and functions of the intestinal microflora between healthy and diseased shrimp. To screen potential probiotics for inhibiting or slowing down the spread of EHP, this study analyzed the intestinal microflora structure of shrimp based on 16s rRNA gene sequencing, and further explored the effect of EHP infection on the intestinal microflora of. The results showed that the intestinal microflora of infected shrimp was significantly different from that of healthy individuals, and the structural diversity of the intestinal microflora was significantly lower than that of the healthy shrimp. Proteobacteria, including Desulfovibrionaceae, Vibrionaceae, unidentified Cyanobacteria, Mycoplasmataceae, and unidentified Alphaproteobacteria were the dominant bacteria in diseased shrimp, whereas Firmicutes including Lactobacillaceae, Bifidobacteria, Bacillaceae, and Chitinophagaceae were dominant in healthy shrimp. Infection with EHP significantly increased the potential pathogenic bacteria level in the intestines of the infected shrimp (<0.05), and increased their susceptibility to other diseases. In addition, through the Tax4Fun function prediction, we found that the primary function of the intestinal microflora in infected shrimp was metabolism to resist EHP infection, whereas the intestinal microflora of healthy shrimp was primarily involved in individual growth and environmental information processing to ensure growth and survival.

;; Intestinal microflora diversity; Function prediction

S917.4

A

2095-9869(2022)03-0075-09

10.19663/j.issn2095-9869.20210302001

http://www.yykxjz.cn/

段健誠, 胡吉卉, 沈宇航, 鄧高威, 高威, 牟華, 張慶起, 高煥. 蝦肝腸胞蟲感染對脊尾白蝦腸道菌群的影響. 漁業(yè)科學進展, 2022, 43(3): 75–83

DUAN J C, HU J H, SHEN Y H, DENG G W, GAO W, MU H, ZHANG Q Q, GAO H. Effect ofinfection on the intestinal microflora of. Progress in Fishery Sciences, 2022, 43(3): 75–83

GAO Huan, E-mail: huanmr@163.com

* 國家重點研發(fā)計劃(2018YFD0901302)、江蘇省海洋生物資源與環(huán)境重點實驗室開放課題基金(SH20191203)和江蘇省優(yōu)勢學科建設工程項目共同資助 [This work was supported by National Key R&D Program of China (2018YFD0901302), Open Project Fund of Jiangsu Key Laboratory of Marine Biological Resources and Environment (SH20191203), and Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)]. 段健誠,E-mail: djcemp@163.com

高 煥,教授,E-mail: huanmr@163.com

2021-03-02,

2021-04-12

(編輯 馬璀艷)

猜你喜歡
菌門弧菌聚類
銷量增長200倍!“弧菌克星”風靡行業(yè),3天殺滅98%弧菌
不同強化處理措施對銅污染土壤微生物多樣性的影響
基于數(shù)據(jù)降維與聚類的車聯(lián)網(wǎng)數(shù)據(jù)分析應用
甲酸和木醋液對苜蓿青貯細菌群落結構的影響
注意:這種菌很“要命”
羊瘤胃優(yōu)勢菌組成的Meta分析
美味海鮮為何會變成致命毒物
不同施肥模式對茶園土壤細菌多樣性的影響
基于模糊聚類和支持向量回歸的成績預測
基于密度的自適應搜索增量聚類法