邱海飛 陳銘
摘要:文章針對以往凸輪開口的形式限制和性能缺陷,在結(jié)構(gòu)創(chuàng)新、理論分析和實(shí)驗(yàn)驗(yàn)證基礎(chǔ)上,設(shè)計(jì)開發(fā)了一種采用雙軸驅(qū)動(dòng)的積極式共軛凸輪開口系統(tǒng)。利用Matlab構(gòu)建基于余弦加速運(yùn)動(dòng)規(guī)律的凸輪理論廓線,通過三維CAD建模和虛擬裝配建立功能型數(shù)字樣機(jī)。Motion仿真結(jié)果顯示:開口運(yùn)行狀態(tài)與凸輪理論廓線分段特征相匹配,擺桿和綜框的運(yùn)動(dòng)學(xué)曲線符合余弦加速運(yùn)動(dòng)規(guī)律設(shè)計(jì)預(yù)期。不同轉(zhuǎn)速下的比例模型測試實(shí)驗(yàn)表明:在凸輪提綜和回綜過程中,綜框升降平穩(wěn)、機(jī)構(gòu)運(yùn)行可靠,且紗線形變和梭口特征明顯,具有良好的開口工作效能。驗(yàn)證了設(shè)計(jì)方案的理論正確性與實(shí)踐可行性,為織機(jī)凸輪開口系統(tǒng)的設(shè)計(jì)創(chuàng)新提供了有力借鑒。
關(guān)鍵詞:織機(jī);凸輪;綜框;開口系統(tǒng);理論廓線;壓力角;仿真設(shè)計(jì);Matlab
中圖分類號(hào):TS103.1;TH122文獻(xiàn)標(biāo)志碼:A文章編號(hào): 10017003(2022)06006606
引用頁碼: 061109
DOI: 10.3969/j.issn.1001-7003.2022.06.009(篇序)
基金項(xiàng)目: 陜西省教育廳科研計(jì)劃資助項(xiàng)目(15JK2177);西京學(xué)院高層次人才專項(xiàng)基金資助項(xiàng)目(XJ20B09);西京學(xué)院橫向課題資助項(xiàng)目(2019610002001915)
作者簡介:邱海飛(1983),男,副教授,主要從事機(jī)械系統(tǒng)動(dòng)態(tài)設(shè)計(jì)、機(jī)電產(chǎn)品數(shù)字化設(shè)計(jì)研發(fā)。
凸輪開口是一種常見的開口形式,根據(jù)回綜方式的不同,可將其分為積極式和消極式兩種,目前已被廣泛應(yīng)用于現(xiàn)代高速織機(jī)[1]。相對于消極式凸輪開口系統(tǒng),以共軛凸輪為主導(dǎo)的積極式開口無需吊綜裝置,可在很大程度上提升綜框運(yùn)動(dòng)的穩(wěn)定性,具有傳動(dòng)精度高、振動(dòng)噪聲小等諸多優(yōu)點(diǎn)[2]。
傳統(tǒng)的共軛凸輪開口基本都采用同軸安裝方式,即需要在同一轉(zhuǎn)軸上安裝多對主、副凸輪,同時(shí)要求主、副凸輪與滾子之間必須始終保持接觸,這種同軸布局不僅在設(shè)計(jì)制造精度方面具有嚴(yán)格要求,而且在很大程度上限制了凸輪與滾子的接觸寬度,不利于減小凸輪的磨損和擠壓應(yīng)力[3]。本文通過對同軸共軛凸輪的結(jié)構(gòu)改造和等價(jià)轉(zhuǎn)化,實(shí)現(xiàn)了一種新型共軛凸輪開口系統(tǒng)的仿真設(shè)計(jì)和實(shí)驗(yàn)驗(yàn)證,對于改善凸輪開口系統(tǒng)的工作性能及承載條件具有重要研究意義。
1 凸輪開口系統(tǒng)構(gòu)成
共軛凸輪開口利用雙凸輪鎖合來積極地控制綜框升降運(yùn)動(dòng)。為了便于檢修與維護(hù),共軛凸輪機(jī)構(gòu)一般都安裝于織機(jī)外側(cè)[4],為采用雙軸驅(qū)動(dòng)的外置式共軛凸輪開口系統(tǒng),主要由凸輪、滾子、綜框和一系列平面桿組構(gòu)成,如圖1所示。其中,凸輪1和凸輪2具有相同的理論廓線,且在傳動(dòng)過程中滿足同速、同向條件。當(dāng)凸輪1和凸輪2以角速度ω進(jìn)行逆時(shí)針回轉(zhuǎn)時(shí),動(dòng)力通過滾子傳遞至擺桿使其作往復(fù)擺動(dòng),進(jìn)而驅(qū)動(dòng)連桿和橫桿作平面運(yùn)動(dòng),與此同時(shí),綜框在二臂桿和拉桿作用下以速度v作豎直往復(fù)運(yùn)動(dòng)。實(shí)際當(dāng)中,為保證開口系統(tǒng)正常運(yùn)行,還需對綜框添置導(dǎo)板或中間滑軌支撐,以避免綜框出現(xiàn)過大振動(dòng)或側(cè)向擠壓等不利現(xiàn)象。
由于凸輪和滾子被布置在同一平面內(nèi),因此,相對于以往同軸共軛凸輪開口,這種雙軸構(gòu)造形式可使凸輪與滾子的厚度得到明顯增大。假設(shè)同軸共軛凸輪開口中單個(gè)凸輪的厚度為d,則整個(gè)凸輪機(jī)構(gòu)的厚度為2d,如果將其等價(jià)轉(zhuǎn)化為雙軸共軛凸輪后,當(dāng)單個(gè)凸輪的設(shè)計(jì)厚度增大至1.5d時(shí),至少可節(jié)省0.5d的厚度空間。同時(shí)還能有效減小凸輪與滾子之間的接觸磨損及擠壓應(yīng)力[5],有利于延長開口凸輪的工作壽命。
2 共軛凸輪設(shè)計(jì)
2.1 綜框運(yùn)動(dòng)規(guī)律
現(xiàn)代高速織機(jī)對于綜框的結(jié)構(gòu)性能具有嚴(yán)苛要求。在實(shí)際織造生產(chǎn)工況下,為減輕織機(jī)系統(tǒng)的振動(dòng)噪聲,綜框多采用簡諧運(yùn)動(dòng)規(guī)律[6]。在此,將余弦加速運(yùn)動(dòng)規(guī)律應(yīng)用于共軛凸輪從動(dòng)件設(shè)計(jì),如式(1)(2)所示,分別為擺桿的推程和回程運(yùn)動(dòng)方程。
β1=βm21-cosπδ0δ??? (1)
β2=βm21+cosπδ′0δ??? (2)
式中:β1為擺桿推程角位移;β2為擺桿回程角位移;βm為擺桿角動(dòng)程;δ為凸輪軸轉(zhuǎn)角;δ0為推程角;δ′0為回程角。
2.2 理論廓線構(gòu)建
從動(dòng)件運(yùn)動(dòng)規(guī)律取決于凸輪的輪廓曲線,因此,可通過設(shè)計(jì)凸輪理論廓線來實(shí)現(xiàn)綜框預(yù)定運(yùn)動(dòng)規(guī)律。根據(jù)擺動(dòng)滾子從動(dòng)件凸輪機(jī)構(gòu)功能原理可知,在凸輪軸轉(zhuǎn)動(dòng)過程中,滾子中心始終位于凸輪理論廓線之上[7],所以當(dāng)凸輪軸轉(zhuǎn)過一個(gè)角度Δδ時(shí),假設(shè)與之對應(yīng)的擺桿轉(zhuǎn)角為Δβ,則此時(shí)凸輪理論廓線方程如式(3)(4)所示。
x=asin(Δδ)-Lsin(θ+Δβ+Δδ)??? (3)
y=acos(Δδ)-Lcos(θ+Δβ+Δδ)??? (4)
式中:x、y為凸輪理論廓線上任意一點(diǎn)的平面笛卡爾坐標(biāo);a為擺桿支撐點(diǎn)至凸輪1旋轉(zhuǎn)中心距離;θ為凸輪1連心線與擺桿夾;L為擺桿長度。
平紋組織由經(jīng)紗和緯紗一上一下相間交織而成,其經(jīng)點(diǎn)點(diǎn)數(shù)與緯點(diǎn)點(diǎn)數(shù)相同,是最簡單的一種織物組織。在平紋織物的一個(gè)織造循環(huán)過程中,凸輪軸轉(zhuǎn)動(dòng)一周,筘座執(zhí)行兩次打緯運(yùn)動(dòng),即每個(gè)開口循環(huán)織入兩緯緯紗。根據(jù)平紋織物織造工藝設(shè)計(jì)凸輪理論廓線,假設(shè)凸輪軸轉(zhuǎn)動(dòng)一周,與之對應(yīng)的擺桿角動(dòng)程βm為20°。在梭口形成過程中,令凸輪軸的推程轉(zhuǎn)角等于回程轉(zhuǎn)角,即δ0=δ′0=115°;令凸輪軸的遠(yuǎn)休角等于近休角,即凸輪軸的靜止轉(zhuǎn)角均為65°。EDC8AA3D-E5CA-4DB1-87D6-894B8DBF3E51
將鋼筘置于前死心位置,以開口滿開狀態(tài)為推程起始點(diǎn),當(dāng)凸輪軸轉(zhuǎn)過115°時(shí),綜框運(yùn)動(dòng)至上下極限位置處于瞬間靜止(遠(yuǎn)休階段,凸輪軸轉(zhuǎn)過65°),此時(shí)鋼筘完成一次打緯;緊接著當(dāng)凸輪軸又轉(zhuǎn)過115°回程角后,綜框再次運(yùn)動(dòng)至開口滿開位置(近休階段,凸輪軸轉(zhuǎn)過65°),此時(shí)鋼筘完成第二次打緯。
根據(jù)文獻(xiàn)[3],本文以凸輪從動(dòng)件運(yùn)動(dòng)規(guī)律和理論廓線方程為參考,當(dāng)L為72 mm、a為108 mm、θ為39.8°時(shí),利用Matlab開發(fā)編寫凸輪理論廓線設(shè)計(jì)程序,構(gòu)建如圖2所示二維笛卡爾坐標(biāo)系(x,y)下的凸輪理論輪廓曲線。在此基礎(chǔ)上,通過SolidWorks軟件接口程序轉(zhuǎn)化理論廓線坐標(biāo)數(shù)據(jù),建立三維笛卡爾坐標(biāo)系(x,y,z)下的凸輪CAD幾何模型,如圖3所示。其中,凸輪實(shí)際輪廓線是由理論廓線按照等距偏移形成的封閉曲線,具體偏移量取決于滾子半徑[8]。由Matlab程序運(yùn)行結(jié)果可知,凸輪理論廓線的最小曲率半徑ρmin為70 mm,為避免凸輪與滾子之間產(chǎn)生較大接觸應(yīng)力,應(yīng)使?jié)L子半徑r小于ρmin,即r<ρmin-3,在此設(shè)定滾子半徑r為23.5 mm。
2.3 凸輪壓力角
壓力角是影響凸輪機(jī)構(gòu)傳力特性的重要因素[9]。在凸輪軸轉(zhuǎn)動(dòng)一周過程中,凸輪理論廓線上各點(diǎn)處的壓力角變化曲線如圖4所示。分析可知,在“推程-遠(yuǎn)休-回程-近休”四個(gè)階段,壓力角曲線過渡光滑、變化平穩(wěn),其中遠(yuǎn)休和近休階段的壓力角相對較大,分別約為10.72°和9.06°,由于擺動(dòng)滾子從動(dòng)件凸輪機(jī)構(gòu)許用壓力角[α]區(qū)間在35°~45°,因此,凸輪與滾子之間具有良好的傳力特性,說明理論廓線和滾子半徑符合機(jī)構(gòu)學(xué)設(shè)計(jì)條件。
3 建模與仿真
3.1 功能樣機(jī)
在織造生產(chǎn)過程中,為實(shí)現(xiàn)綜框的高速往復(fù)運(yùn)動(dòng),凸輪1和凸輪2一般采用反向安裝,且滿足同速、同向運(yùn)動(dòng)條件,動(dòng)力先由電動(dòng)機(jī)輸入至小齒輪,然后通過齒輪嚙合同時(shí)驅(qū)動(dòng)大齒輪
1和大齒輪2作同向等速轉(zhuǎn)動(dòng),如圖5所示。由于凸輪與大齒輪之間為同軸剛性連接,所以凸輪1與凸輪2的轉(zhuǎn)動(dòng)狀態(tài)亦為等速同向,并且在轉(zhuǎn)動(dòng)過程中始終與滾子保持接觸,進(jìn)而將動(dòng)力傳遞至擺桿使其發(fā)生往復(fù)擺動(dòng)。需要注意的是,由于共軛凸輪采用雙軸驅(qū)動(dòng)和反向安裝,因此,當(dāng)凸輪1按照“推程-遠(yuǎn)休-回程-近休”規(guī)律運(yùn)轉(zhuǎn)時(shí),凸輪2的運(yùn)轉(zhuǎn)規(guī)律則為“回程-近休-推程-遠(yuǎn)休”。
本文以單頁綜框?yàn)轵?qū)動(dòng)對象,在SolidWorks環(huán)境下設(shè)計(jì)共軛凸輪開口系統(tǒng)功能樣機(jī),如圖6所示。該機(jī)構(gòu)須滿足預(yù)設(shè)的機(jī)構(gòu)裝配關(guān)系和運(yùn)動(dòng)約束條件,其中平面桿組之間以鉸鏈連接為主,凸輪與滾子之間采用凸輪副配合[10]。大小齒輪均為標(biāo)準(zhǔn)直齒齒輪,其模數(shù)m為2 mm;壓力角α0為20°;小齒
輪齒數(shù)z1為36,大齒輪齒數(shù)z2為72。通過齒輪傳動(dòng)比計(jì)算可知,小齒輪與大齒輪之間的傳動(dòng)速比為2︰1,即小齒輪轉(zhuǎn)兩圈,凸輪1和凸輪2按照同向等速轉(zhuǎn)一圈。與此同時(shí),綜框在平面桿組驅(qū)動(dòng)下完成一次直線往復(fù)運(yùn)動(dòng)。
3.2 仿真分析
調(diào)整凸輪和擺桿的初始相位,使綜框處于極限位置,即滾子從動(dòng)件處于推程起始階段。設(shè)定電動(dòng)機(jī)輸入轉(zhuǎn)速為600 r/min,則對應(yīng)的凸輪軸轉(zhuǎn)速為300 r/min,利用Motion模塊對共軛凸輪開口機(jī)構(gòu)進(jìn)行動(dòng)力學(xué)和運(yùn)動(dòng)學(xué)仿真,測得最大凸輪軸扭矩約68 N/m。運(yùn)動(dòng)學(xué)仿真曲線如圖7所示,對比來看,在0~0.2 s時(shí)間范圍凸輪軸回轉(zhuǎn)一周,擺桿與綜框的運(yùn)動(dòng)規(guī)律曲線變化趨勢完全一致,總體上可劃分為四個(gè)階段,即“推程-遠(yuǎn)休-回程-近休”,符合凸輪理論廓線分段特征。
在凸輪軸回轉(zhuǎn)一周(0~0.2 s)過程中,擺桿最大角位移βm為20°,與之對應(yīng)的綜框動(dòng)程約87 mm,由圖7(a)(b)可知,開口時(shí)經(jīng)紗最大升降位移量約87 mm,滿足平紋織物梭口高度設(shè)計(jì)要求。此外,由圖7(c)(e)和圖7(d)(f)可知,擺桿、綜框的速度和加速度變化方向相反,且加速度曲線在起始和終止瞬間均存在一定突變,說明凸輪開口機(jī)構(gòu)在運(yùn)動(dòng)啟停階段帶有柔性沖擊,符合余弦加速運(yùn)動(dòng)規(guī)律設(shè)計(jì)預(yù)期。
對比分析圖7(b)(d)(f)可知,在凸輪推程階段,當(dāng)綜框運(yùn)動(dòng)至綜平位置時(shí),其速度達(dá)到最大,加速度達(dá)到最小,有利于經(jīng)紗與緯紗迅速交織,進(jìn)而開清梭口完成打緯運(yùn)動(dòng);當(dāng)開口處于滿開狀態(tài)時(shí),凸輪運(yùn)轉(zhuǎn)至遠(yuǎn)休或近休階段,此時(shí)綜框處于瞬間靜止,且速度和加速度同時(shí)降至最小,有利于開口系統(tǒng)減振降噪和引緯作業(yè)。因此,從仿真結(jié)果來看,綜框升降規(guī)律符合實(shí)際工況下的運(yùn)動(dòng)學(xué)配合特性,能夠滿足平紋織物織造工藝要求。
4 實(shí)驗(yàn)驗(yàn)證
本文以190 cm幅寬織機(jī)為參考,根據(jù)共軛凸輪開口系統(tǒng)結(jié)構(gòu)組成和功能樣機(jī)布局,按照1︰5的比例對凸輪、滾子、桿組及綜框等關(guān)鍵零部件進(jìn)行等比例縮放,設(shè)計(jì)制作凸輪開口系統(tǒng)實(shí)驗(yàn)?zāi)P?,如圖8所示,選用24 V、600 r/min的直流減速電機(jī)作為動(dòng)力輸入,并通過分壓單片機(jī)控制和調(diào)節(jié)電動(dòng)機(jī)轉(zhuǎn)速。通過激光切割亞克力板制作綜框簡化模型,并將測試用的四根紗線穿過綜眼纏繞于兩側(cè)轉(zhuǎn)軸之上。借助3D打印制作凸輪、滾子及桿組等非標(biāo)件,齒輪傳動(dòng)由模數(shù)為2 mm、壓力角為20°的標(biāo)準(zhǔn)直齒齒輪組合而成,其余相關(guān)標(biāo)準(zhǔn)件如聯(lián)軸器、軸承等均按實(shí)際所需規(guī)格選用。
參考功能樣機(jī)初始相位,通過調(diào)整齒輪、凸輪和擺桿等主要傳動(dòng)零部件,使綜框位于推程起始位置。對比例模型進(jìn)行通電測試,如圖9(a)(b)所示,分別為綜框運(yùn)動(dòng)至上限位置和下限位置時(shí)的機(jī)構(gòu)狀態(tài)。不同電機(jī)轉(zhuǎn)速下的實(shí)驗(yàn)結(jié)果表明,該比例模型能夠準(zhǔn)確實(shí)現(xiàn)綜框的升降運(yùn)動(dòng),且動(dòng)力傳遞平穩(wěn)、運(yùn)行可靠;在凸輪提綜和回綜過程中,紗線形變同步、梭口特征明顯,滿足織機(jī)開口系統(tǒng)運(yùn)行條件。EDC8AA3D-E5CA-4DB1-87D6-894B8DBF3E51
5 結(jié) 語
相對于通過彈簧回綜的消極式凸輪開口,共軛凸輪開口能夠有效改進(jìn)綜框的傳動(dòng)精度和升降平穩(wěn)性。本文將余弦加速運(yùn)動(dòng)規(guī)律應(yīng)用于凸輪理論廓線構(gòu)建,設(shè)計(jì)開發(fā)了一種采用雙軸構(gòu)造的積極式共軛凸輪開口系統(tǒng)。在結(jié)構(gòu)創(chuàng)新和傳動(dòng)系統(tǒng)設(shè)計(jì)計(jì)算基礎(chǔ)上,建立了基于SolidWorks平臺(tái)的功能仿真樣機(jī),實(shí)現(xiàn)了凸輪和綜框的運(yùn)動(dòng)學(xué)仿真分析,并通過比例模型實(shí)驗(yàn)測試,驗(yàn)證了設(shè)計(jì)方案的可行性和仿真結(jié)果的正確性,為后續(xù)實(shí)物樣機(jī)研制和實(shí)踐應(yīng)用奠定了重要研究基礎(chǔ)。
參考文獻(xiàn):
[1]魏展, 金國光, 暢博彥, 等. 高速織機(jī)中消極式開口凸輪的動(dòng)力學(xué)設(shè)計(jì)[J]. 天津工業(yè)大學(xué)學(xué)報(bào), 2014, 33(2): 53-56.
WEI Zhan, JIN Guoguang, CHANG Boyan, et al. Dynamic design of negative shedding cam in high-speed looms[J]. Journal of Tiangong University, 2014, 33(2): 53-56.
[2]李明哲, 崔東日, 池正凡, 等. 基于動(dòng)態(tài)特性的劍桿織機(jī)共軛凸輪開口機(jī)構(gòu)的設(shè)計(jì)方法[J]. 徐州工程學(xué)院學(xué)報(bào)(自然科學(xué)版), 2012, 27(3): 11-15.
LI Mingzhe, CUI Dongri, CHI Zhengfan, et al. Designing conjugate cam shedding mechanism based on the rapier looms dynamic state[J]. Journal of Xuzhou Institute of Technology (Natural Sciences Edition), 2012, 27(3): 11-15.
[3]邱海飛, 李春風(fēng), 王穩(wěn), 等. 不同軸積極式共軛凸輪開口系統(tǒng)反求開發(fā)[J]. 機(jī)械設(shè)計(jì), 2021, 38(7): 100-104.
QIU Haifei, LI Chunfeng, WANG Wen, et al. Reverse development of the positive conjugate cams shedding system with dual driving shafts[J]. Journal of Machine Design, 2021, 38(7): 100-104.
[4]葛正浩, 張凱, 張雙琳. 共軛凸輪開口機(jī)構(gòu)的反求設(shè)計(jì)及動(dòng)力學(xué)研究[J]. 機(jī)械設(shè)計(jì), 2017, 34(12): 65-68.
GE Zhenghao, ZHANG Kai, ZHANG Shuanglin. Reverse design and dynamics research of conjugate cam shedding mechanism[J]. Journal of Machine Design, 2017, 34(12): 65-68.
[5]蔣秀明. 不同軸共軛凸輪開口機(jī)構(gòu)分析與設(shè)計(jì)[J]. 紡織學(xué)報(bào), 1997(2): 46-48.
JIANG Xiuming. Analysis and design of conjugate cam shedding mechanism with dual driving shafts[J]. Journal of Textile Research, 1997(2): 46-48.
[6]ZHOU Guoqing, YUAN Ruwang, JIANG Xiuming. Seriation design and research on cam shedding mechanism of Looms[J]. Advanced Materials Research, 2012, 479-481: 2383-2388.
[7]許蘢. 共軛凸輪的反求設(shè)計(jì)及仿真[J]. 包裝工程, 2016, 37(17): 162-166.
XU Long. Reverse design and simulation of conjugate cam[J]. Packaging Engineering, 2016, 37(17): 162-166.
[8]葛樂樂, 張龍, 胡凱文. 基于遺傳算法的共軛凸輪機(jī)構(gòu)計(jì)算機(jī)輔助設(shè)計(jì)[J]. 機(jī)電工程, 2021, 38(2): 210-215.
GE Lele, ZHANG Long, HU Kaiwen. Computer aided design of conjugate cam based on genetic algorithm[J]. Journal of Mechanical & Electrical Engineering, 2021, 38(2): 210-215.
[9]LI Zijie, WANG Huaiming. Design and analysis of conjugate cambeating-up motion law[J]. Key Engineering Materials, 2016, 693: 53-57.
[10]魏展, 金國光, 袁汝旺, 等. 高速共軛凸輪打緯機(jī)構(gòu)柔性動(dòng)力學(xué)分析[J]. 機(jī)械工程學(xué)報(bào), 2017, 53(3): 81-89.
WEI Zhan, JIN Guoguang, YUAN Ruwang, et al. Flexible dynamic analysis of high-speed conjugate cam beating-up mechanism[J]. Journal of Mechanical Engineering, 2017, 53(3): 81-89.EDC8AA3D-E5CA-4DB1-87D6-894B8DBF3E51
Simulation design and experiment study of conjugate cam shedding mechanism driven by double shaft
QIU Haifei, CHEN Ming
(School of Mechanical Engineering, Xijing University, Xian 710123, China)
Abstract:Conjugate cam shedding mechanism is a common form in modern high-speed looms. It is different from the negative cam shedding in that no heald returning device is needed on the conjugate cam shedding which has the characteristics of high transmission accuracy and small vibration impact. The traditional conjugate cam shedding is mostly arranged coaxially; therefore, multiple pairs of main and auxiliary cams need to be installed on the same transmission shaft at the same time, which limits the axial size of cam and rotor to a great extent. When the contact width between the cam and the rotor is too small, it is easy to cause large extrusion stress on the contact surface, which is not conducive to reducing cam wear and prolonging working life. In order to improve the bearing conditions of conjugate cam shedding system, a new external conjugate cam shedding system with double shaft transmission is developed through structural innovation, mechanical design, program compilation, dynamic simulation and experimental verification.
Based on the reference of coaxial conjugate cam shedding system, a shedding mechanism driven by double shaft was established through structural analysis and equivalent transformation. The cosine acceleration motion law was applied to the motion of heald frame, and the design program of cam theoretical profile was developed by using Matlab software, and then the dynamic calculation and analysis of cam pressure angle were realized. The two-dimensional coordinates (x, y) of the theoretical profile were transformed into three-dimensional coordinates (x, y, z) through data interface program, and the three-dimensional CAD geometric model of the cam and rotor was respectively set up by SolidWorks. On the basis of that, a functional prototype simulation model of the conjugate cam shedding driven by double shaft was constructed in the form of planar links and gear transmission, and the kinematics simulation analysis of key load-bearing components such as swing link and heald frame was carried out. On the basis of proportional model, the experimental tests of heald frame rises and falls at different speeds were used to verify the feasibility of design scheme and working principle of the mechanism. Through actively controlling the lifting movement of heald frame in the form of double cam locking, the axial size of cam could be doubled compared with coaxial conjugate cam, which was helpful to improve working performance and bearing conditions of conjugate cam shedding system. The simulation and experimental results show that the cam shedding system has good working performance, and design scheme and principle can meet the requirements of mechanism design conditions and plain fabric weaving process, and it can effectively reduce the extrusion stress and wear between cam and rotor.
The application of double shaft drive in the transformation of conjugate camshedding system can not only solve the problem of contact wear between cam and rotor, but also help to improve the working efficiency of cam shedding system, which will provide important support for the innovative design and high-speed development of shedding system on modern loom.
Key words:cam; heald frame; shedding system; theoretical profile; pressure angle; simulation design; MatlabEDC8AA3D-E5CA-4DB1-87D6-894B8DBF3E51