国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

動脈型肺動脈高壓分子標(biāo)志基因的篩選與鑒定*

2022-07-06 02:02:30李潔劉彩瑩嚴(yán)文文沈玉芹徐金媛徐國彤呂立夏宋浩明
中國病理生理雜志 2022年6期
關(guān)鍵詞:野百合肺動脈線粒體

李潔, 劉彩瑩, 嚴(yán)文文, 沈玉芹, 徐金媛, 徐國彤, 呂立夏, 宋浩明△

動脈型肺動脈高壓分子標(biāo)志基因的篩選與鑒定*

李潔1, 劉彩瑩2, 嚴(yán)文文1, 沈玉芹1, 徐金媛2, 徐國彤3, 呂立夏2, 宋浩明1△

(1同濟(jì)大學(xué)附屬同濟(jì)醫(yī)院心內(nèi)科,上海 200065;2同濟(jì)大學(xué)醫(yī)學(xué)院生物化學(xué)與分子生物學(xué)系,上海 200092;3同濟(jì)大學(xué)醫(yī)學(xué)院藥學(xué)院,上海 200092)

本研究旨在篩選和鑒定參與動脈型肺動脈高壓(pulmonary arterial hypertension, PAH)發(fā)病的關(guān)鍵基因及相關(guān)信號通路,為進(jìn)一步的轉(zhuǎn)化醫(yī)學(xué)研究提供新靶點(diǎn)。從美國國立生物技術(shù)信息中心的GEO (Gene Expression Omnibus)數(shù)據(jù)庫中獲取人GSE113439、GSE117261、GSE48149和GSE53408基因芯片數(shù)據(jù)集,經(jīng)過數(shù)據(jù)篩選后確定PAH組103例和對照組56例進(jìn)行比較分析。采用NetworkAnalyst軟件篩選差異基因(differentially expressed genes, DEGs),Enrichr和Metascape進(jìn)行基因本體論(gene ontology, GO)和京都基因和基因組數(shù)據(jù)庫(Kyoto Encyclopedia of Genes and Genomes, KEGG)分析,STRING和Cytoscape建立蛋白質(zhì)-蛋白質(zhì)相互作用(protein-protein interaction, PPI)網(wǎng)絡(luò)確定潛在的樞紐基因。采用野百合堿構(gòu)建PAH大鼠模型,通過測量血液動力學(xué)參數(shù)與組織形態(tài)學(xué)觀察造模是否成功,RT-qPCR驗(yàn)證肺組織中候選基因的mRNA表達(dá)。共獲得2 048個差異基因,其中1480個上調(diào),568個下調(diào),主要涉及炎癥與細(xì)胞增殖等方面的信號通路,例如單純皰疹病毒1感染通路、人乳頭瘤病毒感染通路以及腫瘤通路等。其中最顯著的DEGs依次為、、、和,樞紐基因?yàn)椤?、、和。野百合堿誘導(dǎo)4周后,PAH組大鼠右心室收縮壓(right ventricular systolic pressure, RVSP)和平均肺動脈壓(mean pulmonary arterial pressure, mPAP)與對照組相比顯著升高(<0.05),肺組織蘇木精-伊紅(hematoxylin-eosin, HE)染色顯示肺小動脈管壁明顯增厚(<0.01),證明PAH模型建立成功。RT-qPCR結(jié)果表明,、、和的mRNA表達(dá)在PAH組顯著上調(diào)(<0.05),而、、、和的mRNA表達(dá)在PAH組顯著下調(diào)(<0.05),、、和的mRNA表達(dá)在兩組間無顯著差異(>0.05)。本研究篩選并驗(yàn)證了參與PAH發(fā)生的關(guān)鍵基因,有望為進(jìn)一步的轉(zhuǎn)化醫(yī)學(xué)研究提供新靶點(diǎn)。

動脈型肺動脈高壓;生物信息學(xué);炎癥;細(xì)胞增殖

動脈型肺動脈高壓(pulmonary arterial hypertension, PAH)的特點(diǎn)是肺小動脈病變引起的肺血管阻力和肺動脈壓力升高,最終導(dǎo)致右心室重構(gòu)甚至右心衰竭和死亡。PAH對人類健康的危害極大,據(jù)統(tǒng)計(jì),成人PAH人群發(fā)病率約2.4/百萬人年,患病率約15/百萬。未接受靶向藥物治療的PAH患者的中位生存期平均為2.8年,5年生存率僅為34%[1]。PAH的發(fā)病機(jī)制很復(fù)雜,鈣、鋅等離子通道和血管活性物質(zhì)的失衡都參與了PAH的發(fā)展。此外,Hippo信號通路、骨形態(tài)發(fā)生蛋白7(bone morphogenetic protein-7, BMP-7)/Smads信號通路等也參與了PAH的發(fā)展[2-3]。雖然近年來對PAH的認(rèn)識逐漸加深,但是目前PAH尚缺乏全面有效的治療方法。因此,鑒定PAH關(guān)鍵的分子標(biāo)記基因?qū)τ谏钊肜斫釶AH的發(fā)病機(jī)制和開發(fā)新型治療方法尤為重要。

近幾年,隨著基因測序技術(shù)的發(fā)展,基因表達(dá)總庫提供了許多獨(dú)立的基因表達(dá)數(shù)據(jù)集,而薈萃分析可以整合多個數(shù)據(jù)集,確定在單個數(shù)據(jù)集無法識別的分子特征,從而進(jìn)一步揭示疾病深層的分子機(jī)制。目前雖有研究對GSE113439與GSE117261數(shù)據(jù)集進(jìn)行生物信息學(xué)分析[4],但在本研究中整合的數(shù)據(jù)集更完整,可能揭示的分子機(jī)制也更加深入和全面。

材料和方法

1 實(shí)驗(yàn)動物

6~7周齡SPF級雄性Sprague-Dawley大鼠40只,體重(260±10) g,購于上海斯萊克實(shí)驗(yàn)動物有限公司。大鼠飼養(yǎng)環(huán)境溫度為(22±2) ℃,明暗時間為12 h/12 h,可自由飲水?dāng)z食。

2 實(shí)驗(yàn)材料

野百合堿、生理鹽水和多聚甲醛(Sigma-Aldrich);無水乙醇(湖北佰智昂生物化工有限公司);PCR試劑盒[天根生化科技(北京)有限公司];引物(上海生工生物技術(shù)有限公司);戊巴比妥鈉(上海思域化工科技有限公司);逆轉(zhuǎn)錄酶試劑盒(Thermo Fisher)。

3 實(shí)驗(yàn)儀器

低溫高速離心機(jī)(Eppendorf);實(shí)時熒光定量PCR儀(Bio-Rad);NanoDrop 2000超微量分光光度儀(Thermo Fisher);逆轉(zhuǎn)錄PCR儀(東勝創(chuàng)新公司);聚乙烯(PE)-50導(dǎo)管(American Health & Medical Supply International Corp.);Powerlab 8/30系統(tǒng)和壓力傳感器(AD Instruments);電子天平(上海舜宇恒平科學(xué)儀器有限公司)。

4 方法

4.1數(shù)據(jù)來源和處理從美國國立生物技術(shù)信息中心的GEO (gene expression omnibus)數(shù)據(jù)庫(www.ncbi.nlm.nih.gov/geo)中獲取4個mRNA表達(dá)數(shù)據(jù)集:GSE113439、GSE117261、GSE48149和GSE53408,樣本均來源于人肺組織。將納入的數(shù)據(jù)分為PAH組和正常對照(normal control, NC)組,各個數(shù)據(jù)集的特征見表1。經(jīng)過log2轉(zhuǎn)換和基因名注釋后,將數(shù)據(jù)集上傳到NetworkAnalyst(https://www.networkanalyst.ca/)[5]進(jìn)行薈萃分析。將納入的數(shù)據(jù)進(jìn)行背景整合,歸一化處理和數(shù)據(jù)質(zhì)量檢查后,使用主成分分析對結(jié)果進(jìn)行去批次效應(yīng)處理。用Fisher法選擇差異基因(differentially expressed genes, DEGs),篩選條件為整合值<0.05。

表1 四個數(shù)據(jù)集的詳細(xì)信息

4.2功能注釋和通路富集分析采用Enrichr(https://maayanlab.cloud/Enrichr/)和Metascape(https://metascape.org/gp/index.html#/main/step1)[6-7]進(jìn)行基因本體論(gene ontology, GO)和京都基因和基因組數(shù)據(jù)庫(Kyoto Encyclopedia of Genes and Genomes, KEGG)富集分析。

4.3蛋白質(zhì)-蛋白質(zhì)相互作用(protein-protein interaction, PPI)網(wǎng)絡(luò)的構(gòu)建和關(guān)鍵基因的篩選本研究中,在STRING數(shù)據(jù)庫(https://string-db.org/)[8]中對前2 000個DEGs進(jìn)行蛋白質(zhì)-蛋白質(zhì)相互作用網(wǎng)絡(luò)構(gòu)建,并應(yīng)用分子整合檢測(molecular complex detection, MCODE)對DEGs進(jìn)行網(wǎng)絡(luò)成分分析,篩選degree>10的基因構(gòu)建優(yōu)化PPI網(wǎng)絡(luò)。之后在Cytoscape[9]中用CytoHubba的betweenness算法篩選樞紐基因。

4.4動物分組以及干預(yù)大鼠適應(yīng)1周后,分為NC組和PAH組,每組20只。操作前,將乙醇和生理鹽水按2∶8的體積比混合,并將野百合堿溶于乙醇鹽水中,制備野百合堿溶液。NC組大鼠在后頸部接受單次乙醇生理鹽水溶液注射,PAH組大鼠接受單次野百合堿皮下注射(50 mg/kg)。兩組大鼠均在同濟(jì)醫(yī)院特定的清潔級動物房中飼養(yǎng)4周,實(shí)驗(yàn)所涉及的大鼠操作均得到同濟(jì)大學(xué)附屬同濟(jì)醫(yī)院動物倫理委員會的審批,實(shí)驗(yàn)方案許可編號為2020-DW-002。

4.5血流動力學(xué)的測量4周后,大鼠禁食10 h,腹腔注射2%戊巴比妥鈉(40 mg/kg)麻醉大鼠。將PE-50導(dǎo)管插入右心室后,用Powerlab 8/30系統(tǒng)和壓力傳感器測量右心室收縮壓(right ventricular systolic pressure, RVSP)和平均肺動脈壓(mean pulmonary artery pressure, mPAP)。

4.6動物處死和留取樣本壓力測量后,將大鼠脫頸處死,摘除肺和心臟并保存于-80 ℃冰箱。解剖左心室(left ventricle, LV)、室間隔(interventricular septum, S)及右心室(right ventricle, RV)并分別稱重,計(jì)算右心室肥厚指數(shù)(right ventricular hypertrophy index, RVHI):RVHI=RV/(LV+S)。

4.7組織形態(tài)學(xué)分析大鼠左肺和心臟組織用4%多聚甲醛固定24 h,然后入石蠟切成5 μm厚的切片,進(jìn)行蘇木精-伊紅(hematoxylin-eosin, HE)染色。通過使用Image-Pro Plus軟件選取直徑在50~200 μm之間的10條肺小動脈測量其血管壁面積(wall area, WA)和血管總面積(vessel total area, TA),用WA占TA的百分率(WA%)來評價肺血管重塑情況:WA%=WA/TA×100%。

4.8RT-qPCR用Trizol提取肺組織的總RNA后逆轉(zhuǎn)錄合成cDNA,并使用qPCR試劑盒和引物擴(kuò)增待選基因的cDNA。每個樣本進(jìn)行3次重復(fù)并求取平均數(shù),以GAPDH為內(nèi)參照,采用2-??Ct方法進(jìn)行數(shù)據(jù)分析。引物序列見表2。

表2 RT-qPCR引物序列

5 統(tǒng)計(jì)學(xué)處理

動物實(shí)驗(yàn)數(shù)據(jù)用GraphPad Prism 8進(jìn)行統(tǒng)計(jì)分析。結(jié)果用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示。NC組和PAH組之間的差異采用檢驗(yàn)。以<0.05為差異有統(tǒng)計(jì)學(xué)意義。

結(jié)果

1 數(shù)據(jù)收集和數(shù)據(jù)集分析

經(jīng)過數(shù)據(jù)篩選后納入159例患者,其中PAH組103例,NC組56例。數(shù)據(jù)處理流程,見圖1A;主成分分析結(jié)果,見圖1B;各個數(shù)據(jù)集的詳細(xì)信息,見表1。

Figure 1. Data processing flowchart and principal component analysis. A: four datasets were downloaded from NCBI-GEO, in which 26 patients were excluded for they were not PAH; B: each point represents a sample, and the farther the distance between two samples, the greater the difference between these two samples, and the closer the distance, the smaller the difference.

2 差異基因分析

差異基因表達(dá)分析篩選出2 048個DEGs,其中1 480個上調(diào),568個下調(diào)。前50個DEGs的熱圖,見圖2。對前5個DEGs進(jìn)行功能分析并進(jìn)行動物驗(yàn)證,其中除GATA結(jié)合蛋白2(GATA-binding protein 2,)外,其他基因在PAH中報(bào)道較少,見表3。

Figure 2. Heatmap of the top 50 DEGs. Each grid represents the expression of a gene in a sample, where red represents genes up-regulated in PAH group, and green represents genes down-regulated in PAH group compared with NC group.

表3 前5個差異基因的功能

Positive values of the combined T stat indicate the of down-regulation genes in PAH group compared with NC group, and negative values indicate the up-regulation of genes in PAH group compared with NC group.

3 富集與通路分析

利用Enrichr和Metascape對DEGs進(jìn)行的功能注釋和通路富集分析??傮wDEGs主要富集在單純皰疹病毒1(herpes simplex virus 1, HSV-1)感染、人乳頭瘤病毒(human papillomavirus, HPV)感染及腫瘤等通路中,見圖3A;在生物過程方面主要涉及轉(zhuǎn)錄與DNA復(fù)制的調(diào)控、蛋白質(zhì)磷酸化和RNA聚合酶Ⅱ啟動子的調(diào)控,見圖3B;在分子功能方面主要涉及RNA結(jié)合、鈣黏蛋白結(jié)合及蛋白激酶活化,見圖3C;在細(xì)胞組分方面主要涉及細(xì)胞核和中心體,見圖3D。值得注意的是,本研究發(fā)現(xiàn)HSV-1感染通路在PAH中高度富集,然而它在PAH中的功能少有報(bào)道,因此本研究擬對HSV-1感染通路相關(guān)基因——含桿狀病毒IAP重復(fù)序列蛋白2(baculoviral IAP repeat-containing protein 2,)、骨髓基質(zhì)細(xì)胞抗原2(bone marrow stromal cell antigen 2,)、蛋白酪氨酸磷酸酶非受體型11(protein tyrosine phosphatase non-receptor type 11,)、(transporter associated with antigen processing 1)和進(jìn)行RT-qPCR驗(yàn)證。

Figure 3. KEGG pathway and GO analysis of total DEGs in Enrichr. A: KEGG pathway analysis; B: GO biological process analysis; C: GO molecular function analysis; D: GO cellular component analysis. The length of the red band represents the significant degree of differential enrichment results.

上調(diào)的DEGs主要在內(nèi)質(zhì)網(wǎng)中的蛋白質(zhì)加工和HSV-1感染等通路明顯富集,見圖4A;在GO功能方面主要涉及有絲分裂細(xì)胞周期的調(diào)控及細(xì)胞對應(yīng)激的反應(yīng),見圖4B。

Figure 4. KEGG pathway and GO analysis of up-regulated DEGs in Metascape. A: KEGG pathway; B: GO analysis enrichment. The different colors in the graph represent the significance of the enrichment results, and the size of the dots represents the number of enriched genes.

下調(diào)的DEGs主要在Th17細(xì)胞分化信號通路、細(xì)胞黏附分子相關(guān)通路等富集,見圖5A;在GO功能方面細(xì)胞主要與對生長因子刺激的反應(yīng)及血管生成相關(guān),見圖5B。

Figure 5. KEGG pathway and GO analysis of down-regulated DEGs in Metascape. A: KEGG pathway; B: GO analysis enrichment. The different colors in the graph represent the significance of enrichment results, and the size of the dots represents the number of enriched genes.

4 PPI網(wǎng)絡(luò)的構(gòu)建和樞紐基因的篩選

通過STRING和Cytoscape對DEGs構(gòu)建PPI網(wǎng)絡(luò)并篩選出樞紐基因,分別為鼠雙微體蛋白2(murine double minute 2,)、熱休克蛋白90α家族A類成員1(heat shock protein 90 alpha family class A member 1,)、核仁素(nucleolin,)、β-連環(huán)素(β-catenin/catenin beta 1,)和蛋白磷酸酶2催化亞基α(protein phosphatase 2 catalytic subunit alpha,),對其進(jìn)行功能分析并進(jìn)行動物實(shí)驗(yàn)驗(yàn)證,見圖6、表4。

Figure 6. Protein-protein interaction (PPI) network of the top 2 000 DEGs. The figure shows the PPI network of the top 2 000 DEGs screened for degree greater than 10. The darker the color of the dots in the network, the greater the degree value, the more linkage with other proteins and the more important the function.

表4 Betweenness算法中排名前5位的hub基因

5 PAH模型的建立和RT-qPCR分析

4周后,與對照組相比,PAH組的大鼠出現(xiàn)厭食、行動遲緩、體重增長減少和呼吸急促,實(shí)驗(yàn)結(jié)束前均無大鼠死亡。如表5所示,PAH組所有大鼠與NC組相比,RVSP、mPAP及RVHI均顯著增高(<0.05),提示造模成功。

表5 動物模型參數(shù)

*<0.05,**<0.01NC group.

于光鏡下觀察兩組大鼠肺組織HE染色,NC組大鼠肺小動脈內(nèi)皮細(xì)胞的連續(xù)性好,管壁薄,管腔面積大;PAH大鼠的肺小動脈管壁厚度明顯增厚,管腔面積明顯縮小,見圖7。

Figure 7. Pathomorphological changes of rat lung tissues in each group (HE staining, scale bar=20 μm).

與NC組比較,PAH組大鼠肺小動脈WA%明顯增高(0.01),出現(xiàn)明顯的血管重構(gòu),見表5。

通過RT-qPCR檢測差異基因在大鼠肺組織中的表達(dá),數(shù)據(jù)顯示,PAH組、、和的mRNA表達(dá)在明顯上調(diào)(<0.05),而線粒體核糖體蛋白L11(mitochondrial ribosomal protein L11,)、腎上腺素受體α1A(adrenoceptor alpha 1A,)、、和的mRNA表達(dá)在PAH組明顯下調(diào)(<0.05),其余基因的mRNA表達(dá)無顯著差異,見圖8。

Figure 8. Relative mRNA expression of key genes in PAH group and NC group. The rats in PAH group received a single injection of monocrotaline, while those in NC group received a single injection of ethanol saline solution, and then lung tissue was obtained after 4 weeks for RT-qPCR. Mean±SD. n=20. *P<0.05,**P<0.01 vs NC group.

討論

既往大量研究已探討過PAH的潛在機(jī)制以及內(nèi)皮功能障礙、血管旁細(xì)胞增生和炎癥在PAH發(fā)生發(fā)展過程中的作用,但PAH的發(fā)病機(jī)制仍未完全闡明。本研究通過生物信息學(xué)分析篩選出2 048個DEGs,并用野百合堿誘導(dǎo)的PAH大鼠的肺組織對15個關(guān)鍵基因進(jìn)行檢測,其中、、和的mRNA表達(dá)在PAH組中顯著上調(diào),、、、和的mRNA表達(dá)在PAH組中顯著下調(diào),大部分關(guān)鍵基因功能與細(xì)胞增殖及能量代謝的轉(zhuǎn)變有關(guān)。此外HSV-1感染、HPV感染、Th17細(xì)胞分化信號通路、細(xì)胞黏附分子通路等炎癥和免疫相關(guān)信號通路的明顯富集,提示免疫炎癥參與了PAH的發(fā)病機(jī)制。因此本研究將從細(xì)胞增殖和免疫紊亂相關(guān)機(jī)制方面予以闡述。

1 細(xì)胞增殖和凋亡等相關(guān)基因

MRPL11是MRP家族的成員。研究表明,下調(diào)可以導(dǎo)致線粒體翻譯缺陷,從而引起線粒體編碼蛋白的合成減少以及氧化磷酸化亞基的合成受損,最終導(dǎo)致細(xì)胞能量代謝的轉(zhuǎn)變,抑制細(xì)胞的遷移與增殖[10-11]。既往研究提示,線粒體功能障礙通過多種途徑參與PAH的發(fā)生發(fā)展,Ryan等[12]發(fā)現(xiàn)PAH患者的線粒體DNA缺失和線粒體ATP產(chǎn)生增加等會促進(jìn)PAH患者的肺動脈平滑肌細(xì)胞(pulmonary artery smooth muscle cells, PASMCs)的增殖,從而導(dǎo)致血管松弛功能受損。在本研究中,的表達(dá)在PAH組中顯著下調(diào),同時通過對野百合堿誘導(dǎo)的PAH大鼠的肺組織進(jìn)行檢測,我們證實(shí)的表達(dá)在PAH大鼠中也明顯下調(diào)。因此我們推測MRPL11可能通過調(diào)節(jié)線粒體編碼蛋白的合成及細(xì)胞的糖酵解代謝狀態(tài)來參與PAH的發(fā)生發(fā)展。

ADRA1A是G蛋白偶聯(lián)受體超家族的成員其中的一個亞型,可調(diào)節(jié)細(xì)胞生長和增殖。研究表明,下調(diào)可能促進(jìn)成纖維細(xì)胞的增殖和膠原蛋白的產(chǎn)生[13]。在本研究中的下調(diào)說明其可能通過調(diào)節(jié)肺小動脈成纖維細(xì)胞等細(xì)胞的增殖,在PAH的形成中起到作用。

GATA2是鋅指轉(zhuǎn)錄因子GATA家族的成員,在調(diào)節(jié)細(xì)胞增殖相關(guān)基因的轉(zhuǎn)錄方面起著重要作用。唐思鋒等[14]的研究結(jié)果表明干擾或的表達(dá)可以抑制基因的表達(dá)從而降低細(xì)胞自噬水平,促進(jìn)細(xì)胞凋亡。本研究中的下調(diào)與既往的研究結(jié)果一致[15],說明在PAH的發(fā)生形成中,GATA2可能通過調(diào)節(jié)部分細(xì)胞的自噬從而促進(jìn)PAH的發(fā)生和發(fā)展。

MDM2是一種E3泛素蛋白連接酶,在調(diào)節(jié)細(xì)胞的增殖與凋亡發(fā)揮重要作用。研究表明,抑制的表達(dá)能夠負(fù)向調(diào)控血管內(nèi)皮生長因子(vascular endothelial growth factor, VEGF)的表達(dá)從而抑制肺高壓小鼠肺血管內(nèi)皮細(xì)胞的增殖[16]。此外,抑制的表達(dá)可使線粒體中活性氧的產(chǎn)生增加,導(dǎo)致線粒體DNA損傷,最終促進(jìn)細(xì)胞凋亡[17]。在本研究中,在PAH組中顯著上調(diào)可能說明其可通過調(diào)節(jié)內(nèi)皮細(xì)胞的增殖參與PAH的發(fā)展。

NCL位于真核細(xì)胞核仁中,可由VEGF和細(xì)胞外基質(zhì)協(xié)同介導(dǎo)從細(xì)胞核轉(zhuǎn)移到細(xì)胞表面,參與核糖體的生物合成、成熟以及細(xì)胞增殖等生物過程。對內(nèi)皮細(xì)胞表面NCL的表達(dá)進(jìn)行功能性阻斷或下調(diào)可明顯抑制內(nèi)皮細(xì)胞的增殖、遷移以及血管的生成[18]。在本研究中,在PAH組中顯著上調(diào),提示NCL可能通過促進(jìn)內(nèi)皮細(xì)胞等細(xì)胞的增殖與遷移從而影響PAH的發(fā)展。

2 免疫炎癥相關(guān)基因

HSP90AA1是HSP90家族的一員。有研究表明,HSP90可以在PAH大鼠的PASMCs線粒體中過表達(dá),通過維持線粒體DNA的完整性減少PASMCs的氧化損傷,促進(jìn)PASMC的增殖[19]。此外,HSP90通過核因子κB(nuclear factor-κB, NF-κB)通路和NOD樣受體蛋白3(NOD-like receptor protein 3, NLRP3)通路激活炎癥因子,如腫瘤壞死因子α(tumor necrosis factor-α, TNF-α)、白細(xì)胞介素6(interleukin-6, IL-6)和IL-1β[20]。在本研究中在肺組織中的上調(diào),表明HSP90AA1可能通過線粒體相關(guān)通路以及NLRP3等炎癥通路加重細(xì)胞氧化損傷以及炎癥反應(yīng)參與PAH的發(fā)生和發(fā)展。

β-catenin/是Wnt/β-catenin通路的核心成分。目前認(rèn)為抑制Wnt/β-catenin通路的激活能夠降低細(xì)胞周期蛋白D1、VEGF和c-Myc的表達(dá)從而抑制PASMCs的增殖,減輕PAH[21-22]。同時Wnt/β-catenin信號對T細(xì)胞的分化、效應(yīng)功能和遷移至關(guān)重要[23]。因此,我們推測β-catenin/可能通過Wnt/β-catenin通路調(diào)節(jié)細(xì)胞的增殖以及T細(xì)胞的功能,從而在PAH中起到重要作用。

本研究中DEGs的富集分析結(jié)果顯示PAH組的Th17細(xì)胞分化信號通路、細(xì)胞黏附分子通路和趨化因子信號通路都存在明顯富集[24-26],這些信號通路與既往研究結(jié)果報(bào)道一致。其中HSV-1感染通路富集明顯,而其在PAH中的功能目前則知之甚少。HSV-1是一種常見的人類病原體,其參與了多種心血管疾病的發(fā)展[27]。HSV-1感染可通過增加細(xì)胞間黏附分子1(intercellular adhesion molecule-1, ICAM-1)和一氧化氮水平導(dǎo)致內(nèi)皮功能紊亂,從而使白細(xì)胞經(jīng)過淋巴細(xì)胞功能相關(guān)抗原1(lymphocyte function-associated antigen 1, LFA-1)/ICAM-1復(fù)合體通過內(nèi)皮屏障[28]。此外,HSV-1還可以通過增強(qiáng)三酰甘油和飽和膽固醇酯在血管平滑肌細(xì)胞(vascular smooth muscle cells, VSMCs)中的累積以介導(dǎo)VSMCs的增殖[29-30]。目前認(rèn)為PAH的發(fā)生是由內(nèi)皮屏障的破壞而啟動的,因此我們認(rèn)為HSV-1可能通過病毒的感染,增加ICAM-1水平引發(fā)內(nèi)皮屏障功能障礙,同時導(dǎo)致PASMCs的增殖,從而最終促進(jìn)PAH的發(fā)生和發(fā)展。在本研究中,我們也驗(yàn)證了HSV-1感染通路的相關(guān)基因,其中和在PAH組顯著下調(diào),其余基因沒有顯著性差異,但有降低趨勢。研究表明,PTPN11能夠通過與腺嘌呤核苷酸轉(zhuǎn)運(yùn)酶1(adenine nucleotide translocase 1, ANT1)結(jié)合激活caspase-1從而抑制NLRP3的過度激活[31],而抑制能夠通過Akt和STAT3通路抑制PASMCs的遷移和增殖,改善肺小動脈的重塑[32]。BST2能夠作為細(xì)胞黏附分子參與內(nèi)皮細(xì)胞對單核細(xì)胞的招募[33],并通過激活EGFR以及NF-κB通路從而調(diào)節(jié)細(xì)胞周期蛋白cyclin A和cyclin D1,以及凋亡蛋白Bax、Bcl2與caspas-3的表達(dá),促進(jìn)細(xì)胞增殖,抑制細(xì)胞凋亡[34-35]。在本研究中,和在PAH組中顯著下調(diào),說明與可能通過對炎癥的激活以及細(xì)胞周期的調(diào)節(jié)參與PAH的發(fā)生與發(fā)展。

綜上所述,本研究采用生物信息學(xué)的方法對GEO數(shù)據(jù)庫中的PAH基因芯片數(shù)據(jù)進(jìn)行整合分析,篩選差異基因并經(jīng)GO及KEGG富集分析,得到比單個數(shù)據(jù)集更加全面可靠的差異基因和信號通路。其中,HSV-1感染通路等新通路的發(fā)現(xiàn)可為深入研究PAH發(fā)生機(jī)制提供方向。此外,、、和等新的關(guān)鍵基因的發(fā)現(xiàn),可能為PAH的轉(zhuǎn)化醫(yī)學(xué)相關(guān)研究提供新的靶點(diǎn)。

[1]中華醫(yī)學(xué)會呼吸病學(xué)分會肺栓塞與肺血管病學(xué)組,中國醫(yī)師協(xié)會呼吸醫(yī)師分會肺栓塞與肺血管病工作委員會,全國肺栓塞與肺血管病防治協(xié)作組,等. 中國肺動脈高壓診斷與治療指南(2021版)[J]. 中華醫(yī)學(xué)雜志, 2021, 101(1):11-51.

Pulmonary Embolism and Pulmonary Vascular Disease Group of the Chinese Medical Association, Pulmonary Embolism and Pulmonary Vascular Disease Working Committee of the Respiratory Physicians Branch of the Chinese Medical Association, National Pulmonary Embolism and Pulmonary Vascular Disease Prevention and Treatment Collaborative Group, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension in China (2021 edition)[J]. Natl Med J Chin, 2021, 101(1):11-51.

[2]朱寧,陳皓,趙旭勇,等. 野百合堿誘導(dǎo)的大鼠肺動脈高壓對大鼠肺Hippo信號通路相關(guān)分子表達(dá)的影響[J]. 中國病理生理雜志, 2019, 35(7):1333-1338.

Zhu N, Chen H, Zhao XY, et al. Effects of monocrotaline-induced pulmonary hypertension on expression of Hippo signaling pathway-related molecules in rat lung[J]. Chin J Pathophysiol, 2019, 35(7):1333-1338.

[3]張晶晶,武垣伶,黃丹娜,等. BMP-7/Smads通路參與EndoMT在大鼠HHPH中的作用[J]. 中國病理生理雜志, 2020, 36(2):316-322.

Zhang JJ, Wu YL, Huang DN, et al. Role of BMP-7/Smads pathway in regulation of EndoMT in rats with HHPH[J]. Chin J Pathophysiol, 2020, 36(2):316-322.

[4]仲紅艷,唐珊,趙飛飛,等. 肺動脈高壓關(guān)鍵基因的篩選及生物信息學(xué)分析[J]. 中國循環(huán)雜志, 2020, 35(8):793-800.

Zhong HY, Tang S, Zhao FF, et al. Key genes for pulmonary arterial hypertension screened with bioinformatics analysis[J]. Chin Circ J, 2020, 35(8):793-800.

[5] Zhou G, Soufan O, Ewald J, et al. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis[J]. Nucleic Acids Res, 2019, 47(W1):W234-W241.

[6] Kuleshov MV, Jones MR, Rouillard AD, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update[J]. Nucleic Acids Res, 2016, 44(W1):W90-W97.

[7] Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets[J]. Nat Commun, 2019, 10(1):1523.

[8] Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Genome Res, 2003, 13(11):2498-2504.

[9] Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage,supporting functional discovery in genome-wide experimental datasets[J]. Nucleic Acids Res, 2019, 47(D1): D607-D613.

[10] Huang G, Li H, Zhang H. Abnormal expression of mitochondrial ribosomal proteins and their encoding genes with cell apoptosis and diseases[J]. Int J Mol Sci, 2020, 21(22):8879.

[11] Besse A, Brezavar D, Hanson J, et al. LONP1 de novo dominant mutation causes mitochondrial encephalopathy with loss of LONP1 chaperone activity and excessive LONP1 proteolytic activity[J]. Mitochondrion, 2020, 51:68-78.

[12] Ryan J, Dasgupta A, Huston J, et al. Mitochondrial dynamics in pulmonary arterial hypertension[J]. J Mol Med (Berl), 2015, 93(3):229-242.

[13] Drummond PD, Dawson LF, Wood FM, et al. Up-regulation of α1-adrenoceptors in burn and keloid scars[J]. Burns, 2018, 44(3):582-588.

[14] 唐思鋒,王德友,趙偉. 從GATA2、GATA6探究環(huán)狀RNA調(diào)控胃癌自噬和凋亡的機(jī)制[J]. 中華實(shí)驗(yàn)外科雜志, 2020, 37(9):1655-1657.

Tang SF, Wang DY, Zhao W. Mechanism of autophagy and apoptosis regulated by cyclic RNA in gastric cancer from GATA2 and GATA6[J]. Chin J Exp Sur, 2020, 37(9):1655-1657.

[15] Marciano BE, Olivier KN, Folio LR, et al. Pulmonary manifestations of GATA2 deficiency[J]. Chest, 2021, 160(4):1350-1359.

[16] Shen H, Zhang J, Wang C, et al. MDM2-mediated ubiquitination of angiotensin-converting enzyme 2 contributes to the development of pulmonary arterial hypertension[J]. Circulation, 2020, 142(12):1190-1204.

[17] Elkholi R, Abraham-Enachescu I, Trotta AP, et al. MDM2 integrates cellular respiration and apoptotic signaling through NDUFS1 and the mitochondrial network[J]. Mol Cell, 2019, 74(3):452-465.

[18] Huang Y, Shi H, Zhou H, et al. The angiogenic function of nucleolin is mediated by vascular endothelial growth factor and nonmuscle myosin[J]. Blood, 2006, 107(9):3564-3571.

[19] Boucherat O, Peterlini T, Bourgeois A, et al. Mitochondrial HSP90 accumulation promotes vascular remodeling in pulmonary arterial hypertension[J]. Am J Respir Crit Care Med, 2018, 198(1):90-103.

[20] Li F, Song X, Su G, et al. AT-533, a Hsp90 inhibitor, attenuates HSV-1-induced inflammation[J]. Biochem Pharmacol, 2019, 166:82-92.

[21] Wande Y, Jie L, Aikai Z, et al. Berberine alleviates pulmonary hypertension through Trx1 and β-catenin signaling pathways in pulmonary artery smooth muscle cells[J]. Exp Cell Res, 2020, 390(1):111910.

[22] Yu XM, Wang L, Li JF, et al. Wnt5a inhibits hypoxia-induced pulmonary arterial smooth muscle cell proliferation by downregulation of β-catenin[J]. Am J Physiol Lung Cell Mol Physiol, 2013, 304(2):L103-L111.

[23] Li X, Xiang Y, Li F, et al. WNT/β-catenin signaling pathway regulating T cell-inflammation in the tumor microenvironment[J]. Front Immunol, 2019, 10:2293.

[24] Szulcek R, Happé CM, Rol N, et al. Delayed microvascular shear adaptation in pulmonary arterial hypertension. Role of platelet endothelial cell adhesion molecule-1 cleavage[J]. Am J Respir Crit Care Med, 2016, 193(12):1410-1420.

[25] Bhagwani A, Thompson AAR, Farkas L. When innate immunity meets angiogenesis-the role of toll-like receptors in endothelial cells and pulmonary hypertension[J]. Front Med (Lausanne), 2020, 7:352.

[26] Hashimoto-Kataoka T, Hosen N, Sonobe T, et al. Interleukin-6/interleukin-21 signaling axis is critical in the pathogenesis of pulmonary arterial hypertension[J]. Proc Natl Acad Sci U S A, 2015, 112(20):E2677-E2686.

[27] Rauff B, Malik A, Bhatti YA, et al. Association of viruses in the development of cardiovascular diseases[J]. Curr Pharm Des, 2021, 27(37):3913-3923.

[28] Liu H, Qiu K, He Q, et al. Mechanisms of blood-brain barrier disruption in herpes simplex encephalitis[J]. J Neuroimmune Pharmacol, 2019, 14(2):157-172.

[29] Hajjar DP, Pomerantz KB, Falcone DJ, et al. Herpes simplex virus infection in human arterial cells. Implications in arteriosclerosis[J]. J Clin Invest, 1987, 80(5):1317-1321.

[30] Skelly CL, He Q, Spiguel L, et al. Modulating vascular intimal hyperplasia using HSV-1 mutant requires activated MEK[J]. Gene Ther, 2013, 20(2):215-224.

[31] Guo W, Liu W, Chen Z, et al. Tyrosine phosphatase SHP2 negatively regulates NLRP3 inflammasome activation via ANT1-dependent mitochondrial homeostasis[J]. Nat Commun, 2017, 8(1):2168.

[32] Cheng Y, Yu M, Xu J, et al. Inhibition of Shp2 ameliorates monocrotaline-induced pulmonary arterial hypertension in rats[J]. BMC Pulm Med, 2018, 18(1):130.

[33] Yoo H, Park SH, Ye SK, et al. IFN-γ-induced BST2 mediates monocyte adhesion to human endothelial cells[J]. Cell Immunol, 2011, 267(1):23-29.

[34] Liu W, Cao Y, Guan Y, et al. BST2 promotes cell proliferation,migration and induces NF-κB activation in gastric cancer[J]. Biotechnol Lett, 2018, 40(7):1015-1027.

[35] Jin H, Zhang L, Wang S,et al. BST2 promotes growth and induces gefitinib resistance in oral squamous cell carcinoma via regulating the EGFR pathway[J]. Arch Med Sci, 2021, 17(6):1772-1782.

Screening and identification of molecular marker genes for pulmonary arterial hypertension

LI Jie1, LIU Cai-ying2, YAN Wen-wen1, SHEN Yu-qin1, XU Jin-yuan2, XU Guo-tong3, Lü Li-xia2, SONG Hao-ming1△

(1,,,,200065,;2,,,200092,;3,,,200092,)

To identify the key genes and related signaling pathways involved in the pathogenesis of pulmonary arterial hypertension (PAH), which can provide new targets for translational medicine research.GSE113439, GSE117261, GSE48149 and GSE53408 gene microarray datasets were extracted from Gene Expression Omnibus (GEO) database, and then 103 cases of PAH and 56 cases of healthy controls were identified after data screening for comparison analysis. NetworkAnalyst was used to screen differentially expressed genes (DEGs), and Enrichr and Metascape were used for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Moreover, protein-protein interaction (PPI) network was established using STRING and Cytoscape to identify the hub genes. Rat PAH model was constructed using monocrotaline, which was determined by measuring haemodynamic parameters and histomorphological observations. Changes in mRNA levels of candidate DEGs in lung tissues were validated by RT-qPCR.A total of 2 048 DEGs were obtained, in which 1 480 were up-regulated and 568 were down-regulated. These genes were mainly relevant to inflammation and proliferation, such as herpes simplex virus 1 infection, human papillomavirus infection and pathways in cancer.,,,andwere the most significant DEGs, and hub genes including,,,andwere also identified. Four weeks after the injection of monocrotaline, right ventricular systolic pressure (RVSP) and mean pulmonary arterial pressure (mPAP) of rats in PAH group were significantly higher compared to the control group (<0.05), and hematoxylin-eosin (HE) staining of lung tissues showed that the walls of small pulmonary arteries were significantly thickened (<0.01), which indicated PAH model was established successfully. The up-regulation of,,and, and down-regulation of,,andin PAH group were verified by RT-qPCR (<0.05), while the expression of,,andwere not significantly different (>0.05).Key genes involved in the development of PAH were identified, which were expected to provide new targets for translational medicine research.

Pulmonary arterial hypertension; Bioinformatics; Inflammation; Cell proliferation

R563; R363.2

A

10.3969/j.issn.1000-4718.2022.06.014

1000-4718(2022)06-1063-12

2021-12-13

2022-02-10

國家自然科學(xué)基金青年基金資助項(xiàng)目(No. 81700316)

Tel: 13004113931; E-mail: songhao-ming@163.com

(責(zé)任編輯:余小慧,宋延君)

猜你喜歡
野百合肺動脈線粒體
棘皮動物線粒體基因組研究進(jìn)展
線粒體自噬與帕金森病的研究進(jìn)展
81例左冠狀動脈異常起源于肺動脈臨床診治分析
肺動脈肉瘤:不僅罕見而且極易誤診
野百合的春天
賈玲:野百合也會有春天
海峽姐妹(2018年4期)2018-05-19 02:12:44
野百合
民族音樂(2018年4期)2018-01-24 22:12:47
野百合的春天
體外膜肺氧合在肺動脈栓塞中的應(yīng)用
肺癌合并肺動脈栓塞癥的CTA表現(xiàn)
西安市| 大同市| 丰顺县| 安宁市| 南川市| 商水县| 安福县| 宣化县| 怀化市| 图木舒克市| 保亭| 怀远县| 河东区| 颍上县| 商洛市| 原平市| 浙江省| 项城市| 防城港市| 鄯善县| 泰来县| 高安市| 拜泉县| 邢台县| 阿勒泰市| 察隅县| 临武县| 滨海县| 灵寿县| 郑州市| 沙河市| 铜梁县| 桂东县| 瓦房店市| 札达县| 张家港市| 宣威市| 彰化县| 榆林市| 华亭县| 浑源县|