李萬(wàn)鐘 鄧沖 徐建寧
(西安石油大學(xué)機(jī)械工程學(xué)院)
封隔器是在井筒中把不同油層和水層封隔并承受一定壓差的井下工具[1]。卡瓦式封隔器被廣泛應(yīng)用于分層試油、采油、找水和堵水等各個(gè)油田技術(shù)領(lǐng)域中[2]??ㄍ咴诜飧羝麇^定時(shí)起到支撐封隔器、鎖定膠筒的作用[3],是保證封隔器工作可靠性的重要元件之一。
油井套管屬于薄壁件,由于楔形面使卡瓦徑向擴(kuò)張、擠壓套管,在卡瓦牙與套管接觸面會(huì)形成咬痕,過(guò)大的嵌入深度有可能會(huì)導(dǎo)致套管被擠裂、失效、易被腐蝕[4],而且會(huì)嚴(yán)重影響封隔器的二次封隔,致使解封困難或無(wú)法解封。因此,在保證封隔器正常工作的情況下,降低卡瓦對(duì)套管壁的損傷程度,即減小卡瓦在套管上產(chǎn)生的牙痕深度,就要不斷對(duì)卡瓦進(jìn)行優(yōu)化[5]。
自然界的生物體表經(jīng)過(guò)三十多億年的演化發(fā)展[6],各種結(jié)構(gòu)奇特、性能卓越、功能優(yōu)異的表面結(jié)構(gòu)逐漸應(yīng)運(yùn)而生,已經(jīng)成為摩擦學(xué)科研人員重要的仿生研究對(duì)象。蛇類在快速移動(dòng)爬行時(shí),主要依靠覆瓦狀排列的腹鱗提供前進(jìn)的動(dòng)力。蛇在爬坡時(shí),其腹部鱗片會(huì)張開(kāi)一定的角度,增大與粗糙地面相對(duì)運(yùn)動(dòng)所產(chǎn)生的摩擦力。當(dāng)鱗片相對(duì)于地面的傾斜角度越大,摩擦力就越大,因而使蛇爬坡時(shí)能夠獲得足夠的前進(jìn)動(dòng)力[7]。
本文所研究的封隔器卡瓦牙通過(guò)模仿蛇腹部鱗片形狀,建立仿生鱗片齒卡瓦模型,運(yùn)用有限元數(shù)值模擬和正交優(yōu)化的方法得到其最佳牙型結(jié)構(gòu)參數(shù),并與常規(guī)齒卡瓦進(jìn)行對(duì)比,探究其應(yīng)力和形變規(guī)律,得到可減輕套管表面牙痕深度的仿生鱗片齒卡瓦。
根據(jù)接觸力學(xué)理論,法向接觸問(wèn)題可表述為:由于力垂直作用于兩個(gè)物體的表面而造成它們相互接觸[8]。在純法向接觸問(wèn)題中,假設(shè)接觸區(qū)域沒(méi)有摩擦力出現(xiàn),同時(shí)暫且忽略黏著力。
在研究單個(gè)卡瓦牙齒與套管的接觸問(wèn)題時(shí),可看作是兩個(gè)彈性體之間的接觸,其中將套管視作是一個(gè)彈性半空間體,如圖1所示。
圖1 常規(guī)卡瓦牙與彈性套管半空間體接觸Fig.1 Conventional slip tooth contact with elastic casing half space
由圖1的幾何關(guān)系可以得出:
(1)
式中:a1、a2為接觸半寬,mm;θ1、θ2為接觸夾角,(°);d為壓入深度,mm;l為接觸弧長(zhǎng),mm;Rt為套管內(nèi)半徑,mm;φ為接觸弧長(zhǎng)對(duì)應(yīng)的圓心角,(°)。
從圖1可以看出,接觸面為一個(gè)曲面,則接觸面積S為:
(2)
假設(shè)卡瓦牙與套管的接觸應(yīng)力分布在一個(gè)特征長(zhǎng)度為D(D=a1+a2)的有限表面區(qū)域內(nèi),則這個(gè)區(qū)域成為嚴(yán)重變形區(qū)域,如圖2所示。此時(shí),整個(gè)半空間體的總體變形和應(yīng)力與尺寸為D的體積在三維空間的總變形和應(yīng)力屬于同一數(shù)量級(jí)。這個(gè)體積(約為D3)就是能量和力分布的主要空間[8]。
圖2 彈性套管半空間體的嚴(yán)重變形區(qū)域Fig.2 Severe deformation region of elastic casing
于是應(yīng)變量ε為:
(3)
作用力F為:
(4)
式中:E*為等效彈性模量,MPa[8]。
式中:E1、E2分別為卡瓦和套管的彈性模量,MPa;υ1、υ2分別為卡瓦和套管的泊松比。
若彈性套管半空間體發(fā)生了塑性變形,σo≈3σc,則法向力FN為:
(5)
式中:σo為彈性套管半空間體的硬度,MPa;σc為彈性套管半空間體的屈服應(yīng)力,MPa。
同樣,將鱗片齒卡瓦牙與套管的接觸也看作是兩個(gè)彈性體之間的接觸,其接觸模型如圖3所示。
圖3 鱗片齒卡瓦牙與彈性套管半空間體接觸Fig.3 Scale slip tooth contact with elastic casing half space
從圖3可以看出,接觸面呈半橢圓形狀,則接觸面積S為:
(6)
假設(shè)卡瓦牙與套管的接觸應(yīng)力分布在一個(gè)特征長(zhǎng)度為D(D=a或D=2c)的有限表面區(qū)域內(nèi),則這個(gè)區(qū)域成為嚴(yán)重變形區(qū)域。
應(yīng)變量ε為:
(7)
鱗片狀卡瓦牙與彈性套管半空間體接觸的作用力F為:
(8)
式中:θ為接觸夾角,(°)。
在塑性區(qū)域,σo≈3σc,可以得到法向力FN為:
(9)
2.1.1 常規(guī)齒和仿生鱗片狀卡瓦牙型結(jié)構(gòu)參數(shù)對(duì)比
常規(guī)齒卡瓦牙型結(jié)構(gòu)參數(shù)如圖4所示。其中β為卡瓦牙傾角,α為卡瓦牙頂角,b為卡瓦牙寬,γ為卡瓦錐角。本文研究的卡瓦模型適用于?139.7 mm(5in)石油套管,套管壁厚7.72 mm。
圖4 常規(guī)齒卡瓦牙型結(jié)構(gòu)參數(shù)Fig.4 Structural parameters of conventional slip tooth
仿生鱗片齒卡瓦的牙型結(jié)構(gòu)參數(shù)如圖5所示。其中β′為卡瓦牙傾角,α′為卡瓦牙頂角,b′為卡瓦牙寬,γ′為卡瓦錐角。相比于常規(guī)齒卡瓦,仿生鱗片齒卡瓦增加了在鱗片齒齒高方向投影下的長(zhǎng)半軸R和短半軸r兩個(gè)參數(shù),且R=b′。當(dāng)r
圖5 仿生鱗片齒卡瓦牙型結(jié)構(gòu)參數(shù)Fig.5 Structural parameters of bionic scale slip tooth
2.1.2 常規(guī)齒和仿生鱗片齒卡瓦三維模型
分別建立封隔器常規(guī)齒卡瓦模型和仿生鱗片齒卡瓦模型,如圖6所示。
圖6 卡瓦三維有限元模型Fig.6 Three-dimensional finite element model of slips
建立如圖7所示的錐體、卡瓦、套管和剛性斜面體三維接觸模型。模擬實(shí)際工況中,錐體在外加載荷的作用下推動(dòng)卡瓦沿Y軸方向移動(dòng),當(dāng)達(dá)到預(yù)定坐封載荷時(shí),卡瓦牙咬入套管內(nèi)壁,坐封完成[1]。選取單瓣卡瓦并截取一定長(zhǎng)度和圓弧寬度的套管和錐體簡(jiǎn)化模型進(jìn)行有限元仿真,這樣可大大節(jié)省計(jì)算工作量和時(shí)間。錐體、卡瓦和套管的材料參數(shù)如表1所示。其中卡瓦的力學(xué)參數(shù)要大于套管的力學(xué)參數(shù)[9]。
圖7 錐體-卡瓦-套管三維接觸有限元模型Fig.7 Three-dimensional finite element model of contact between cone, slip and casing
表1 錐體、卡瓦和套管的材料參數(shù)Table 1 Material parameters of cone, slip and casing
卡瓦網(wǎng)格劃分如圖8所示。兩種齒狀卡瓦都采用C3D4(四節(jié)點(diǎn)線性四面體)單元進(jìn)行網(wǎng)格劃分,并且為確保計(jì)算精度,進(jìn)一步對(duì)卡瓦齒與套管接觸部分的網(wǎng)格進(jìn)行加密。
圖8 卡瓦網(wǎng)格劃分Fig.8 Mesh division of slips
錐體-卡瓦-套管三維接觸有限元模型的網(wǎng)格劃分和邊界條件設(shè)置如圖9所示。其中套管模型采用掃掠網(wǎng)格劃分技術(shù),錐體模型采用結(jié)構(gòu)化網(wǎng)格劃分技術(shù),均選擇C3D8R(八節(jié)點(diǎn)六面體線性減縮積分)單元;斜面體模型設(shè)置為剛體,在進(jìn)行網(wǎng)格劃分時(shí)采用Quad(四邊形)單元。由于實(shí)際工況中套管外壁用水泥漿固定,在套管外壁施加完全固定約束,在錐體上表面施加沿X方向的坐封載荷,并約束其內(nèi)表面在Y方向和Z方向的自由度,在楔形面的作用下使卡瓦咬緊套管。
圖9 錐體-卡瓦-套管三維模型網(wǎng)格劃分和邊界條件設(shè)置Fig.9 Mesh division and boundary conditions of three-dimensional contact between cone, slip and casing
卡瓦咬入套管過(guò)程屬于接觸非線性問(wèn)題,套管發(fā)生局部塑形變形屬于材料非線性問(wèn)題,故該變形過(guò)程屬于結(jié)構(gòu)非線性問(wèn)題[10]。錐體-卡瓦-套管三維接觸模型主要涉及卡瓦與套管、卡瓦與錐體和卡瓦與剛性斜面體的接觸,其法向接觸屬性均為“硬接觸”,切向接觸摩擦模型均為“庫(kù)侖摩擦”,并用摩擦因數(shù)來(lái)表示。
以卡瓦牙在套管內(nèi)表面產(chǎn)生的應(yīng)力和徑向位移U(即牙痕深度)作為目標(biāo)參量,把卡瓦牙傾角β′=90°和卡瓦錐角γ′=15°作為固定結(jié)構(gòu)參數(shù),利用有限元分析軟件分別對(duì)鱗片狀卡瓦牙頂角α′、長(zhǎng)半軸R和短半軸r幾個(gè)牙型結(jié)構(gòu)參數(shù)進(jìn)行了數(shù)值模擬優(yōu)化,以確定出最佳牙型結(jié)構(gòu)參數(shù)組合。
3.1.1 卡瓦牙頂角α′變化時(shí)目標(biāo)參量的變化規(guī)律
對(duì)錐體-卡瓦-套管系統(tǒng)開(kāi)展接觸非線性有限元計(jì)算,當(dāng)β′=90°、γ′=15°、R=r=5 mm時(shí),分別取卡瓦牙頂角α′=66°、68°、70°和72°,比較套管的Von Mises應(yīng)力值、徑向位移U值和卡瓦與套管的接觸面積S,數(shù)值模擬結(jié)果如表2所示。
表2 卡瓦牙頂角α′變化時(shí)目標(biāo)參量的變化規(guī)律Table 2 Change rule of target parameters with different slip tooth apex anglesα′
從表2可以看出,當(dāng)卡瓦牙頂角α′=70°時(shí),套管的徑向位移和Von Mises應(yīng)力最小。但從整體上看,卡瓦牙頂角的變化對(duì)套管的徑向位移和Von Mises應(yīng)力影響較小。同時(shí),隨著卡瓦牙頂角的逐漸增大,卡瓦與套管的接觸面積S逐漸減小。綜合分析,取α′=68°、70°和72°作為優(yōu)化卡瓦牙頂角。
3.1.2 卡瓦牙長(zhǎng)半軸R變化時(shí)目標(biāo)參量的變化規(guī)律
當(dāng)β′=90°、γ′=15°、α′=70°、r=5 mm時(shí),分別取R=5、6、7和8 mm,鱗片齒為半橢圓形,比較套管的Von Mises應(yīng)力值、徑向位移U值和卡瓦與套管的接觸面積S,數(shù)值模擬結(jié)果如表3所示。
表3 卡瓦牙長(zhǎng)半軸R變化時(shí)目標(biāo)參量的變化規(guī)律Table 3 Change rule of target parameters with different slip tooth long semi-axis R
從表3可以看出,當(dāng)卡瓦牙長(zhǎng)半軸R=5 mm時(shí),套管的徑向位移和Von Mises應(yīng)力最小,即卡瓦在套管上產(chǎn)生的牙痕深度最淺。同時(shí),隨著卡瓦牙長(zhǎng)半軸的逐漸增大,卡瓦與套管的接觸面積S逐漸增大。綜合分析,取R=5 mm作為優(yōu)化卡瓦牙長(zhǎng)半軸。
3.1.3 卡瓦牙短半軸r變化時(shí)目標(biāo)函數(shù)的變化規(guī)律
當(dāng)β′=90°、γ′=15°、α′=70°、R=5 mm時(shí),分別取r=3、4、5和6 mm,鱗片齒為半橢圓形,比較套管的Von Mises應(yīng)力值、徑向位移U值和卡瓦與套管的接觸面積S,數(shù)值模擬結(jié)果如表4所示。
表4 卡瓦牙短半軸r變化時(shí)目標(biāo)參量的變化規(guī)律Table 4 Change rule of target parameters with different slip tooth short semi-axis r
從表4可以看出:當(dāng)卡瓦牙短半軸r=3 mm時(shí),套管的Von Mises應(yīng)力最?。划?dāng)卡瓦牙短半軸r=4 mm時(shí),套管的徑向位移最小,即卡瓦在套管上產(chǎn)生的牙痕深度最淺。同時(shí),隨著卡瓦牙短半軸的逐漸增大,卡瓦與套管的接觸面積S幾乎不變。綜合分析,取r=3和4 mm作為優(yōu)化卡瓦牙短半軸。本文中所考慮的J55套管材料為彈塑性本構(gòu)模型,根據(jù)塑性增量(塑性流動(dòng))理論,由于載荷繼續(xù)的增大,材料經(jīng)過(guò)屈服階段后又會(huì)恢復(fù)抵抗變形的能力,即發(fā)生了加工硬化。此時(shí)材料會(huì)產(chǎn)生新的彈性和塑性變形,隨著塑性變形的發(fā)生,屈服應(yīng)力會(huì)增大形成新的屈服面。因此在有限元模擬中套管內(nèi)表面會(huì)出現(xiàn)大于材料屈服極限的應(yīng)力。
對(duì)上述所選出的卡瓦牙傾角、卡瓦牙長(zhǎng)半軸和短半軸的優(yōu)化牙型結(jié)構(gòu)參數(shù)進(jìn)行組合,結(jié)果如表5所示。
表5 牙型結(jié)構(gòu)參數(shù)組合Table 5 Combinations of tooth structural parameters
從組合1到組合6的各參數(shù)對(duì)套管最大Von Mises應(yīng)力、套管最大徑向位移影響的變化曲線如圖10所示。
從圖10可以明顯看出,組合順序號(hào)3各參數(shù)下的套管最大Von Mises應(yīng)力值和套管最大徑向位移值最小,即在β′=90°和γ′=15°為固定結(jié)構(gòu)參數(shù)下,R=5 mm、r=3 mm和α′=72°是仿生鱗片齒卡瓦最佳牙型結(jié)構(gòu)參數(shù)組合。
圖10 不同組合序號(hào)下套管最大Von Mises應(yīng)力和最大徑向位移的變化曲線Fig.10 Variation curves of maximum Von Mises stress and maximum radial displacement of casing with different combination numbers
卡瓦抱緊套管時(shí),卡瓦牙擠壓套管并咬入套管壁中,牙齒在套管表面留下了紋理清晰的咬痕,當(dāng)載荷達(dá)到一定值時(shí),咬痕部位會(huì)發(fā)生塑性變形[11]。已有文獻(xiàn)優(yōu)化得出常規(guī)齒卡瓦最優(yōu)結(jié)構(gòu)參數(shù)組合為:β=85°,α=75°,b=8 mm,γ=15°[12]。由3.1節(jié)優(yōu)化出的仿生鱗片齒卡瓦最佳結(jié)構(gòu)參數(shù)組合為:β′=90°、γ′=15°、R=5 mm、r=3 mm和α′=72°。對(duì)優(yōu)化后的兩種卡瓦分別開(kāi)展有限元數(shù)值模擬仿真,得到卡瓦的Von Mises應(yīng)力云圖,如圖11所示。套管的Von Mises應(yīng)力云圖和徑向位移U云圖,分別如圖12和圖13所示。
圖11 不同卡瓦的Von Mises應(yīng)力云圖Fig.11 Cloud chart of Von Mises stress of different slips
圖12 不同卡瓦咬合套管的Von Mises應(yīng)力云圖Fig.12 Cloud chart of Von Mises stress on casing with different slips
圖13 不同卡瓦咬合套管徑向位移U云圖Fig.13 Cloud chart of radial displacement Uof casing with different slips
從圖11可以明顯看出卡瓦牙齒受力的非均勻性,兩種卡瓦與錐體接觸端的齒所承受的應(yīng)力非常大,最大Von Mises應(yīng)力達(dá)到約835 MPa,同時(shí),越遠(yuǎn)離錐形面的齒所承受的應(yīng)力越小。
由圖12和圖13可知,兩種齒狀卡瓦在套管上產(chǎn)生的應(yīng)力和變形也同樣遵循從右往左依次減小的規(guī)律。經(jīng)對(duì)比發(fā)現(xiàn):優(yōu)化結(jié)構(gòu)參數(shù)后的仿生鱗片齒卡瓦在套管上產(chǎn)生的最大Von Mises應(yīng)力為728.55 MPa,小于常規(guī)齒卡瓦在套管上產(chǎn)生的最大Von Mises應(yīng)力789.99 MPa;經(jīng)優(yōu)化結(jié)構(gòu)參數(shù)的仿生鱗片齒卡瓦咬合套管后且在套管上產(chǎn)生的最大徑向位移,即牙痕深度為0.250 6 mm,小于常規(guī)齒卡瓦在套管上產(chǎn)生的牙痕深度0.308 0 mm。由此可以得出結(jié)論:優(yōu)化結(jié)構(gòu)參數(shù)之后的仿生鱗片齒卡瓦比經(jīng)優(yōu)化后的常規(guī)齒卡瓦在套管內(nèi)表面產(chǎn)生的應(yīng)力和牙痕深度要小,且應(yīng)力減小了7.8%,牙痕深度減小了18.6%,證明優(yōu)化牙型結(jié)構(gòu)參數(shù)后的仿生鱗片齒卡瓦具有減輕牙痕的作用。
卡瓦作為封隔器的關(guān)鍵部件,既要確保坐封的穩(wěn)定性,又要滿足一定的錨定效果及承壓能力[13-14]??ㄍ吲c套管之間的接觸行為是本文研究的重點(diǎn),兩接觸面間的摩擦因數(shù)是影響封隔器錨定效果的重要因素,通過(guò)有限元模擬探究卡瓦與套管接觸面摩擦因數(shù)f分別為0.10、0.15、0.20、0.25、0.30、0.35和0.40時(shí),卡瓦對(duì)套管內(nèi)壁應(yīng)力和應(yīng)變的影響,以及對(duì)卡瓦與套管接觸壓力的合力(CFN)、摩擦應(yīng)力的合力(CFS)和接觸面積(CAREA)的影響。
改變優(yōu)化結(jié)構(gòu)參數(shù)后的常規(guī)齒和仿生鱗片齒卡瓦與套管接觸面的摩擦因數(shù),其在套管上產(chǎn)生的最大Von Mises應(yīng)力和最大徑向位移U值的變化曲線如圖14所示。
圖14 不同摩擦因數(shù)對(duì)卡瓦與套管接觸的應(yīng)力和位移的影響Fig.14 Influence of friction coefficient on stress and displacement between casing and slip
從圖14可以看出:對(duì)于常規(guī)齒卡瓦,摩擦因數(shù)的改變對(duì)套管的最大Von Mises應(yīng)力和徑向位移的影響較大;隨著卡瓦與套管接觸面摩擦因數(shù)的增大,套管的最大Von Mises應(yīng)力和徑向位移也逐漸增大。而對(duì)于仿生鱗片齒卡瓦,摩擦因數(shù)的變化對(duì)套管最大Von Mises應(yīng)力和徑向位移的影響較小,這說(shuō)明仿生鱗片齒卡瓦比常規(guī)齒卡瓦的穩(wěn)定性好。
改變優(yōu)化結(jié)構(gòu)參數(shù)后的常規(guī)齒和仿生鱗片齒卡瓦與套管接觸面的摩擦因數(shù)f,得到不同摩擦因數(shù)下卡瓦與套管接觸壓力的合力(CFN)、摩擦應(yīng)力的合力(CFS)和接觸面積(CAREA)與接觸時(shí)間的關(guān)系曲線,如圖15~圖17所示。
圖15 不同摩擦因數(shù)下卡瓦與套管接觸壓力的合力Fig.15 Resultant force of contact pressure between slip and casing with different friction coefficients
圖16 不同摩擦因數(shù)下卡瓦與套管摩擦應(yīng)力的合力Fig.16 Resultant force of friction stress between slip and casing with different friction coefficients
圖17 不同摩擦因數(shù)下卡瓦與套管的接觸面積Fig.17 Contact area between slip and casing with different friction coefficients
由圖15和圖16可知:常規(guī)齒卡瓦與套管接觸壓力的合力、摩擦應(yīng)力的合力都隨時(shí)間的延長(zhǎng)以近似拋物線的形式增大,增長(zhǎng)曲線易出現(xiàn)波動(dòng);仿生鱗片齒卡瓦與套管接觸壓力的合力起初以近似線性趨勢(shì)快速增大,之后增大趨勢(shì)處于平穩(wěn)減緩狀態(tài),增長(zhǎng)曲線平滑且穩(wěn)定,摩擦應(yīng)力的合力曲線也同樣如此。從圖17可以看出,在卡瓦牙齒與套管接觸時(shí),常規(guī)齒卡瓦與套管的接觸面積起初以近指數(shù)形式迅速增大,然后迅速出現(xiàn)一段平穩(wěn)過(guò)渡,之后接觸面積呈不同的曲線形式增大,表現(xiàn)出明顯的不穩(wěn)定性;仿生鱗片齒卡瓦與套管的接觸面積先以近似線性快速增大,之后增大趨勢(shì)平穩(wěn)減緩。
摩擦因數(shù)的增大對(duì)卡瓦與套管接觸壓力的合力和接觸面積有一定的影響,且影響呈下降的趨勢(shì)。顯然,隨著摩擦因數(shù)的增大,摩擦應(yīng)力的合力也隨之增大。綜上所述,進(jìn)一步說(shuō)明了仿生鱗片齒卡瓦的穩(wěn)定性優(yōu)于常規(guī)齒卡瓦。
(1)建立了常規(guī)卡瓦牙和仿生鱗片卡瓦牙與彈性套管半空間體接觸模型,推導(dǎo)出在彈性區(qū)域和塑性區(qū)域內(nèi)卡瓦牙與套管相互作用力F和壓入深度d的數(shù)學(xué)關(guān)系式。
(2)對(duì)比常規(guī)齒卡瓦的牙型結(jié)構(gòu)參數(shù),構(gòu)建仿生鱗片齒卡瓦的牙型結(jié)構(gòu)參數(shù),建立了錐體-卡瓦-套管三維接觸有限元模型,并利用有限元數(shù)值模擬對(duì)仿生鱗片齒卡瓦的牙型結(jié)構(gòu)參數(shù)進(jìn)行正交優(yōu)化,得出仿生鱗片齒卡瓦的牙型最佳結(jié)構(gòu)參數(shù)為:β′=90°、γ′=15°、R=5 mm、r=3 mm、α′=72°。優(yōu)化后的仿生鱗片齒卡瓦比優(yōu)化后的常規(guī)齒卡瓦在套管內(nèi)表面產(chǎn)生的應(yīng)力和牙痕深度要小,且應(yīng)力減小了7.8%,牙痕深度了減小18.6%,證明了仿生鱗片齒卡瓦的微牙痕效果。
(3)通過(guò)改變卡瓦與套管接觸面的摩擦因數(shù),由數(shù)值模擬得出,對(duì)于常規(guī)齒卡瓦,摩擦因數(shù)的改變對(duì)套管的應(yīng)力和變形的影響較大,而對(duì)于仿生鱗片齒卡瓦,摩擦因數(shù)的改變對(duì)套管的應(yīng)力和變形的影響較小。對(duì)比常規(guī)齒卡瓦和仿生鱗片齒卡瓦分別咬合套管時(shí),仿生鱗片齒卡瓦與套管接觸壓力的合力、摩擦應(yīng)力的合力和接觸面積與接觸時(shí)間的關(guān)系曲線明顯比常規(guī)齒卡瓦要更平滑且變化趨勢(shì)更平穩(wěn)。