黃秋艷 楊燁城 張昆麗 孟繁明 李劍豪 朱向星 王塑天 唐冬生
摘要:【目的】闡明干擾素基因刺激因子(STING)在豬抗病原微生物感染中的作用機制,為豬傳染性胃腸炎、流行性腹瀉和豬偽狂犬病等病毒性疾病的科學(xué)防控提供參考依據(jù)?!痉椒ā炕贑RISPR/Cas9技術(shù),在STING基因第4、第8外顯子中尋找高分靶點并設(shè)計sgRNA序列,將退火的sgRNA與酶切的LentiCRISPRv2載體用T4 DNA連接酶連接以獲得LentiCRISPRv2-STING-sgRNA慢病毒載體(STING-sgRNA);以不同的STING-sgRNA慢病毒載體組合及包裝質(zhì)粒psPAX2和包膜質(zhì)粒pMD2.G共同轉(zhuǎn)染293T細胞,得到含sgRNA的慢病毒再轉(zhuǎn)染3D4/21細胞;經(jīng)嘌呤霉素篩選和有限稀釋法獲得單克隆細胞株,通過PCR、測序及Western blotting鑒定STING基因的敲除效果;并采用實時熒光定量PCR驗證STING基因敲除對I型干擾素表達的影響?!窘Y(jié)果】以不同的STING-sgRNA慢病毒載體組合與HA-STING過表達載體共同轉(zhuǎn)染293T細胞,均能在細胞內(nèi)對STING真核表達載體產(chǎn)生編輯效果,且以STING-sgRNA(1+5)慢病毒載體組合的編輯效率最高。以編輯效率最高的STING-sgRNA(1+5)慢病毒載體組合及包裝質(zhì)粒psPAX2和包膜質(zhì)粒pMD2.G共同轉(zhuǎn)染293T細胞包裝出慢病毒,再用慢病毒感染3D4/21細胞,結(jié)果獲得1株STING基因大片段(4989 bp)缺失的3D4/21細胞株,Western blotting檢測未發(fā)現(xiàn)STING蛋白,說明STING基因敲除3D4/21細胞(3D4/21-STING-/-)構(gòu)建成功。與野生型3D4/21細胞相比,在轉(zhuǎn)染副豬嗜血桿菌DNA刺激下,3D4/21-STING-/-細胞中的IFN-β基因轉(zhuǎn)錄水平顯著降低(P<0.05)?!窘Y(jié)論】采用CRISPR/Cas9技術(shù)能成功大片段敲除3D4/21細胞中的STING基因,而導(dǎo)致STING基因功能喪失;STING基因敲除會導(dǎo)致細胞在病原微生物DNA刺激時I型干擾素轉(zhuǎn)錄障礙,也提示STING基因可能是豬抗病原微生物感染的關(guān)鍵因子。
關(guān)鍵詞:CRISPR/Cas9;STING基因;豬肺泡巨噬細胞;基因敲除;I型干擾素
中圖分類號:S852.43? ? ? ? ? ? ? ? ? ? ? ? ? 文獻標(biāo)志碼: A 文章編號:2095-1191(2022)04-0891-08
STING gene knockout pig alveolar macrophage cell model constructed by CRISPR/Cas9 technology and its effect on type I
interferon transcription
HUANG Qiu-yan1,2, YANG Ye-cheng1,2, ZHANG Kun-li3, MENG Fan-ming2,
LI Jian-hao2, ZHU Xiang-xing1, WANG Su-tian2*, TANG Dong-sheng1*
(1School of Life Science and Engineering, Foshan University/Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding/Guangdong Provincial Research Center of Gene Editing Engineering Technology, Foshan,Guangdong? 528225, China; 2Institute of Animal Science,Guangdong Academy of Agricultural Sciences/State Key Laboratory of Livestock and Poultry Breeding/Guangdong Key Laboratory of Animal Breeding and Nutrition,Guangzhou,Guangdong? 510610, China; 3Institute of Animal Health, Guangdong Agricultural Science/Key Laboratory of Livestock Disease Prevention of Guangdong Province/Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs,
Guangzhou, Guangdong? 510640, China)
Abstract:【Objective】To elucidate the mechanism of interferon gene stimulating factor (STING) in the anti-pathogenic microbial infection of pigs, so as to further provide a reference for the scientific prevention and control of viral diseases such as porcine transmissible gastroenteritis, epidemic diarrhea and porcine pseudorabies. 【Method】High-scored targets were found in exons 4 and 8 of STING gene and corresponding sgRNA sequences were designed based on CRISPR/Cas9 technology. The annealed sgRNAs were linked with the enzyme digested LentiCRISPRV2 carrier with T4 DNA ligase to obtain LentiCRISPRV2-STING-sgRNA lentivirus carrier (STING-sgRNA); Different combinations of STING sgRNA lentivirus carriers, packaging plasmid psPAX2 and envelope plasmid pMD2.G were transfected into 293T cells to obtain lentivirus containing sgRNA and then transduced into 3D4/21 cells. Monoclonal cell lines were obtained by puromycin screening and limited dilution method. The knockout efficiencies of the STING gene were identified by PCR amplification, Sequencing and Western blotting; The effect of STING gene knockout on the expression of type I interferon was verified by real-time fluorescent quantitative PCR. 【Result】When 293T cells were transfected with different combinations of STING-sgRNA lentivirus carrier and HA-STING over expression vector, the editing effect of STING eukaryotic expression carrier could be detected in cells, and the combination of STING-sgRNA(1+5) lentivirus carrier showed the supreme editing efficiency. Thus, the STING-sgRNA(1+5) lentivirus carrier combined with the packaging plasmid psPAX2 and the envelope plasmid pMD2.G were transfected 293T cells to package lentivirus, and then infected 3D4/21 cells with lentivirus. The results showed that a 3D4/21 cell line with a large deletion of the STING gene (4989 bp) was obtained. The STING protein was not observed by Western blotting, indicating that the STING gene knockout 3D4/21 cells (3D4/21-STING-/-) were successfully constructed. The transcription level of IFN-β in 3D4/21-STING-/- cells decreased significantly (P<0.05) compared with parental cells when stimulated by transfection of Haemophilusparasuis DNA. 【Conclusion】By applying CRISPR/Cas9 technology, STING gene is successfully knock out in 3D4/21 cells, resulting in loss of function of STING gene; STING knockout leads to the transcription disorder of type I interferon when cells are stimulated by DNA, which also suggests that STING gene may be a key factor in the anti-pathogenic microbial infection of pigs.
Key words: CRISPR/Cas9; STING gene; pig alveolar macrophage cell 1cells; gene knockout; type I interferon transeniplion
Foundation items: National Natural Science Foundation of China (32002153,32002298);Guangzhou Basic and Application of Basic Research Project (202102020177);Guangdong Academy of Agricultural Sciences Scientific Innovation Strategy Special Fund (R2019YJ-YB2004)
0 引言
【研究意義】干擾素基因刺激因子(Stimulator of interferon genes,STING)又名TMEM173、MITA、ERIS或MPYS,是一種與內(nèi)質(zhì)網(wǎng)相關(guān)的信號分子,編碼379個氨基酸殘基,蛋白分子量約42 kD,N端包含4~5個跨膜結(jié)構(gòu)域,C端含有1個球狀的C端結(jié)構(gòu)域(Ishikawa and Barber,2008)。STING是天然免疫通路cGAS-STING中的重要銜接蛋白,在各種組織器官及免疫相關(guān)巨噬細胞、樹突狀細胞和上皮細胞中以二聚體的形式進行表達(Sun et al.,2009;Xie et al.,2010)。I型干擾素介導(dǎo)的先天免疫反應(yīng)是機體抵抗病原微生物入侵的第一道防線,在宿主感染炎癥的早期階段,巨噬細胞在炎癥性疾病中會產(chǎn)生IL-6、IL-1β和TNF-α等細胞因子(Ma et al.,2019;Xu et al.,2019),而這些細胞因子在炎癥過程中發(fā)揮著重要調(diào)節(jié)作用。當(dāng)宿主受到嚴重感染時,免疫反應(yīng)應(yīng)答產(chǎn)生IL-6、IL-1β和TNF-α等細胞因子,有利于控制宿主自身免疫性疾病和炎癥相關(guān)腫瘤發(fā)生的病理狀況(Du et al.,2013)。鑒于IFN-β具有抗炎特性,可用于自身免疫疾病、炎癥紊亂等疾病的治療。因此,通過STING基因敲除研究其對IFN-β的影響,對揭示STING蛋白激活的信號轉(zhuǎn)導(dǎo)在體內(nèi)微生物清除中的作用機理具有重要意義?!厩叭搜芯窟M展】STING是2008年發(fā)現(xiàn)的一種可激活先天性免疫反應(yīng)的胞內(nèi)蛋白(Sun et al.,2009)。當(dāng)病原微生物感染細胞后,病原微生物的基因組DNA釋放進入細胞質(zhì),與細胞質(zhì)中的環(huán)磷酸鳥苷—腺苷(cGAMP)合成酶cGAS結(jié)合,活化的cGAS催化ATP-GTP產(chǎn)生cGAMP,進而激活STING。STING能識別細菌自身合成的環(huán)二核苷酸(CDNs),使I型干擾素在細胞和個體水平上受到顯著影響(Deng et al.,2014)。Ahn等(2012)研究發(fā)現(xiàn),采用氧化偶氮甲烷(AOM)和耐氧化葡聚糖鈉(DSS)處理STING缺陷的小鼠以模仿MYD88缺失,STING缺失小鼠對潰瘍性結(jié)腸炎癌變(CAC)更敏感。West等(2015)研究表明,病毒誘導(dǎo)的線粒體DNA應(yīng)激會導(dǎo)致mtDNA泄漏到細胞質(zhì)中并激活STING途徑和細胞因子的產(chǎn)生。此外,AOM誘導(dǎo)的DNA損傷能活化STING而誘導(dǎo)細胞因子產(chǎn)生(Irrazábal et al.,2014);而具有STING獲得性功能變化的患者常伴有血管病變,STING識別病變產(chǎn)生的cGAMP從而激活干擾素(Warner et al.,2017)。脫氧核糖核酸酶II(DNase II)是一種存在于溶酶體中的生物酶,能清除死亡細胞和細胞核排出的DNA,DNase II缺失會增加STING信號的激活和I型干擾素的產(chǎn)生,從而引起系統(tǒng)性自身炎癥(Yoshida et al.,2005;Ahn et al.,2012;Rodero et al.,2017)。近年來,CRISPR/Cas9技術(shù)已廣泛應(yīng)用于動物的基因組編輯,尤其是疾病治療及疾病模型構(gòu)建等方面(Lei et al.,2018;Bao et al.,2019)?;蚓庉嬍蔷_操縱細胞內(nèi)DNA序列以改變細胞命運和生物體特性的技術(shù),有效提高了研究者對遺傳學(xué)的認識,并為治療遺傳性疾病提供了重要工具。研究表明,利用CRISPR/Cas9介導(dǎo)的同源重組HR方法將小鼠解偶聯(lián)蛋白1(UCP1)有效連接至豬內(nèi)源性UCP1基因座中,能得到UCP1基因敲入豬(Zheng et al.,2017);以CRISPR/Cas9介導(dǎo)的基因編輯進行MSTN基因雙敲除,然后進行體細胞核移植,成功獲得MSTN基因雙敲豬(Zhu et al.,2020)?!颈狙芯壳腥朦c】STING基因在病原菌微生物感染過程中至關(guān)重要,其激活產(chǎn)生的信號轉(zhuǎn)導(dǎo)會進一步誘導(dǎo)IFN-β產(chǎn)生,但至今鮮見利用CRISPR/Cas9技術(shù)探索STING基因發(fā)揮抗病功能的相關(guān)研究報道?!緮M解決的關(guān)鍵問題】利用CRISPR/Cas9技術(shù)構(gòu)建STING基因敲除豬肺泡巨噬細胞系,并在此基礎(chǔ)上研究STING基因敲除對病原微生物DNA刺激的影響,旨在闡明豬抗病原微生物感染的分子機制,為豬傳染性胃腸炎、流行性腹瀉和豬偽狂犬病等病毒性疾病的科學(xué)防控提供參考依據(jù)。
1 材料與方法
1. 1 試驗材料
豬肺泡巨噬細胞系(3D4/21)和HEK-293T細胞由畜禽育種國家重點實驗室保存提供;LentiCRISPRv2載體購自Addgene公司;包裝質(zhì)粒psPAX2和包膜質(zhì)粒pMD2.G購自Sigma公司;質(zhì)粒中提(D6915)、大提(D6926)試劑盒購自O(shè)MEGA公司;DNA膠回收試劑盒(DP214-02)、細胞/細菌/酵母基因組DNA提取試劑盒(DP302-02)及大腸桿菌DH5α感受態(tài)細胞(CB101)購自天根生化科技(北京)有限公司;脂質(zhì)體轉(zhuǎn)染試劑盒(Lipo293)、BCA蛋白濃度測定試劑盒(P0010)及ECL化學(xué)發(fā)光液(P0018)購自碧云天生物技術(shù)有限公司;Lipofectamine 3000轉(zhuǎn)染試劑(L3000015)購自Invitrogen公司;DMEM高糖培養(yǎng)基、澳洲胎牛血清及Opti-MEM培養(yǎng)基購自Gibco公司;限制性內(nèi)切酶Bsmb I(#R0739L)和T4 DNA連接酶(#M0202L)購自NEB公司。
1. 2 試驗方法
1. 2. 1 引物設(shè)計與合成 登錄https://www.ncbi.nlm. nih.gov/,拷貝豬STING基因序列(GenBank登錄號ACJ70708.1),在STING基因第4、第8號外顯子中尋找高分靶點并設(shè)計sgRNA序列。根據(jù)sgRNA序列設(shè)計退火引物(表1),再根據(jù)sgRNA位置設(shè)計擴增該片段的引物(表2),所有引物均委托生工生物工程(上海)股份有限公司合成。
1. 2. 2 LentiCRISPRv2線性化載體制備 將設(shè)計好的STING基因5對sgRNA上、下游引物(表1)進行退火雜交,退火體系:Oligo-1 9.0 μL,Oligo-2 9.0 μL,T4 DNA Buffer 2.0 μL分別進行退火,退火條件:95 ℃ 10 min;95~45 ℃,每2 min下降1 ℃;45~16 ℃,每1 min下降1 ℃。退火后即獲得雙鏈DNA。同時,采用限制性內(nèi)切酶Bsmb I對LentiCRISPRv2載體進行酶切,酶切反應(yīng)體系:LentiCRISPRv2載體1.0 μg,Bsmb I 2.0 μL,Buffer 3-1 5.0 μL,ddH2O補足至50.0 μL;酶切條件:37 ℃孵育15 min。所有酶切產(chǎn)物以1.0%瓊脂糖凝膠電泳進行檢測,切割并回收目的條帶,純化的LentiCRISPRv2線性化載體-20 ℃保存?zhèn)溆谩?/p>
1. 2. 3 LentiCRISPRv2-STING-sgRNA慢病毒載體構(gòu)建及驗證 以T4 DNA連接酶連接LentiCRISPRv2線性化載體與退火引物,轉(zhuǎn)化DH5α感受態(tài)細胞后接種至含氨芐青霉素(Amp)的LB培養(yǎng)基上培養(yǎng)過夜,挑選單個菌落,接種至含Amp的LB液體培養(yǎng)基中繼續(xù)培養(yǎng)。經(jīng)菌液PCR鑒定,選取鑒定正確的菌液以去內(nèi)毒素質(zhì)粒提取試劑盒提取質(zhì)粒,將PCR鑒定呈陽性的重組質(zhì)粒送至生工生物工程(上海)股份有限公司測序。測序正確重組質(zhì)粒對應(yīng)的菌液擴大培養(yǎng)16 h后,采用去內(nèi)毒素質(zhì)粒試劑盒提取質(zhì)粒,并按照順序分別命名為LentiCRISPRv2-STING-sgRNA1(STING-sgRNA1)、LentiCRISPRv2-STING-sgRNA2(STING-sgRNA2)、LentiCRISPRv2-STING-sgRNA3(STING-sgRNA3)、LentiCRISPRv2-STING-sgRNA4(STING-sgRNA4)和LentiCRISPRv2-STING-sgRNA5(STING-sgRNA5),-20 ℃保存?zhèn)溆谩?/p>
1. 2. 4 不同sgRNA對STING基因敲除效率檢測 使用完全培養(yǎng)基(DMEM+10% FBS+1% PS)培養(yǎng)293T細胞,待細胞生長匯合度達60%~70%時進行瞬時轉(zhuǎn)染,共設(shè)7個組:HA-STING+STING-sgRNA(1+4),HA-STING+STING-SgRNA(1+5),HA-STING+STING-sgRNA(2+4),HA-STING+STING-sgRNA(2+5),HA-STING+STING-sgRNA(3+4),HA-STING+STING-gRNA(3+5),HA-STING+LentiCRISPRv2(陽性對照),LentiCRISPRv2(陰性對照)。轉(zhuǎn)染試劑A:125.0 μL Opti-MEM培養(yǎng)基與5.0 μL Lipo293?轉(zhuǎn)染試劑混合;轉(zhuǎn)染試劑B:125.0 μL Opti-MEM培養(yǎng)基中加入2.0 μg STING-sgRNA慢病毒載體和0.5 μg HA-STING質(zhì)?;蚩蛰d體質(zhì)粒。將轉(zhuǎn)染試劑A與轉(zhuǎn)染試劑B混合后在室溫下孵育15 min,然后加入6孔培養(yǎng)板的培養(yǎng)基中,混勻,37 ℃繼續(xù)培養(yǎng)24 h后加入RIPA裂解細胞收集蛋白。采用BCA法測定總蛋白水平,經(jīng)聚丙烯酰胺凝膠電泳分離后轉(zhuǎn)膜(250 mA,90 min),以檢測HA-STING蛋白的表達水平。轉(zhuǎn)膜結(jié)束后,用TBST緩沖液洗膜3次,每次10 min;5%脫脂奶粉常溫搖床上封閉2 h,加入以1%脫脂奶粉配制的特異性HA抗體(1∶1000),4 ℃孵育過夜;收集一抗凍存,用TBST緩沖液洗膜3次,每次10 min;加入以1.0%脫脂奶粉配制的辣根過氧化物酶(HRP)標(biāo)記山羊抗兔二抗(1∶5000),室溫搖床上孵育1 h,再用TBST緩沖液洗膜3次,每次5 min;加入電化學(xué)發(fā)光液后曝光,以GAPDH為內(nèi)參基因。
1. 2. 5 STING-sgRNA慢病毒包裝 轉(zhuǎn)染前1 d,接種293T細胞至10 cm培養(yǎng)皿中,以轉(zhuǎn)染當(dāng)天的細胞匯合度達90%為宜,轉(zhuǎn)染前更換10 mL新鮮完全培養(yǎng)基(含10%血清的DMEM)。通過Lipo293將STING-sgRNA重組質(zhì)粒與包裝質(zhì)粒psPAX2和包膜質(zhì)粒pMD2.G共轉(zhuǎn)染293T細胞,置于37 ℃的CO2培養(yǎng)箱中繼續(xù)培養(yǎng),分別于第36和48 h時收集細胞上清液,3000 r/min離心10 min,去除細胞碎片,收集病毒原液上清液,4 ℃下30000 r/min離心2 h;然后以3 mL PBS重懸病毒,分裝,-80 ℃保存?zhèn)溆谩?/p>
1. 2. 6 慢病毒感染3D4/21細胞及抗性篩選 復(fù)蘇液氮凍存的3D4/21細胞,待生長穩(wěn)定后以每孔1.5×105個細胞傳代于6孔培養(yǎng)板中,恒溫培養(yǎng)箱培養(yǎng)過夜;取出-80 ℃超低溫保存的病毒液,4 ℃融化后加入DMEM培養(yǎng)基,混勻,按要求加入6孔培養(yǎng)板中,以純的DMEM培養(yǎng)基為空白對照。病毒感染24 h后,去除細胞上清液,更換新鮮的DMEM培養(yǎng)基,繼續(xù)培養(yǎng)6~8 h后更換為含嘌呤霉素的完全培養(yǎng)基進行篩選,每隔2 d更換含Puro的培養(yǎng)基,持續(xù)藥篩7 d,待空白對照組的細胞全部死亡,試驗組使用含Puro的培養(yǎng)基繼續(xù)培養(yǎng)。采用有限稀釋法篩選單克隆細胞系,單克隆細胞系經(jīng)擴大培養(yǎng)后,選擇部分細胞提取DNA,并以STING-F1/STING-R1引物進行PCR擴增,若1.0%瓊脂糖凝膠電泳出現(xiàn)195 bp的目的條帶即可判定該細胞存在STING基因大片段缺失,反之則不出現(xiàn)任何條帶。為進一步確定出現(xiàn)PCR擴增陽性結(jié)果的細胞株為STING基因大片段缺失細胞株,將PCR擴增產(chǎn)物送至生工生物工程(上海)股份有限公司測序,測序結(jié)果與野生型參考序列進行對比,以確定是否在2個靶點間發(fā)生大片段缺失。同時,對陽性單克隆細胞繼續(xù)培養(yǎng)并提取蛋白,以STING(1∶1000,CST)和GAPDH(1∶5000,Affinity)為一抗,通過Western blotting檢測STING基因敲除效率,并以野生型3D4/21細胞為對照。
1. 2. 7 豬STING基因敲除對IFN-β基因轉(zhuǎn)錄的影響
將副豬嗜血桿菌H45接種至TSA培養(yǎng)基中進行擴大培養(yǎng),采用細菌基因組DNA提取試劑盒提副豬嗜血桿菌DNA,取5 ng/mL的副豬嗜血桿菌DNA分別轉(zhuǎn)染野生型3D4/21細胞和STING基因敲除3D4/21細胞(3D4/21-STING-/-)。轉(zhuǎn)染16 h后提取細胞RNA,反轉(zhuǎn)錄合成cDNA,通過實時熒光定量PCR檢測細胞中的IFN-β基因表達情況。實時熒光定量PCR的引物為IFN-β-F(5'-GTGGAACTTGATGGGCAGAT-3')和IFN-β-R(5'-TTCCTCCTCCATGATTTCCTC-3');擴增程序:95 ℃預(yù)變性30 s;95 ℃ 5 s,60 ℃ 30 s,進行40個循環(huán)。
1. 3 統(tǒng)計分析
試驗數(shù)據(jù)采用SPSS 20.0進行Student?s t 檢驗及單因素方差分析(One-way ANOVA)。
2 結(jié)果與分析
2. 1 STING-sgRNA慢病毒載體的構(gòu)建及驗證結(jié)果
經(jīng)限制性內(nèi)切酶Bsmb I酶切后的LentiCRISPRv2載體與退火的sgRNA進行連接,以構(gòu)建STING-sgRNA慢病毒載體(圖1)。為確認STING-sgRNA慢病毒載體是否構(gòu)建成功,將其送至生工生物工程(上海)股份有限公司測序,測序結(jié)果(圖2)與插入的sgRNA序列信息符合,說明STING-sgRNA慢病毒載體構(gòu)建成功。
2. 2 不同STING-sgRNA慢病毒載體組合對STING基因敲除效率的影響
以不同STING-sgRNA慢病毒載體組合與HA-STING過表達載體共同轉(zhuǎn)染293T細胞,采用HA抗體蛋白檢測時,均能檢測到攜帶有HA標(biāo)簽的外源STING條帶。Western blotting檢測結(jié)果(圖3)顯示,轉(zhuǎn)染STING-sgRNA(1+4)、STING-sgRNA(1+5)、STING-sgRNA(2+4)、STING-sgRNA(2+5)、STING-sgRNA(3+4)及STING-sgRNA(3+5)慢病毒載體組合的293T細胞,能在細胞內(nèi)對STING真核表達載體產(chǎn)生編輯效果,且以STING-sgRNA(1+5)慢病毒載體組合的編輯效率最高。
2. 3 STING基因敲除3D4/21細胞株的篩選及測序鑒定結(jié)果
以編輯效率最高的STING-sgRNA(1+5)慢病毒載體組合及包裝質(zhì)粒psPAX2和包膜質(zhì)粒pMD2.G共同轉(zhuǎn)染293T細胞,成功包裝出慢病毒,再用慢病毒感染3D4/21細胞,經(jīng)嘌呤霉素篩選和有限稀釋法獲得6株可能存在STING基因敲除的單克隆3D4/21細胞株。對所有挑取的單核克隆細胞株進行鑒定,提取其基因組DNA進行PCR鑒定,1.0%瓊脂糖凝膠電泳結(jié)果顯示,僅有1株單克隆3D4/21細胞株擴增獲得預(yù)期的目的條帶(195 bp),即判定該細胞株存在STING基因大片段缺失,其他5株單克隆3D4/21細胞株均未出現(xiàn)任何條帶(圖4-A)。同時將擴增獲得的目的片段送至生工生物工程(上海)股份有限公司測序,測序結(jié)果與野生型3D4/21細胞進行比對,表明成功獲得1株STING基因大片段(4989 bp)缺失的3D4/21細胞株(圖4-B)。提取野生型3D4/21細胞和3D4/21-STING-/-細胞的蛋白樣品,Western blotting檢測結(jié)果(圖4-C)也表明3D4/21-STING-/-細胞中的STING蛋白未見表達,進一步證實STING基因敲除成功。
2. 4 豬STING基因敲除對IFN-β基因轉(zhuǎn)錄的影響
通過Lipofectamine 3000轉(zhuǎn)染試劑將副豬嗜血桿菌DNA轉(zhuǎn)染至3D4/21-STING-/-細胞中,同時以野生型3D4/21細胞為對照。轉(zhuǎn)染16 h后,通過實時熒光定量PCR檢測STING基因敲除對IFN-β基因轉(zhuǎn)錄的影響。結(jié)果(圖5)顯示,與野生型3D4/21細胞相比,在轉(zhuǎn)染副豬嗜血桿菌DNA刺激下,3D4/21-STING-/-細胞中的IFN-β基因轉(zhuǎn)錄水平顯著下降(P<0.05),表明敲除STING基因會影響IFN-β基因轉(zhuǎn)錄。
3 討論
基因編輯是一種基因工程技術(shù),具有操作簡單、精確高效等特點,可在細胞和生物體的基因組中進行精準(zhǔn)編輯,尤其是CRISPR/Cas9技術(shù)已在疾病治療、基因檢測、基因功能調(diào)節(jié)等方面得到廣泛應(yīng)用(劉雷雷等,2019;朱麗穎等,2020;馮江浩等,2021;史夢然等,2021)。已有研究表明,癌癥基因EGFR可通過CRISPR/Cas9基因編輯被敲除,促使下游信號UBXN1表達上調(diào),抑制NF-κB活化,進而抑制腫瘤的生長(Huang et al.,2017)。在豬模型中,由單基因缺失引起的杜氏肌營養(yǎng)不良癥(DMD)可通過CRISPR/Cas9基因編輯來糾正(Moretti et al.,2020)。此外,Yang等(2018)應(yīng)用CRISPR/CAS9基因編輯技術(shù)靶向成功構(gòu)建CD163基因敲除豬,在攻毒試驗中CD163基因敲除豬并未表現(xiàn)出病毒血癥、抗體反應(yīng)、高燒等與豬繁殖與呼吸綜合征病相關(guān)的臨床癥狀??梢姡S著基因編輯技術(shù)的發(fā)展及人們對疾病新有效靶點的不斷認識,臨床上可通過糾正致病基因或有效突變以達到疾病治療的效果。本研究基于CRISPR/Cas9技術(shù)成功構(gòu)建獲得STING基因敲除3D4/21細胞(3D4/21-STING-/-),為今后深入研究STING基因在豬源疾病感染中的作用機理提供了技術(shù)支撐。
近年來,針對STING基因的研究越來越廣泛。STING是一種中央銜接蛋白,可介導(dǎo)DNA病毒感染的先天免疫反應(yīng)(Liu and Wang,2016)。STING被激活后,招募下游效應(yīng)分子TBK1和IRF3,通過磷酸化、泛素化和亞細胞易位等方式轉(zhuǎn)導(dǎo),最終誘導(dǎo)I型干擾素表達(Baldwin et al.,2004;Ferguson et al.,2012)。干擾素作為關(guān)鍵細胞因子,具有抗病毒和細胞調(diào)節(jié)的特性,與先天免疫反應(yīng)密切相關(guān)。其中,IFN-β由許多類型的細胞分泌,可通過刺激巨噬細胞和NK細胞引發(fā)抗病毒反應(yīng),且具有抗腫瘤活性(Kal-liolias and Ivashkiv,2010;González-Navajas et al.,2012;Liu et al.,2014)。STING作為具有抗病原微生物感染的活性蛋白,在多種病原感染的內(nèi)源性免疫激活及調(diào)節(jié)過程中發(fā)揮重要作用。至今,有關(guān)STING的結(jié)構(gòu)、功能及其免疫調(diào)節(jié)作用在鼠及人類中已有深入研究,但針對豬的研究尚不明確(Chung et al.,2019)。最新研究發(fā)現(xiàn),結(jié)核分枝桿菌編碼蛋白MmsA會通過抑制STING-TBK1-IRF3信號通路,或通過促進P62介導(dǎo)STING的自噬和降解,而影響I型干擾素的產(chǎn)生(Sun et al.,2020)。此外,Wu等(2020)研究證實,具有消除干擾素依賴性活性能力的STING1S365A/S365A突變小鼠既保留了STING的干擾素非依賴活性,又能防止HSV-1感染或腫瘤免疫逃避等,即STING對RNA病毒和DNA病毒的免疫反應(yīng)均有影響。本研究結(jié)果表明,與野生型3D4/21細胞相比,在副豬嗜血桿菌DNA的刺激下,3D4/21-STING-/-細胞中的IFN-β基因轉(zhuǎn)錄水平顯著降低,表明STING基因缺失會導(dǎo)致I型干擾素轉(zhuǎn)錄障礙,也提示STING基因可能是豬抗病原微生物感染的關(guān)鍵因子??梢?,STING可抵抗多種病原微生物的入侵,其研究可為癌癥、肥胖和糖脂代謝等疾病治療提供新的思路。
4 結(jié)論
采用CRISPR/Cas9技術(shù)能成功大片段敲除3D4/21細胞中的STING基因,而導(dǎo)致STING基因功能喪失;STING基因敲除會導(dǎo)致細胞在病原微生物DNA刺激時I型干擾素轉(zhuǎn)錄障礙,也提示STING基因可能是豬抗病原微生物感染的關(guān)鍵因子。
參考文獻:
馮江浩,魏思昂,閆麗歡,崔潔,馮焱. 2021. CRISPR/Cas9基因編輯技術(shù)及應(yīng)用研究概述[J]. 動物醫(yī)學(xué)進展,42(3):123-126. [Feng J H,Wei S A,Yan L H,Cui J,F(xiàn)eng Y. 2021. Progress on gene editing technology and application of CRISPR/Cas9[J]. Progress in Veterinary Medicine,42(3):123-126.] doi:10.3969/j.issn.1007-5038. 2021.03.026.
劉雷雷,賈啟鵬,李宗帥,楊洋,李海江,趙興緒,張勇. 2019. 利用CRISPR/Cas9基因編輯技術(shù)靶向敲除奶山羊胎兒成纖維細胞SCD1基因[J]. 甘肅農(nóng)業(yè)大學(xué)學(xué)報,54(6):30-38. [Liu L L,Jia Q P,Li Z S,Yang Y,Li H J,Zhao X X,Zhang Y. 2019. Targeted knockout of SCD1 gene in dairy goat fetal fibroblasts by CRISPR/Cas9 gene editing technology[J]. Journal of Gansu Agricultural University,54(6):30-38.]doi:10.13432/j.cnki.jgsau.2019.06.005.
史夢然,沈宗毅,張楠,王璐瑤,喻長遠,楊昭. 2021. CRISPR/Cas9系統(tǒng)在疾病研究和治療中的應(yīng)用[J]. 生物工程學(xué)報,37(4):1205-1228. [Shi M R,Shen Z Y,Zhang N,Wang L Y,Yu C Y,Yang Z. 2021. CRISPR/Cas9 techno-logy in disease research and therapy:A review[J]. Chinese Journal of Biotechnology,37(4):1205-1228.] doi:10.13345/j.cjb.200401.
朱麗穎,鄭月萍,徐雪珍,段芊芊,韓妮莎. 2020. 一種準(zhǔn)確、簡便測定CRISPR/Cas9基因編輯效率的方法[J]. 江蘇農(nóng)業(yè)學(xué)報,36(2):299-305. [Zhu L Y,Zheng Y P,Xu X Z,Duan Q Q,Han N S. 2020. A convenient and accurate method for determining the efficiency of CRISPR/Cas9-based gene editing[J]. Jiangsu Journal of Agricultural Sciences,36(2):299-305.]doi:10.3969/j.issn.1000-4440. 2020.02.007.
Ahn J,Gutman D,Saijo S,Barber G N. 2012. STING manifests self DNA-dependent inflammatory disease[J]. Proceedings of the National Academy of Sciences of the United States of America,109(47):19386-19391. doi:10.1073/pnas.1215006109.
Baldwin S L,Powell T D,Sellins K S,Radecki S V,Cohen J J,Milhausen M J. 2004. The biological effects of five feline IFN-α subtypes[J]. Veterinary Immunology and Immunopathology,99(3-4):153-167. doi:10.1016/j.vetimm. 2004.01.012.
Bao A L,Burritt D J,Chen H F,Zhou X N,Cao D,Tran L S P. 2019. The CRISPR/Cas9 system and its applications in crop genome editing[J]. Critical Reviews in Biotechnology,39(3):321-336. doi:10.1080/07388551.2018.1554621.
Chung K W,Dhillon P,Huang S Z,Sheng X,Shrestha R,Qiu C X,Kaufman B A,Park J,Pei L M,Baur J,Palmer M,Susztak K. 2019. Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis[J]. Cell Metabolism,30(4):784-799. doi:10.1016/j.cmet.2019.08.003.
Deng L F,Liang H,Xu M,Yang X M,Burnette B,Arina A,Li X D,Mauceri H,Beckett M,Darga T,Huang X N,Gajewski T F,Chen Z J,F(xiàn)u Y X,Weichselbaum R R. 2014. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors[J]. Immunity,41(5):843-852. doi:10.1016/j.immuni.2014.10.019.
Du C Y Q,Choi R C Y,Zheng K Y Z,Dong T T X,Lau D T W,Tsim K W K. 2013. Yu Ping Feng San,an ancient Chinese herbal decoction containing Astragali Radix,Atractylodis macrocephalae Rhizoma and Saposhnikoviae Radix,regulates the release of cytokines in murine macrophages[J]. PLoS One,8(11):e78622. doi:10.1371/journal.pone.0078622.
Ferguson B J,Mansur D S,Peters N E,Ren H W,Smith G L. 2012. DNA-PK is a DNA sensor for IRF-3-dependent innate immunity[J]. eLife,1:e00047. doi:10.7554/eLife.00047.
González-Navajas J M,Lee J,David M,Raz E. 2012. Immunomodulatory functions of type I interferons[J]. Nature Reviews Immunology,12(2):125-135. doi:10.1038/nri3133.
Huang K,Yang C,Wang Q X,Li Y S,F(xiàn)ang C,Tan Y L,Wei J W,Wang Y F,Li X,Zhou J H,Zhou B C,Yi K K,Zhang K L,Li J,Kang C S. 2017. The CRISPR/Cas9 system targeting EGFR exon 17 abrogates NF-κB activation via epigenetic modulation of UBXN1 in EGFRwt/vIII glio-ma cells[J]. Cancer Letters,388:269-280. doi:10.1016/j.canlet.2016.12.011.
Irrazábal T,Belcheva A,Girardin S E,Martin A,Philpott D J. 2014. The multifaceted role of the intestinal microbiota in colon cancer[J]. Molecular Cell,54(2):309-320. doi:10.1016/j.molcel.2014.03.039.
Ishikawa H,Barber G N. 2008. STING is an endoplasmic reti-culum adaptor that facilitates innate immune signalling[J]. Nature, 455(7213):674-678. doi:10.1038/nature07317.
Kalliolias G D,Ivashkiv L B. 2010. Overview of the biology of type I interferons[J]. Arthritis Research & Therapy,12(S1):S1. doi:10.1186/ar2881.
Lei Z,Deng M H,Yi Z J,Sun Q,Shapiro R A,Xu H B,Li T L,Loughran P A,Griepentrog J E,Huang H,Scott M J,Huang F Z,Billiar T R. 2018. cGAS-mediated autophagy protects the liver from ischemia-reperfusion injury independently of STING[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,314(6):G655-G667. doi:10.1152/ajpgi.00326.2017.
Liu X,Wang C. 2016. The emerging roles of the STING adaptor protein in immunity and diseases[J]. Immunology, 147(3):285-291. doi:10.1111/imm.12561.
Liu Y,Jesus A A,Marrero B,Yang D,Ramsey S E,Sanchez G A M,Tenbrock K,Wittkowski H,Jones O Y,Kuehn H S,Lee C C R,DiMattia M A,Cowen E W,Gonzalez B,Palmer I,DiGiovanna J J,Biancotto A,Kim H,Tsai W L,Trier A M,Huang Y,Stone D L,Hill S,Kim H J,St Hilaire C,Gurprasad S,Plass N,Chapelle D,Horkayne-Szakaly I,F(xiàn)oell D,Barysenka A,Candotti F,Holland S M,Hughes J D,Mehmet H,Issekutz A C,Raffeld M,McElwee J,F(xiàn)ontana J R,Minniti C P,Moir S,Kastner D L,Gadina M,Steven A C,Wingfield P T,Brooks S R,Rosenzweig S D,F(xiàn)leisher T A,Deng Z,Boehm M,Paller A S,Goldbach-Mansky R. 2014. Activated STING in a vascular and pulmonary syndrome[J]. The New England Journal of Medicine,371(6):507-518. doi:10.1056/NEJMoa1312625.
Ma X W,Jiang Z Y,Li N,Jiang W,Gao P,Yang M J,Yu X Y,Wang G F,Zhang Y. 2019. Ets2 suppresses inflammatory cytokines through MAPK/NF-κB signaling and directly binds to the IL-6 promoter in macrophages[J]. Aging(Albany NY),11(22):10610-10625. doi:10.18632/aging.102480.
Moretti A,F(xiàn)onteyne L,Giesert F,Hoppmann P,Meier A B,Bozoglu T,Baehr A,Schneider C M,Sinnecker D,Klett K,F(xiàn)r?hlich T,Rahman F A,Haufe T,Sun S,Jurisch V,Kessler B,Hinkel R,Dirschinger R,Martens E,Jilek C,Graf A,Krebs S,Santamaria G,Kurome M,Zakhartchenko V,Campbell B,Voelse K,Wolf A,Ziegler T,Reichert S,Lee S,F(xiàn)lenkenthaler F,Dorn T,Jeremias I,Blum H,Dendorfer A,Schnieke A,Krause S,Walter M C,Klymiuk N,Laugwitz K L,Wolf E,Wurst W,Kupatt C. 2020. Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and human models of Duchenne muscular dystrophy[J]. Nature Medicine,26(2):207-214. doi:10.1038/s41591-019-0738-2.
Rodero M P,Tesser A,Bartok E,Rice G I,Della Mina E,Depp M,Beitz B,Bondet V,Cagnard N,Duffy D,Dussiot M,F(xiàn)rémond M L,Gattorno M,Guillem F,Kitabayashi N,Porcheray F,Rieux-Laucat F,Seabra L,Uggenti C,Volpi S,Zeef L A H,Alyanakian M A,Beltrand J,Bianco A M,Boddaert N,Brouzes C,Candon S,Caorsi R,Charbit M,F(xiàn)abre M,F(xiàn)aletra F,Girard M,Harroche A,Hartmann E,Lasne D,Marcuzzi A,Neven B,Nitschke P,Pascreau T,Pastore S,Picard C,Picco P,Piscianz E,Polak M,Quartier P,Rabant M,Stocco G,Taddio A,Uettwiller F,Valencic E,Vozzi D,Hartmann G,Barchet W,Hermine O,Bader-Meunier B,Tommasini A,Crow Y J. 2017. Type I interferon-mediated autoinflammation due to DNase II deficiency[J]. Nature Communications,8(1):2176. doi:10.1038/s41467-017-01932-3.
Sun W X,YANG L,Chen L,Chen H H,You F P,Zhou X,Zhou Y,Zhai Z H,Chen D Y,Jiang Z F. 2009. ERIS,an endoplasmic reticulum IFN stimulator,activates innate immune signaling through dimerization[J]. Proceedings of the National Academy of Sciences of the United States of America,106(21):8653-8658. doi:10.1073/pnas.0900850106.
Sun Y F,Zhang W,Dong C S,Xiong S. 2020. Mycobacterium tuberculosis MmsA (Rv0753c) interacts with STING and blunts the type I interferon response[J]. mBio,11(6):e03254-19. doi:10.1128/mBio.03254-19.
Warner J D,Irizarry-Caro R A,Bennion B G,Ai T L,Smith A M,Miner C A,Sakai T,Gonugunta V K,Wu J J,Platt D J,Yan N,Miner J J. 2017. STING-associated vasculo-pathy develops independently of IRF3 in mice[J]. Journal of Experimental Medicine,214(11):3279-3292. doi:10. 1084/jem.20171351.
West A P,Khoury-Hanold W,Staron M,Tal M C,Pineda C M,Lang S M,Bestwick M,Duguay B A,Raimundo N,MacDuff D A,Kaech S M,Smiley J R,Means R E,Iwasaki A,Shadel G S. 2015. Mitochondrial DNA stress primes the antiviral innate immune response[J]. Nature,520(7548):553-557. doi:10.1038/nature14156.
Wu J J,Dobbs N,Yang K,Yan N. 2020. Interferon-independent activities of mammalian STING mediate antiviral response and tumor immune evasion[J]. Immunity,53(1):115-126. doi:10.1016/j.immuni.2020.06.009.
Xie L L,Liu M L,F(xiàn)ang L R,Su X C,Cai K M,Wang D,Chen H C,Xiao S B. 2010. Molecular cloning and functional characterization of porcine stimulator of interferon genes (STING)[J]. Developmental & Comparative Immunology,34(8):847-854. doi:10.1016/j.dci.2010.03.005.
Xu M D,Jiang Z Y,Wang C L,Li N,Bo L L,Zha Y P,Bian J J,Zhang Y,Deng X M. 2019. Acetate attenuates inflammasome activation through GPR43-mediated Ca2+-dependent NLRP3 ubiquitination[J]. Experimental & Molecular Medicine,51(7):1-13. doi:10.1038/s12276-019-0276-5.
Yang H Q,Zhang J,Zhang X W,Shi J S,Pan Y F,Zhou R,Li G L,Li Z,Cai G Y,Wu Z F. 2018. CD163 knockout pigs are fully resistant to highly pathogenic porcine reproductive and respiratory syndrome virus[J]. Antiviral Research,151:63-70. doi:10.1016/j.antiviral.2018.01.004.
Yoshida H,Okabe Y,Kawane K,F(xiàn)ukuyama H,Nagata S. 2005. Lethal anemia caused by interferon-beta produced in mouse embryos carrying undigested DNA[J]. Nature Immunology,6(1):49-56. doi:10.1038/ni1146.
Zheng Q T,Lin J,Huang J J,Zhang H Y,Zhang R,Zhang X Y,Cao C W,Hambly C,Qin G S,Yao J,Song R G,Jia Q T,Wang X,Li Y S,Zhang N,Piao Z Y,Ye R C,Speakman J R,Wang H M,Zhou Q,Wang Y F,Jin W Z,Zhao J G. 2017. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity[J]. Procee-dings of the National Academy of Sciences of the United States of America,114(45):E9474-E9482. doi:10.1073/pnas.1707853114.
Zhu X X,Zhan Q M,Wei Y Y,Yan A F,F(xiàn)eng J,Liu L,Lu S S,Tang D S. 2020. CRISPR/Cas9-mediated MSTN disruption accelerates the growth of Chinese Bama pigs[J]. Reproduction in Domestic Animals,55(10):1314-1327. doi:10.1111/rda.13775.
收稿日期:2021-06-17
基金項目:國家自然科學(xué)基金項目(32002153,32002298);廣州市基礎(chǔ)與應(yīng)用基礎(chǔ)研究項目(202102020177);廣東省農(nóng)業(yè)科學(xué)院科技創(chuàng)新戰(zhàn)略專項(R2019YJ-YB2004)
通訊作者:王塑天(1989-),https://orcid.org/0000-0002-3554-5022,博士,副研究員,主要從事抗病基因功能研究與抗病育種工作,E-mail:wstlyt@126.com;唐冬生(1962-),https://orcid.org/0000-0001-9466-6687,博士,研究員,主要從事基因編輯與生物治療技術(shù)研究工作,E-mail:tangdsh@163.com
第一作者:黃秋艷(1996-),https://orcid.org/0000-0002-2052-347X,主要從事抗病育種與基因編輯研究工作,E-mail:1305006274 @qq.com