楊燁城 黃秋艷 辛海云 李寶紅 杜宗亮 孟繁明 朱向星 李劍豪 王塑天 唐冬生
摘要:【目的】明確藏豬和杜藏豬(杜洛克父本與藏豬母本雜交F1代)的生長和胴體性狀及肉質(zhì)指標(biāo)等表型差異,并分析背最長肌中脂肪沉積相關(guān)基因的表達(dá)差異,為藏豬種質(zhì)資源利用及豬脂肪沉積規(guī)律研究提供參考依據(jù)?!痉椒ā恳圆刎i和杜藏豬為研究對(duì)象,分別測定其體長、體高和胸圍等生長性狀,屠宰率、背膘厚及眼肌面積等胴體性狀,以及pH、肉色、蒸煮損失及肌內(nèi)脂肪含量等肉質(zhì)指標(biāo);并通過熒光實(shí)時(shí)定量PCR檢測脂肪沉積相關(guān)基因在2種豬背最長肌中的表達(dá)情況?!窘Y(jié)果】杜藏豬的左胴體重、右胴體重、屠宰前重、胴體長、體長、體高、管圍和胸圍均高于藏豬,且差異顯著(P<0.05,下同),眼肌面積(33.00±3.84 cm2)也顯著大于藏豬(16.83±1.81 cm2),背膘厚(13.15±2.48 mm)則顯著低于藏豬(22.83±2.80 mm),藏豬與杜藏豬的皮厚、腹圍和屠宰率無顯著差異(P>0.05,下同);杜藏豬肌肉的pH-24 h、熟肉率、剪切力和含水率顯著高于藏豬肌肉,而杜藏豬肉色的a-24 h值(10.30±1.06)和肌內(nèi)脂肪含量[(2.48±1.44)%]顯著低于藏豬。除GHR基因外,其他脂肪沉積相關(guān)基因的相對(duì)表達(dá)量均表現(xiàn)為杜藏豬低于藏豬,其中,ADIPOQ基因和FASN基因的相對(duì)表達(dá)量顯著低于藏豬,IGF1基因、TNFa基因和Leptin基因的相對(duì)表達(dá)量極顯著低于藏豬(P<0.01)。相關(guān)分析結(jié)果顯示,GHR基因相對(duì)表達(dá)量與杜藏豬肌內(nèi)脂肪含量呈顯著正相關(guān),F(xiàn)ASN基因相對(duì)表達(dá)量與藏豬肌內(nèi)脂肪含量呈顯著正相關(guān),IGF1基因相對(duì)表達(dá)量與藏豬背膘呈顯著負(fù)相關(guān)?!窘Y(jié)論】杜藏豬的肉質(zhì)性狀與藏豬相似,但杜藏豬具有更佳的生長性能,說明以杜洛克為父本與藏豬母本雜交得到的杜藏豬具有更優(yōu)的生產(chǎn)效率。藏豬和杜藏豬的肌內(nèi)脂肪含量差異與脂肪沉積相關(guān)基因的表達(dá)差異有關(guān),即豬的肌內(nèi)脂肪含量受多種脂肪沉積相關(guān)基因調(diào)控。
關(guān)鍵詞: 藏豬;杜藏豬;生長性狀;肉質(zhì)性狀;脂肪沉積相關(guān)基因
中圖分類號(hào): S828.89? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2022)04-0926-09
Analysis of differences in growth, meat quality traits and expression of genes related to fat deposition between Tibetan and Duzang pigs
YANG Ye-cheng 1,2,HUANG Qiu-yan1,2, XIN Hai-yun2, LI Bao-hong2, DU Zong-liang2,MENG Fan-ming2, ZHU Xiang-xing1, LI Jian-hao 2, WANG Su-tian 2*,TANG Dong-sheng1*
(1School of Life Science and Engineering, Foshan University/Guangdong Key Laboratory of Animal Molecular Design and Precise Breeding/Guangdong Research Center of Gene Editing Engineering Technology, Foshan, Guangdong? 528225, China; 2Institute of Animal Science, Guangdong Academy of Agricultural Sciences/State Key Laboratory
of Livestock and Poultry Breeding/Guangdong Key Laboratory of Animal Breeding and Nutrition,
Guangzhou, Guangdong? 510610, China)
Abstract:【Objective】To clarify the phenotypic differences in growth, carcass traits and meat quality indexes between Tibetan and Duzang pigs (F1 generation crossed between Duroc male and Tibetan pig female) and to analyze the differences in the expression of fat depositing-related genes in longissimus dorsi muscle, so as to provide a reference for the utilization of Tibetan pig germplasm resources and the study of pig fat deposition. 【Method】Tibetan and Duzang pigs were used as the research objects, and their growth traits such as body length, height, chest circumference, slaughter rate, back fat thickness, eye muscle area and meat quality indicators such as pH, meat colour, cooking loss and intramuscular fat content were measured respectively. The expressions of fat deposition-related genes in the longissimus dorsi of the two pigs were also detected by real-time quantitative PCR. 【Result】The left carcass weight, right carcass weight, pre-slaughter weight, carcass length, body length, body height, tube circumference, and chest circumference of Duzang pigs were higher than those of Tibetan pigs. The difference was significant (P<0.05, the same below), and the eye muscle area (33.00±3.84 cm2) was also considerably larger than that of Tibetan pig (16.83±1.81 cm2), the thickness of back fat (13.15±2.48 mm) was significantly lower than that of Tibetan pigs (22.83±2.80 mm). At the same time, there was no significant difference in skin thickness, abdominal circumference and slaughter rate between Tibetan pigs and Duzang pigs (P>0.05, the same below). The pH-24 h, cooked meat rate, shearing force and water content of Duzang pig muscle were significantly higher than those of Tibetan pig muscle. The colour a-24 h value (10.30±1.06) and intramuscular fat content [(2.48±1.44)%] of Duzang pigs were significantly lower than those of Tibetan pigs. Except for GHR, the relative expression of ADIPOQ and FASN were significantly lower in Duzang pigs than in Tibetan pigs, and the relative expression of IGF1, TNFa and Leptin were extremely lower than in Tibetan pigs (P<0.01). The results of correlation analysis showed that the relative expression of GHR was significantly positively correlated with the intramuscular fat content in Duzang pigs. Furthermore, the relative expression of FASN was significantly positively correlated with the intramuscular fat content in Tibetan pigs. In addition,the relative expression of IGF1 was significantly negatively correlated with the back fat of Tibetan pigs. 【Conclusion】The meat quality traits of Duzang pigs are similar to those of Tibetan pigs, but Duzang pigs have better growth performance, indicating that Duzang pigs obtained by crossing Duroc male and Tibetan pig female have better production efficiency. The difference in intramuscular fat content between Tibetan and Duzang pigs is related to the difference in the expression of fat deposition-related genes. That is, a variety of fat deposition-related genes regulate the intramuscular fat content of pigs.
Key words: Tibetan pig; Duzang pig; growth traits; meat quality traits; fat deposition-related genes
Foundation items:Guangdong Basic and Applied Basic Research Foundationand Wen’s Joint Fund Project (2019 B1515210013);Guangdong General Universities Key Fields Special Project (2021ZDZX2050);Guangdong Academy of Agricultural Sciences Scientific Innovation Strategy Special Fund (R2019YJ-YB2004)
0 引言
【研究意義】生長和肉質(zhì)性狀是地方豬遺傳改良最常關(guān)注的生理指標(biāo),而脂肪沉積是影響這2個(gè)性狀指標(biāo)的重要因素,脂肪沉積過多會(huì)降低豬的生長效率和豬肉品質(zhì),導(dǎo)致養(yǎng)豬生產(chǎn)效益不高(Zhang et al.,2019)。脂肪沉積過程受遺傳選擇、營養(yǎng)水平及環(huán)境條件等因素的共同影響(相德才等,2021;邢寶松等,2021;Nematbakhsh et al.,2021),因此,探究藏豬和杜藏豬生長、肉質(zhì)性狀及脂肪沉積相關(guān)基因的表達(dá)模式,可為我國地方豬的遺傳改良提供科學(xué)依據(jù)?!厩叭搜芯窟M(jìn)展】藏豬是我國珍貴的物種遺傳資源,主要分布在海拔2500~4300 m的青藏高原半農(nóng)半牧區(qū),具有四肢堅(jiān)實(shí)、脂肪沉積能力強(qiáng)及肉質(zhì)風(fēng)味鮮美等特點(diǎn),但存在體型短小、肥育周期長和背膘較厚等缺點(diǎn)(強(qiáng)巴央宗等,2001;Chen et al.,2014)。為了充分利用我國寶貴的動(dòng)物遺傳資源,加快地方豬的遺傳改良,常通過引進(jìn)外種豬與本土豬進(jìn)行雜交。苑洪霞等(2017)以杜洛克父本與貴州地方品種白洗豬母本進(jìn)行雜交,結(jié)果發(fā)現(xiàn)與純種白洗豬相比,杜白豬F1代的不飽和脂肪酸含量及肌內(nèi)脂肪含量均上調(diào),但背膘厚和鮮味氨基酸含量顯著下降。劉瑩等(2018)以杜洛克為父本分別與陸川豬和隆陸豬(隆林公豬×陸川母豬)進(jìn)行雜交,結(jié)果發(fā)現(xiàn)杜隆陸三元雜具有生長速度快、胴體品質(zhì)好等優(yōu)點(diǎn)。脂肪沉積作為豬遺傳改良中重要的目標(biāo)經(jīng)濟(jì)性狀,直接影響其生長效率和豬肉品質(zhì)(Suzuki et al.,2009;Bertolini et al.,2018)。脂肪是由大量成熟的脂肪細(xì)胞匯集而成,成熟脂肪細(xì)胞來源于前脂肪細(xì)胞的分裂和終端分化,而前脂肪細(xì)胞是由間充質(zhì)干細(xì)胞增殖分化而來(Lefterova and Lazar,2009)。脂肪沉積過程較復(fù)雜,調(diào)控細(xì)胞生長與分化及脂滴形成等因素均參與脂肪沉積,脂肪沉積相關(guān)基因的表達(dá)則決定著肌內(nèi)脂肪沉積速度(呂亞寧等,2020;歐秀瓊等,2021)。其中,生長激素受體(Growth hormone receptor,GHR)是I類細(xì)胞因子受體家族的跨膜糖蛋白,敲除GHR基因后小鼠表現(xiàn)出全身脂肪量增加,脂肪細(xì)胞體積變大(List et al.,2013;Chhabra et al.,2021);胰島素樣生長因子1(Insulin-like growth factor 1,IGF1)在脊椎動(dòng)物的胚胎發(fā)育過程中發(fā)揮重要作用,與細(xì)胞分裂及凋亡相關(guān)(Allan et al.,2000);脂聯(lián)素(Adiponectin)是一種由脂肪細(xì)胞分泌的激素,可促進(jìn)胎兒的脂肪沉積和脂肪細(xì)胞分化,敲除脂聯(lián)素基因(ADIPOQ)能降低幼鼠初生重(?iko? et al.,2010),豬脂肪細(xì)胞中ADIPOQ基因沉默能抑制細(xì)胞分化(Qiao et al.,2012);瘦素(Leptin)是一種細(xì)胞分泌激素,主要在白色脂肪組織中產(chǎn)生,在胎盤、胃底和骨骼肌中也有表達(dá),具有調(diào)節(jié)體重、生殖及免疫功能(李恭賀等,2021),體外研究表明其可促進(jìn)3T3-L1細(xì)胞中脂肪生成相關(guān)基因的表達(dá)(Palhinha et al.,2019);脂肪酸合成酶(Fatty acid synthase,F(xiàn)ASN)被認(rèn)為是一種多功能的蛋白酶,可催化飽和脂肪酸的從頭合成與調(diào)節(jié)脂質(zhì)代謝,其多態(tài)性會(huì)影響豬肌肉中的膽固醇水平、背脂厚及皮下脂肪組織中的多不飽和脂肪酸含量(Piórkowska et al.,2020);腫瘤壞死因子-α(Tumor necrosis factor α,TNFα)是一種多功能細(xì)胞因子,參與細(xì)胞分化、增殖、凋亡和能量代謝等多種生物學(xué)過程,同時(shí)調(diào)控脂肪酸攝取、脂肪誘導(dǎo)生成及脂肪分解等過程(Cawthorn and Sethi,2008)?!颈狙芯壳腥朦c(diǎn)】至今,已有學(xué)者在不同動(dòng)物中對(duì)上述的脂肪沉積相關(guān)基因進(jìn)行研究,并證實(shí)其在不同物種間存在明顯的表達(dá)差異,但針對(duì)藏豬及其雜交后代脂肪沉積相關(guān)基因表達(dá)的研究鮮見報(bào)道?!緮M解決的關(guān)鍵問題】通過測定藏豬和杜藏豬(杜洛克父本與藏豬母本雜交F1代)的生長和胴體性狀及肉質(zhì)指標(biāo),發(fā)掘二者的表型差異,同時(shí)利用實(shí)時(shí)熒光定量PCR檢測背最長肌中脂肪沉積相關(guān)基因的轉(zhuǎn)錄水平,以期為藏豬種質(zhì)資源利用及豬脂肪沉積規(guī)律研究提供參考依據(jù)。
1 材料與方法
1. 1 試驗(yàn)材料
選擇6頭7月齡藏豬(引種自甘肅省合作地區(qū))和6頭7月齡杜藏豬,所有豬只均飼養(yǎng)于廣東省農(nóng)業(yè)科學(xué)院畜牧研究所藏豬養(yǎng)殖基地,采取半開放豬舍的養(yǎng)殖模式,以相同的日糧水平進(jìn)行飼喂,自由采食。屠宰前禁食12 h但不禁止飲水,屠宰后采集左半邊胴體第13肋和第14肋間的背最長肌肉樣品,在冰上將樣品剪碎后裝入細(xì)胞凍存管中并迅速置于裝有液氮的泡沫箱中,運(yùn)送回實(shí)驗(yàn)室液氮罐保存?zhèn)溆?。提取脂肪的石油醚購自天津市百世化工有限公司,TRIzol試劑購自美國Ambion公司,氯仿購自廣東廣試試劑科技有限公司,RNA反轉(zhuǎn)錄試劑盒PrimeScriptTM RT reagent Kit with gDNA Eraser和RT-PCR試劑盒TB Green? Premix Ex TaqTM II購自TaKaRa公司。主要儀器設(shè)備:數(shù)顯式肌肉嫩度儀購自南農(nóng)畜牧技術(shù)(北京)有限公司,皮尺和游標(biāo)卡尺購自上海得力文具有限公司,便攜式pH計(jì)購自德圖儀表有限公司,肉色測定儀購自柯尼卡美能達(dá)有限公司,蒸鍋購自美的集團(tuán)股份有限公司,紫外分光光度計(jì)購自美國NanoDrop公司,全自動(dòng)脂肪分析儀購自北京安科博瑞科技有限公司,實(shí)時(shí)熒光定量PCR儀(CFX96)購自美國Bio-Rad公司。
1. 2 引物設(shè)計(jì)與合成
通過NCBI檢索豬脂肪沉積相關(guān)基因mRNA序列,并根據(jù)實(shí)時(shí)熒光定量PCR引物設(shè)計(jì)原則設(shè)計(jì)擴(kuò)增引物(表1),并委托生工生物工程(上海)股份有限公司合成。
1. 3 生長和胴體性狀測定
測定豬的體長、體高和胸圍等生長性狀,并依照NY/T 825—2004《瘦肉型豬胴體性狀測定技術(shù)規(guī)范》測定屠宰率、背膘厚及眼肌面積等胴體性狀。
1. 4 肉用性狀指標(biāo)測定
依照NY/T 821—2004《豬肌肉品質(zhì)測定技術(shù)規(guī)范》進(jìn)行測定肉質(zhì)指標(biāo),包括pH、肉色、剪切力及肌內(nèi)脂肪含量等指標(biāo)。
1. 5 豬脂肪沉積相關(guān)基因定量分析
從液氮罐中取出藏豬和杜藏豬的背最長肌樣品,采用TRIzol法提取總RNA,經(jīng)紫外分光光度計(jì)測定總RNA濃度后,按照PrimeScriptTM RT reagent Kit with gDNA Eraser試劑盒說明在冰上去除基因組DNA并反轉(zhuǎn)錄合成cDNA。反轉(zhuǎn)錄體系20.0 μL:去除基因組DNA反應(yīng)液(5×gDNA Eraser Buffer 2.0 μL,gDNA Eraser 1.0 μL,Total RNA 1.0 μL,RNase Free H2O補(bǔ)足至10.0 μL)10.0 μL,PrimeScript RT Enzyme Mix I 1.0 μL,RT Primer Mix 1.0 μL,5×PrimeScript Buffer 2 4.0 μL,RNase Free H2O 4.0 μL。根據(jù)TB Green? Premix Ex TaqTM II試劑盒說明,在冰上配制實(shí)時(shí)熒光定量PCR反應(yīng)體系25.0 μL(表2),擴(kuò)增程序:95 ℃預(yù)變性30 s;95 ℃ 5 s,60 ℃ 30 s,進(jìn)行39個(gè)循環(huán)。
1. 6 統(tǒng)計(jì)分析
采用SPSS 24.0統(tǒng)計(jì)分析測定獲得的生長、胴體和肉質(zhì)性狀數(shù)據(jù),并進(jìn)行T檢驗(yàn)。以GAPDH為內(nèi)參基因?qū)?shí)時(shí)熒光定量PCR檢測結(jié)果進(jìn)行校正,以2?ΔΔCt法換算脂肪沉積相關(guān)基因相對(duì)表達(dá)量,經(jīng)T檢驗(yàn)后采用GraphPad Prism 8制圖。同時(shí),以SPSS 24.0中的Bivariate correlation分析肌內(nèi)脂肪含量、背膘厚與IGF1、TNFa、Leptin、ADIPOQ、FASN和GHR基因相對(duì)表達(dá)量的相關(guān)性。
2 結(jié)果與分析
2. 1 生長和胴體性狀測定結(jié)果
由表3可知,杜藏豬的左胴體重、右胴體重、屠宰前重、胴體長、體長、體高、管圍和胸圍均高于藏豬,且差異顯著(P<0.05,下同),說明杜藏豬整體生長速度較快;杜藏豬的眼肌面積(33.00±3.84 cm2)也顯著大于藏豬(16.83±1.81 cm2),說明杜藏豬的背肌更大。此外,杜藏豬的背膘厚為13.15±2.48 mm,顯著低于藏豬(22.83±2.80 mm),而藏豬與杜藏豬的皮厚、腹圍和屠宰率無顯著差異(P>0.05,下同)。
2. 2 肉質(zhì)性狀測定結(jié)果
由表4可知,杜藏豬肌肉的pH-24 h、熟肉率、剪切力和含水率顯著高于藏豬,而杜藏豬肉色的a-24 h值(10.30±1.06)和肌內(nèi)脂肪含量[(2.48±1.44)%]顯著低于藏豬,其他肉質(zhì)指標(biāo)在藏豬和杜藏豬間并無顯著差異。
2. 3 背肌脂肪沉積相關(guān)基因的表達(dá)情況
由圖1可看出,除GHR基因的相對(duì)表達(dá)量呈杜藏豬顯著高于藏豬外,其他脂肪沉積相關(guān)基因的相對(duì)表達(dá)量均表現(xiàn)為杜藏豬低于藏豬,其中,ADIPOQ基因和FASN基因的相對(duì)表達(dá)量顯著低于藏豬,IGF1基因、TNFa基因和Leptin基因的相對(duì)表達(dá)量極顯著低于藏豬(P<0.01)。
2. 4 脂肪沉積相關(guān)基因表達(dá)水平與肌內(nèi)脂肪含量和背膘厚的相關(guān)分析結(jié)果
由表5可知,藏豬的背最長肌肌內(nèi)脂肪含量與FASN基因相對(duì)表達(dá)量呈顯著正相關(guān),而背膘厚與IGF1基因相對(duì)表達(dá)量呈顯著負(fù)相關(guān);杜藏豬除了肌內(nèi)脂肪含量與GHR基因相對(duì)表達(dá)量呈顯著正相關(guān)外,肌內(nèi)脂肪含量和背膘厚與其他脂肪沉積相關(guān)基因相對(duì)表達(dá)量的相關(guān)性均未達(dá)顯著水平。
3 討論
我國地方豬遺傳資源豐富,具有性繁殖力高、抗逆性強(qiáng)、耐粗飼及抗寒冷等優(yōu)點(diǎn),但也存在生長速度慢、出欄率低和瘦肉率低等問題,從而限制了地方豬的產(chǎn)業(yè)化和規(guī)模化發(fā)展進(jìn)程。選用地方豬與外國瘦肉型品種進(jìn)行雜交可有效改善我國地方豬的生產(chǎn)性能(趙連生,2007),李闖等(2019)選用廣東小耳花豬與巴克夏公豬雜交培育出巴花豬,巴花豬既遺傳了父本生長快、瘦肉率高的特性,又保留了母本肌肉細(xì)嫩、大理石紋豐富的特點(diǎn);方曉敏等(2021)以巴克夏豬與蘇紫黑豬母本雜交獲得巴蘇豬F1代,且發(fā)現(xiàn)6月齡的巴蘇豬各項(xiàng)生長指標(biāo)均顯著高于純種蘇紫黑豬。本研究通過對(duì)比藏豬和杜藏豬的生長、胴體性狀,發(fā)現(xiàn)杜藏豬的多個(gè)性狀優(yōu)于藏豬,其中,杜藏豬的宰前體重較藏豬顯著增重11.50±7.12 kg,胴體長、體長和體高分別較藏豬顯著增加20.90±6.39、8.50±6.39和5.30±5.27 cm;杜藏豬的左胴體重、右胴體重、皮厚、管圍及胸圍等指標(biāo)也均優(yōu)于藏豬,而背膘厚較藏豬顯著降低9.68±5.29 cm,表明F1代杜藏豬有效遺傳了父本的優(yōu)良生長和胴體性狀。
豬肉品質(zhì)的顏色主要與肌紅蛋白有關(guān),肌紅蛋白對(duì)氧的親和力高于血紅蛋白,高原品種藏豬生長速度較慢,瘦肉含量較少,但肌紅蛋白含量高,肉質(zhì)較好(Liang et al.,2015)。與約克夏豬相比,藏豬的肉質(zhì)含有相對(duì)較低的L值和更高的a值(Gan et al.,2019)。任守文等(2020)研究表明,以大白公豬與中國新配套系蘇種豬雜交獲得的蘇山豬具有更優(yōu)質(zhì)的肉質(zhì)性狀。在本研究中,藏豬肉的L-45 min值低于杜藏豬,而a-45 min高于杜藏豬,但均未達(dá)差異顯著水平,可能與杜藏豬依然保持著母本的高肌紅蛋白特性有關(guān)。生豬被屠宰后,體內(nèi)無氧糖酵解過程取代氧化代謝,從而引起肉質(zhì)產(chǎn)生乳酸并積累,該過程與肉質(zhì)的pH、亮度、嫩度及含水率密切相關(guān)(Luo et al.,2017)。pH直接影響肉質(zhì)加工和食用的品質(zhì),藏豬肉質(zhì)的pH-45 min略高于杜藏豬,但差異不顯著,說明藏豬肉在屠宰后短時(shí)間可能有更優(yōu)的肉品質(zhì);藏豬肉質(zhì)的pH-24 h顯著低于杜藏豬,可能與藏豬肉的無氧糖酵解過程積累關(guān)。陳映等(2020)研究發(fā)現(xiàn),藏豬背肌嫩度顯著小于其他中外雜交豬種;杜長大三元雜背肌熟肉率約64.95%,較本研究中藏豬的熟肉率[(62.76±1.49)%]略高,但低于杜藏豬的熟肉率[(67.57±1.58)%];肌肉嫩度可能與肌纖維直徑有關(guān),而肌纖維粗細(xì)和密度及肌肉脂肪含量均會(huì)影響肉質(zhì)的細(xì)嫩程度。此外,Nikkil?等(2013)研究發(fā)現(xiàn)豬的體長越長其眼肌面積越小。本研究結(jié)果表明,杜藏豬的眼肌面積和體長均顯著高于藏豬,可能與選取的藏豬和杜藏體重存在差異有關(guān)。Ohnishi和Satoh(2018)研究表明,眼肌面積與體長無明顯的相關(guān)性,同時(shí)發(fā)現(xiàn)眼肌面積與豬的后寬呈正相關(guān),與胸深和胸寬呈負(fù)相關(guān)??梢姡煌i種間影響眼肌面積的因素仍有待進(jìn)一步探究。
豬肉品質(zhì)受肌內(nèi)脂肪含量的影響,而影響肌內(nèi)脂肪含量的因素包括遺傳和營養(yǎng)兩大方面。至今,已有大量與動(dòng)物脂肪沉積相關(guān)的基因被發(fā)現(xiàn),包括GHR基因(楊慧等,2014)、FASN基因(Zappaterra et al.,2016)、TNF基因、LEP基因(Stachowiak and Flisikowski,2019)、ADIPOQ基因(Villaplana-Velasco et al.,2021)及IGF1基因(Wang et al.,2021)等。Wang等(2017)研究發(fā)現(xiàn),去勢公豬體內(nèi)的脂肪含量顯著增加的同時(shí),GHR基因表達(dá)量在皮下脂肪中顯著上調(diào),但在肝臟中顯著下調(diào),故推測GHR基因表達(dá)與豬的脂肪發(fā)育相關(guān)。本研究結(jié)果表明,藏豬肌內(nèi)脂肪含量顯著高于杜藏豬,而藏豬背最長肌GHR基因相對(duì)表達(dá)量顯著低于杜藏豬。IGF1基因表達(dá)與脂肪細(xì)胞含量間存在一定程度的正相關(guān)(Wang et al.,2019)。在本研究中,藏豬肌內(nèi)脂肪含量和IGF1基因相對(duì)表達(dá)量均高于杜藏豬,進(jìn)一步證實(shí)IGF1基因作為脂肪沉積相關(guān)基因在豬的生長發(fā)育過程中扮演著重要角色。ADIPOQ基因通過促進(jìn)脂肪細(xì)胞分化和抑制脂解作用,而調(diào)控脂質(zhì)積累(Kubota et al.,2007)。與杜藏豬相比,藏豬含有更高水平的肌內(nèi)脂肪和ADIPOQ基因相對(duì)表達(dá)量,與預(yù)期結(jié)果一致。本研究還發(fā)現(xiàn),杜藏豬背最長肌中的Leptin基因相對(duì)表達(dá)量極顯著低于藏豬,是由于瘦素主要參與調(diào)節(jié)動(dòng)物對(duì)食物的攝入和新陳代謝,進(jìn)而影響到脂肪在背最長肌中的沉積速度。TNF通過調(diào)節(jié)脂蛋白含量和 PPARG 轉(zhuǎn)錄因子的表達(dá),在脂肪發(fā)生中發(fā)揮重要作用。本研究發(fā)現(xiàn),杜藏豬中的TNFα基因相對(duì)表達(dá)量極顯著低于藏豬,暗示藏豬肌內(nèi)脂肪沉積高于杜藏豬可能與TNFa基因的表達(dá)水平存在關(guān)聯(lián)。FASN與脂肪沉積和脂肪酸組成有關(guān),能間接激活脂肪酸氧化基因而控制脂肪酸分解代謝(Jensen-Urstad and Semenkovich,2012)。張雄等(2021)研究發(fā)現(xiàn),野柯雜交豬背肌中的FASN基因表達(dá)量與背膘厚呈正相關(guān),由此推測FASN基因表達(dá)量越高豬的背膘越厚。在本研究中,具有更厚背膘的藏豬FASN基因表達(dá)量顯著高于杜藏豬,與焦明慧等(2014)的研究一致。此外,本研究的相關(guān)分析結(jié)果顯示,GHR基因相對(duì)表達(dá)量與杜藏豬肌內(nèi)脂肪含量呈顯著正相關(guān),F(xiàn)ASN基因相對(duì)表達(dá)量與藏豬肌內(nèi)脂肪含量呈顯著正相關(guān),IGF1基因相對(duì)表達(dá)量與藏豬背膘呈顯著負(fù)相關(guān),與趙小琪等(2018)、Yu等(2018)、張斌等(2019)的研究結(jié)果一致。同一基因在藏豬和杜藏豬中與肌內(nèi)脂肪含量和背膘厚的相關(guān)性并不完全相同,可能是受到品種差異的影響,但具體分子機(jī)制有待進(jìn)一步探究。
4 結(jié)論
杜藏豬的肉質(zhì)性狀與藏豬相似,但杜藏豬具有更佳的生長性能,說明以杜洛克為父本與藏豬母本雜交得到的杜藏豬具有更優(yōu)的生產(chǎn)效率。藏豬和杜藏豬的肌內(nèi)脂肪含量差異與脂肪沉積相關(guān)基因的表達(dá)差異有關(guān),即豬的肌內(nèi)脂肪含量受多種脂肪沉積相關(guān)基因調(diào)控。
參考文獻(xiàn):
陳映,葛桂華,徐旭,李強(qiáng),丁俊仁,曾仰雙,王小強(qiáng),劉一輝,張順華,朱礪. 2020. 品種和肌纖維類型對(duì)豬肉質(zhì)性狀的影響[J]. 中國畜牧雜志,56(11):52-55. [Chen Y,Ge G H,Xu X,Li Q,Ding J R,Zeng Y S,Wang X Q,Liu Y H,Zhang S H,Zhu L. 2020. Effect of different muscle fiber types on meat quality in pigs[J]. Chinese Journal of Animal Science,56(11):52-55.] doi:10.19556/j.0258-7033. 20191230-04.
方曉敏,王麗,涂楓,趙為民,李碧俠,王學(xué)敏,任守文. 2021. 導(dǎo)入巴克夏豬血統(tǒng)對(duì)蘇紫黑豬生產(chǎn)性能的影響[J]. 江蘇農(nóng)業(yè)科學(xué),49(9):138-142. [Fang X M,Wang L,Tu F,Zhao W M,Li B X,Wang X M,Ren S W. 2021. Effects of introduced Berkshire pigs lineage on performance of Suzi black pigs[J]. Jiangsu Agricultural Sciences,49(9):138-142.] doi:10.15889/j.issn.1002-1302.2021.09.025.
焦明慧,周梅,陳宏權(quán),陳公偉,謝亞男,潘中婷,王學(xué)故,馬幫軍. 2014. 不同產(chǎn)脂能力豬脂肪合成相關(guān)基因表達(dá)譜分析[J]. 安徽農(nóng)業(yè)大學(xué)學(xué)報(bào),41(3):367-370. [Jiao M H,Zhou M,Chen H Q,Chen G W,Xie Y N,Pan Z T,Wang X G,Ma B J. 2014. Gene expression analysis related to the fatty synthesis for the different fat deposition capacity in pigs[J]. Journal of Anhui Agricultural University,41(3):367-370.] doi:10.13610/j.cnki.1672-352x.20140423. 020.
李闖,韋明飛,莫德林,陳建偉,王永江,劉小紅,陽林芳,曾檢華. 2019. 巴克夏與廣東小耳花豬雜交效果分析[J]. 中國畜牧雜志,55(4):62-65. [Li C,Wei M F,Mo D L,Chen J W,Wang Y J,Liu X H,Yang L F,Zeng J H. 2019. Analysis of crossbreeding effect between Berkshire and Guangdong small-eared pigs[J]. Chinese Journal of Animal Science,55(4):62-65.] doi:10.19556/j.0258-7033. 2019-04-062.
李恭賀,陳秋玉,吳文德,鄭喜邦. 2021. 水牛瘦素基因的真核表達(dá)及生物學(xué)特性分析[J]. 河南農(nóng)業(yè)科學(xué),50(10):132-137. [Li G H,Chen Q Y,Wu W D,Zheng X B. 2021. Eukaryotic expression and biological characterization of leptin gene in buffalo[J]. Journal of Henan Agricultural Sciences,50(10):132-137.] doi:10.15933/j.cnki.1004-3268.2021.10.017.
劉瑩,龍歡,牛麗珠,馬婷婷,劉炎,張欣怡,王目鳳,林德源,黃華偉,李新云,趙書紅,徐學(xué)文. 2018. 杜陸與杜隆陸豬生長、胴體及肉質(zhì)性狀的比較分析[J]. 畜牧獸醫(yī)學(xué)報(bào),49(12):2576-2583. [Liu Y,Long H,Niu L Z,Ma T T,Liu Y,Zhang X Y,Wang M F,Lin D Y,Huang H W,Li X Y,Zhao S H,Xu X W. 2018. Comparison of growth,carcass and meat quality traits between Dulu and Dulonglu pigs[J]. Acta Veterinaria et Zootechnica Sinica,49(12):2576-2583.] doi:10.11843/j.issn.0366-6964.2018.12.006.
呂亞寧,賀琛昕,蘭旅濤. 2020. 豬肌內(nèi)脂肪與肉品質(zhì)的關(guān)系及其影響因素的研究進(jìn)展[J]. 中國畜牧獸醫(yī),47(2):554-563. [Lü Y N,He C X,Lan L T. 2020. Research advances on the relationship between intramuscular fat and meat quality and influence factor of intramuscular fat in pigs[J]. China Animal Husbandry and Veterinary Medicine,47(2):554-563.] doi:10.16431/j.cnki.1671-7236. 2020.02.027.
歐秀瓊,李睿,張曉春,鐘正澤,解華東,李星,布麗君,景紹紅,彭鴻. 2021. 豬肌纖維性狀形成和肌內(nèi)脂肪沉積的遺傳機(jī)制[J]. 中國畜牧獸醫(yī),48(3):925-931. [Ou X Q,Li R,Zhang X C,Zhong Z Z,Xie H D,Li X,Bu L J,Jing S H,Peng H. 2021. Genetic mechanism of pig muscle fiber property formation and intramuscular fat deposition[J]. China Animal Husbandry and Veterinary Medicine,48(3):925-931.] doi:10.16431/j.cnki.1671-7236.2021.03.016.
強(qiáng)巴央宗,謝莊,田發(fā)益. 2001. 高原藏豬現(xiàn)狀與保種策略[J]. 中國畜牧雜志,37(6):46-47. [Chamba Y Z,Xie Z,Tian F Y. 2001. Current situation and conservation strategy of Tibetan pigs in Plateau[J]. Chinese Journal of Animal Science,37(6):46-47.] doi:10.3969/j.issn.0258-7033.2001. 06.020.
任守文,李碧俠,葛云山,王學(xué)敏,方曉敏,付言峰,趙為民. 2020. 蘇山豬選育研究[J]. 中國畜牧雜志,56(11):47-51. [Ren S W,Li B X,Ge Y S,Wang X M,F(xiàn)ang X M,F(xiàn)u Y F,Zhao W M. 2020. Study on breeding of Sushan pig[J]. Chinese Journal of Animal Science,56(11):47-51.] doi:10.19556/j.0258-7033.20191121-07.
相德才,張斌,韓敏,劉韶娜,趙智勇,吳國權(quán). 2021. 迪慶藏豬ADFP基因多態(tài)性及其組織表達(dá)特征[J]. 南方農(nóng)業(yè)學(xué)報(bào),52(10):2872-2879. [Xiang D C,Zhang B,Han M,Liu S N,Zhao Z Y,Wu G Q. 2021. The polymorphism and its expression characteristics in the tissues of ADFP gene in Diqing Tibetan pig[J]. Journal of Southern Agriculture,52(10):2872-2879.] doi:10.3969/j.issn.2095-1191.2021.10.028.
邢寶松,王璟,白獻(xiàn)曉,陳俊峰,張家慶,任巧玲,郭紅霞,張華,曹海. 2021. 不同養(yǎng)殖模式對(duì)淮南豬屠宰和肉質(zhì)性狀的影響[J]. 河南農(nóng)業(yè)科學(xué),50(1):160-165. [Xing B S,Wang J,Bai X X,Chen J F,Zhang J Q,Ren Q L,Guo H X,Zhang H,Cao H. 2021. Influence of different feeding styles on slaughter and meat quality traits of Huainan pigs[J]. Journal of Henan Agricultural Sciences,50(1):160-165.] doi:10.15933/j.cnki.1004-3268.2021.08.019.
楊慧,陳寶劍,蘭干球,郭亞芬,蔣欽楊,楊秀榮. 2014. 豬GHR基因兩個(gè)SNPs位點(diǎn)多態(tài)性與生長性狀的關(guān)聯(lián)分析[J]. 南方農(nóng)業(yè)學(xué)報(bào),45(11):2052-2057. [Yang H,Chen B J,Lan G Q,Guo Y F,Jiang Q Y,Yang X R. 2014. Correlation analysis on 2 SNPs sites polymorphism in GHR gene and corresponding growth traits of pig[J]. Journal of Southern Agriculture,45(11):2052-2057.] doi:10.3969/ j.issn.2095-1191.2014.11.2052.
苑洪霞,王鑫,孫振梅,李鵬程,馮文武,陳祥. 2017. 白洗豬與杜洛克豬雜交F1代豬肉品質(zhì)特性研究[J]. 中國畜牧獸醫(yī),44(3):761-766. [Yuan H X,Wang X,Sun Z M,Li P C,F(xiàn)eng W W,Chen X. 2017. The meat quality and cha-racteristics of Baixi pig×Turok hybrid F1 generation[J]. China Animal Husbandry and Veterinary Medicine,44(3):761-766.] doi:10.16431/j.cnki.1671-7236.2017.03.020.
張斌,相德才,趙智勇,吳國權(quán),劉韶娜,胡清泉,陳吉紅,韓敏,常雅潔,楊仁燦,趙彥光. 2019. IGFs和MSTN基因表達(dá)量與種豬生長性狀的相關(guān)性研究[J]. 云南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)),34(2):263-270. [Zhang B,Xiang D C,Zhao Z Y,Wu G Q,Liu S N,Hu Q Q,Chen J H,Han M,Chang Y J,Yang R C,Zhao Y G. 2019. Correlation analysis on expression of IGFs and MSTN genes and growth traits in breeding pigs[J]. Journal of Yunnan Agricultural University(Natural Sciences),34(2):263-270.] doi: 10.12101/j.issn.1004-390X(n).201801022.
張雄,史開志,張勇,郭勇,陳大軍,尚以順. 2021. 豬FASN基因表達(dá)與胴體及肉質(zhì)性狀相關(guān)性研究[J]. 黑龍江畜牧獸醫(yī),(9):64-67. [Zhang X,Shi K Z,Zhang Y,Guo Y,Chen D J,Shang Y S. 2021. Study on the correlation between FASN gene expression and carcass and meat quality traits in pigs[J]. Heilongjiang Animal Science and Vete-rinary Medicine,(9):64-67.] doi:10.13881/j.cnki.hljxmsy.2020.05.0352.
趙連生. 2007. 我國地方豬種在產(chǎn)業(yè)化發(fā)展中的作用[J]. 中國畜牧獸醫(yī),34(10):151-153. [Zhao L S. 2007. The role of local pig breeds in the development of industria-lization in China[J]. China Animal Husbandry and Veterinary Medicine,34(10):151-153.] doi:10.3969/j.issn. 1671-7236.2007.10.057.
趙小琪,謝宇瀟,潘洪彬,黃英,楊明華,趙素梅. 2018. 不同品種豬肌內(nèi)脂肪合成代謝相關(guān)基因表達(dá)水平的研究[J]. 黑龍江畜牧獸醫(yī),(19):6-10. [Zhao X Q,Xie Y X,Pan H B,Huang Y,Yang M H,Zhao S M. 2018. Study of intramuscular fat synthesis metabolism related genes expression level in the different varieties of pigs[J]. Heilongjiang Animal Science and Veterinary Medicine,(19):6-10.] doi:10.13881/j.cnki.hljxmsy.2017.12.0051.
Allan G J,F(xiàn)lint D J,Darling S M,Geh J,Patel K. 2000. Altered expression of insulin-like growth factor-1 and insulin like growth factor binding proteins-2 and 5 in the mouse mutant Hypodactyly(Hd) correlates with sites of apoptotic activity[J]. Anatomy and Embryology,202(1):1-11. doi:10.1007/pl00008239.
Bertolini F,Schiavo G,Galimberti G,Bovo S,D'Andrea M,Gallo M,Buttazzoni L,Rothschild M F,F(xiàn)ontanesi L. 2018. Genome-wide association studies for seven production traits highlight genomic regions useful to dissect dry-cured ham quality and production traits in Duroc heavy pigs[J]. Animal,12(9):1777-1784. doi:10.1017/S17517 31118000757.
Cawthorn W P,Sethi J K. 2008. TNF-α and adipocyte biology[J]. FEBS Letter,582(1):117-131. doi:10.1016/j.febslet.2007.11.051.
Chen A D,Hao L L,F(xiàn)ang X B,Lu K,Liu S C,Zhang Y L. 2014. Polymorphism analysis of IGFBP-5 gene exon 1 in Tibet mini-pig and Junmu No.1 white pig[J]. Genetics and Molecular Research,13(1):1643-1649. doi:10.4238/2014.March.12.17.
Chhabra Y,Lee C M M,Müller A F,Brooks A J. 2021. GHR signalling:Receptor activation and degradation mechanisms[J]. Molecular and Cellular Endocrinology,520:111075. doi:10.1016/j.mce.2020.111075.
?iko? S,Burku? J,Bukovská A,F(xiàn)abian D,Rehák P,Koppel J. 2010. Expression of adiponectin receptors and effects of adiponectin isoforms in mouse preimplantation embryos[J]. Human Reproduction,25(9):2247-2255. doi:10.1093/ humrep/deq193.
Gan M L,Shen L Y,F(xiàn)an Y,Guo Z X,Liu B,Chen L,Tang G Q,Jiang Y Z,Li X W,Zhang S H,Bai L,Zhu L. 2019. High altitude adaptability and meat quality in Tibetan pigs:A reference for local Pork processing and genetic improvement[J]. Animals (Basel),9(12):1080. doi:10. 3390/ani9121080.
Jensen-Urstad A P L,Semenkovich C F. 2012. Fatty acid synthase and liver triglyceride metabolism:Housekeeper or messenger?[J]. Biochimica et Biophysica Acta,1821(5):747-753. doi:10.1016/j.bbalip.2011.09.017.
Kubota N,Yano W,Kubota T,Yamauchi T,Itoh S,Kumagai H,Kozono H,Takamoto I,Okamoto S,Shiuchi T,Suzuki R,Satoh H,Tsuchida A,Moroi M,Sugi K,Noda T,Ebinuma H,Ueta Y,Kondo T,Araki E,Ezaki O,Nagai R,Tobe K,Terauchi Y,Ueki K,Minokoshi Y,Kadowaki T. 2007. Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake[J]. Cell Metabolism,6(1):55-68. doi:10.1016/j.cmet.2007. 06.003.
Lefterova M I,Lazar M A. 2009. New developments in adipogenesis[J]. Trends in Endocrinology & Metabolism,20(3):107-114. doi:10.1016/j.tem.2008.11.005.
Liang Y,Yang X M,Gu Y R,Tao X,Zhong Z Z,Gong J J,Chen X H,Lü X B. 2015. Developmental changes in the expression of the GLUT2 and GLUT4 genes in the longissimus dorsi muscle of Yorkshire and Tibetan pigs[J]. Genetics and Molecular Research,14(1):1287-1292. doi:10.4238/2015.February.13.7
List E O,Berryman D E,F(xiàn)unk K,Gosney E S,Jara A,Kelder B,Wang X Y,Kutz L,Troike K,Lozier N,Mikula V,Lubbers E R,Zhang H,Vesel C,Junnila R K,F(xiàn)rank S J,Masternak M M,Bartke A,Kopchick J J. 2013. The role of GH in adipose tissue:Lessons from adipose-specific GH receptor gene-disrupted mice[J]. Molecular Endocrinology,27(3):524-535. doi:10.1210/me.2012-1330.
Luo J,Shen Y L,Lei G H,Zhu P K,Jiang Z Y,Bai L,Li Z M,Tang Q G,Li W X,Zhang H S,Zhu L. 2017. Correlation between three glycometabolic-related hormones and muscle glycolysis,as well as meat quality,in three pig breeds[J]. Journal of the Science of Food and Agriculture,97(9):2706-2713. doi:10.1002/jsfa.8094.
Nematbakhsh S,Chong P P,Selamat J,Nordin N,Idris L H,Abdull Razis A F. 2021. Molecular regulation of lipogene-sis,adipogenesis and fat deposition in chicken[J]. Genes (Basel),12(3):414. doi:10.3390/genes12030414.
Nikkil? M T,Stalder K J,Mote B E,Rothschild M F,Gunsett F C,Johnson A K,Karriker L A,Boggess M V,Serenius T V. 2013. Genetic parameters for growth,body composition,and structural soundness traits in commercial gilts[J]. Journal of Animal Science,91(5):2034-2046. doi:10. 2527/jas.2012-5722.
Ohnishi C,Satoh M. 2018. Estimation of genetic parameters for performance and body measurement traits in Duroc pigs selected for average daily gain,loin muscle area,and backfat thickness[J]. Livestock Science,214:161-166. doi:10.1016/j.livsci. 2018.05.022.
Palhinha L,Liechocki S,Hottz E D,da Silva Pereira J,de Almeida C J,Moraes-Vieira P M M,Bozza P T,Maya-Monteiro C M. 2019. Leptin induces proadipogenic and proinflammatory signaling in adipocytes[J]. Frontiers in Endocrinology (Lausanne),10:841. doi:10.3389/fendo.2019. 00841.
Piórkowska K,Malopolska M,Ropka-Molik K,Szyndler-Nedza M,Wiechniak A,?ukowski K,Lambert B,Tyra M. 2020. Evaluation of SCD,ACACA and FASN mutations:Effects on pork quality and other production traits in pigs selected based on RNA-Seq results[J]. Animals (Basel),10(1):123.? doi:10.3390/ani10010123.
Qiao L P,Yoo H S,Madon A,Kinney B,Hay Jr W W,Shao J H. 2012. Adiponectin enhances mouse fetal fat deposition[J]. Diabetes, 61(12):3199-3207. doi:10.2337/db12-0055.
Stachowiak M,F(xiàn)lisikowski K. 2019. Analysis of allele-speci-fic expression of seven candidate genes involved in lipid metabolism in pig skeletal muscle and fat tissues reveals allelic imbalance of ACACA,LEP,SCD,and TNF[J]. Journal of Applied Genetics,60(1):97-101. doi:10.1007/s13353-019-00485-z.
Suzuki K,Inomata K,Katoh K,Kadowaki H,Shibata T. 2009. Genetic correlations among carcass cross-sectional fat area ratios,production traits,intramuscular fat,and serum leptin concentration in Duroc pigs[J]. Journal of Animal Science,87(7):2209-2215. doi:10.2527/jas.2008-0866.
Villaplana-Velasco A,Noguera J L,Pena R N,Ballester M,Munoz L,González E,Tejeda J F,Ibánez-Escriche N. 2021. Comparative transcriptome profile between Iberian pig varieties provides new insights into their distinct fat deposition and fatty acids content[J]. Animals (Basel),11(3):627. doi:10.3390/ani11030627.
Wang B B,Li P H,Zhou W D,Gao C,Liu H,Li H X,Niu P P,Zhang Z P,Li Q,Zhou J,Huang R H. 2019. Association of twelve candidate gene polymorphisms with the intramuscular fat content and average backfat thickness of Chinese Suhuai pigs[J]. Animals (Basel),9(11):858. doi:10.3390/ani9110858.
Wang J,Chen J F,Zhang J Q,Gao B W,Bai X X,Lan Y L,Lin P,Guo H X,Gao Y,Xing B S. 2017. Castration-induced changes in the expression profiles and promoter methylation of the GHR gene in Huainan male pigs[J]. Animal Science Journal,88(8):1113-1119. doi:10.1111/asj.12739.
Wang W J,Guo Y Q,Xie K J,Li Y D,Li Z W,Wang N,Xiao F,Guo H S,Li H,Wang S Z. 2021. A functional variant in the promoter region of IGF1 gene is associated with chicken abdominal fat deposition[J]. Domestic Animal Endocrinology,75:106584. doi:10.1016/j.domaniend. 2020.106584.
Yu H H,Long W H,Zhang X Z,Xu K X,Guo J X,Zhao H,Li H H,Qing Y B,Pan W R,Jia B Y,Zhao H Y,Huang X X,Wei H J. 2018. Generation of GHR-modified pigs as Laron syndrome models via a dual-sgRNAs/Cas9 system and somatic cell nuclear transfer[J]. Journal of Trans-lational Medicine,16(1): 41. doi:10.1186/s12967-018-1409-7.
Zappaterra M,Deserti M,Mazza R,Braglia S,Zambonelli P,Davoli R. 2016. A gene and protein expression study on four porcine genes related to intramuscular fat deposition[J]. Meat Science,121:27-32. doi:10.1016/j.meatsci.2016. 05.007.
Zhang Y F,Zhang J J,Gong H F,Cui L L,Zhang W C,Ma J W,Chen C Y,Ai H S,Xiao S J,Huang L S,Yang B. 2019. Genetic correlation of fatty acid composition with growth,carcass,fat deposition and meat quality traits based on GWAS data in six pig populations[J]. Meat Science,150:47-55. doi:10.1016/j.meatsci.2018.12.008.
收稿日期:2021-07-18
基金項(xiàng)目:廣東省基礎(chǔ)與應(yīng)用基礎(chǔ)研究基金溫氏聯(lián)合基金項(xiàng)目(2019B1515210013);廣東省普通高校重點(diǎn)領(lǐng)域?qū)m?xiàng)(2021ZDZX2050);廣東省農(nóng)業(yè)科學(xué)院科技創(chuàng)新戰(zhàn)略專項(xiàng)(R2019YJ-YB2004)
通訊作者:王塑天(1989-),https://orcid.org/0000-0002-3554-5022,博士,副研究員,主要從事抗病基因功能研究與抗病育種工作,E-mail:wstlyt@126.com;唐冬生(1962-),https://orcid.org/0000-0001-9466-6687,博士,教授,主要從事基因編輯與生物治療技術(shù)研究工作,E-mail:tangdsh@163.com
第一作者:楊燁城(1995-),https://orcid.org/0000-0002-5745-7445,研究方向?yàn)閯?dòng)物遺傳育種,E-mail:fdyangyecheng@163.com