陳季荷,顧少華,李文婷,苑之童,程海濤
NaOH堿處理濃度對(duì)毛竹篾及其環(huán)氧樹(shù)脂復(fù)合材料性能影響
陳季荷,顧少華,李文婷,苑之童,程海濤※
(國(guó)際竹藤中心竹藤科學(xué)與技術(shù)重點(diǎn)實(shí)驗(yàn)室,北京 100102)
為研究NaOH堿處理濃度對(duì)毛竹竹篾及其環(huán)氧樹(shù)脂復(fù)合材料性能的影響,該研究采用熱壓成型制備竹篾平均質(zhì)量分?jǐn)?shù)為75%的復(fù)合材料,通過(guò)設(shè)置4種NaOH溶液濃度梯度,利用微觀形貌觀察(Scanning Electron Microscope)、熱重分析(Thermogravimetric Analysis)、動(dòng)態(tài)熱機(jī)械分析(Dynamic Mechanical Analysis)等手段表征材料性能變化。結(jié)果表明NaOH堿處理去除了竹篾表面部分木質(zhì)素、半纖維素及蠟質(zhì)等雜質(zhì),使其極性發(fā)生變化,結(jié)晶度從60.0%提高至63.6%,拉伸強(qiáng)度和熱穩(wěn)定性增強(qiáng);當(dāng)NaOH溶液濃度為2%時(shí),竹篾的拉伸強(qiáng)度提高了52.11%,其復(fù)合材料剪切強(qiáng)度提升了55.24%;同時(shí),在30~90 ℃,NaOH堿處理的竹篾/環(huán)氧樹(shù)脂復(fù)合材料(NaOH-BS/EP)在動(dòng)態(tài)載荷作用下有更好的結(jié)構(gòu)穩(wěn)定性,2% NaOH溶液處理的復(fù)合材料儲(chǔ)能模量最大值是未處理的1.3倍。NaOH堿處理可以增強(qiáng)竹篾的熱穩(wěn)定性、拉伸強(qiáng)度,改善與環(huán)氧樹(shù)脂的界面強(qiáng)度,提高復(fù)合材料的靜態(tài)及動(dòng)態(tài)力學(xué),可用于戶外農(nóng)業(yè)工程材料、建筑、戶外園林等,既降低生產(chǎn)成本,同時(shí)提高竹篾的綜合利用率。
表面處理;力學(xué)性能;竹質(zhì)復(fù)合材料;熱固性樹(shù)脂;界面性能
中國(guó)是農(nóng)業(yè)大國(guó),充分利用農(nóng)作物及農(nóng)業(yè)廢棄物中的植物資源具有重要意義。為了滿足材料功能多樣化、產(chǎn)品可設(shè)計(jì)等特點(diǎn),植物纖維增強(qiáng)聚合物基復(fù)合材料成為當(dāng)今研究熱點(diǎn)。隨著中國(guó)“碳達(dá)峰”“碳中和”戰(zhàn)略目標(biāo)的提出,發(fā)展綠色低碳、輕質(zhì)高強(qiáng)的復(fù)合材料成為必然趨勢(shì)。竹材是一種環(huán)保、生長(zhǎng)周期短、強(qiáng)度高、韌性強(qiáng)的天然資源,在生長(zhǎng)過(guò)程中,可以消耗周圍大氣中的二氧化碳,符合對(duì)環(huán)境友好型材料的需求。竹材力學(xué)強(qiáng)度主要來(lái)源于纖維間的內(nèi)聚強(qiáng)度,而非纖維自身的拉伸強(qiáng)度。為了充分利用單根纖維中缺乏的內(nèi)聚性,復(fù)合材料采用竹篾而不是提取的竹纖維[1-2]。竹篾具有精細(xì)化、均一化、規(guī)格化等特點(diǎn),以此研發(fā)性價(jià)比高的竹篾復(fù)合材料能耗低、產(chǎn)品質(zhì)量好且利用率高,以期應(yīng)用于農(nóng)業(yè)工程領(lǐng)域,如地膜支撐架,灌溉的水管通道以及戶外的農(nóng)具等,提高竹篾的附加值,推動(dòng)綠色建材在農(nóng)業(yè)農(nóng)村建設(shè)中的應(yīng)用[3-7]。
然而,竹篾表面的極性羥基與非極性樹(shù)脂基體間的界面相容性差、應(yīng)力傳遞效率低及受載荷時(shí)易分層易斷裂等造成產(chǎn)品的力學(xué)性能與耐久性較差[8-10]。為了使竹篾復(fù)合材料達(dá)到結(jié)構(gòu)用或次結(jié)構(gòu)用的目的,界面改性技術(shù)是關(guān)鍵技術(shù)瓶頸。而堿處理對(duì)竹篾表面物質(zhì)(半纖維素、木素等)具有一定的去除作用,促進(jìn)竹篾表面原纖化,有利于樹(shù)脂在界面上的滲透,提高復(fù)合材料力學(xué)性能[11-15]。目前,許多研究學(xué)者對(duì)竹篾進(jìn)行化學(xué)改性處理并用于復(fù)合材料。Das等[16]利用堿溶液處理竹篾(厚度為1.0~1.5 mm),并制備竹篾增強(qiáng)聚酯樹(shù)脂復(fù)合材料。通過(guò)對(duì)其力學(xué)性能測(cè)試,發(fā)現(xiàn)經(jīng)15%堿溶液處理的復(fù)合材料性能最優(yōu),其彎曲和拉伸強(qiáng)度分別達(dá)到70、250 MPa。Kushwaha等[17]利用堿處理竹席(厚度為0.5 mm),并制備竹席增強(qiáng)環(huán)氧樹(shù)脂復(fù)合材料,通過(guò)對(duì)其進(jìn)行彎曲性能測(cè)試,發(fā)現(xiàn)不同濃度的堿溶液處理的復(fù)合材料,其彎曲強(qiáng)度為92~154 MPa,彎曲模量5.6~10.7 GPa。同時(shí),Rassiah等[18]制備了竹篾(厚度為1.5~2.5 mm)增強(qiáng)不飽和聚酯復(fù)合材料,并進(jìn)行力學(xué)性能表征。結(jié)果發(fā)現(xiàn)由于不飽和聚酯的加入,竹篾復(fù)合材料的力學(xué)性能得到改善,是復(fù)合增強(qiáng)纖維的可行替代品。
目前研究多數(shù)集中于堿處理對(duì)竹篾復(fù)合材料的靜態(tài)力學(xué)性能影響,并未對(duì)堿處理如何影響竹篾自身性能和其復(fù)合材料的界面相容性進(jìn)行詳細(xì)研究;同時(shí),多數(shù)研究學(xué)者使用的竹篾厚度較大,雖力學(xué)強(qiáng)度較高,但導(dǎo)致復(fù)合材料質(zhì)量較大,不利于實(shí)現(xiàn)輕量化目標(biāo)。本研究以較薄竹篾為研究對(duì)象,采用堿溶液對(duì)其進(jìn)行表面處理,并通過(guò)熱壓成型工藝制備竹篾增強(qiáng)環(huán)氧樹(shù)脂復(fù)合材料,對(duì)堿處理的竹篾及其復(fù)合材料性能進(jìn)行表征,以期在滿足力學(xué)強(qiáng)度的要求下,實(shí)現(xiàn)復(fù)合材料輕量化,為竹篾復(fù)合材料在農(nóng)業(yè)工程應(yīng)用中部分替代金屬及玻璃纖維復(fù)合材料提供理論依據(jù)。
原材料采于四川宜賓,將竹齡3年的毛竹弦向剖分成平均厚度為0.3 mm、寬度為10 mm的試驗(yàn)用毛竹竹篾(Phyllostachys edulis,BS)。其他試驗(yàn)材料及試劑包括:E54 環(huán)氧樹(shù)脂(EP),紅星復(fù)合材料有限公司,物質(zhì)數(shù)字識(shí)別號(hào)(CAS):61788-97-4 ;氫氧化鈉顆粒,天津大茂化學(xué)試劑廠,物質(zhì)數(shù)字識(shí)別號(hào)(CAS):1310-73-2;二碘甲烷(分析純99.9%)、乙二醇(分析純99.9%),物質(zhì)數(shù)字識(shí)別號(hào)(CAS):75-11-6、107-21-1,國(guó)藥化試劑有限公司。
首先將竹篾放置103 ℃的烘箱干燥至恒質(zhì)量。在25 ℃環(huán)境中,將干燥的竹篾分別浸入濃度為1%~5% NaOH溶液中(NaOH溶液與竹篾質(zhì)量比為20∶1),浸泡12 h;然后用乙酸中和至中性,且用離子水洗滌;將處理后的竹篾放置在溫度為103 ℃的烘箱,干燥12 h。
將3層竹篾組坯,再放于環(huán)氧樹(shù)脂中浸漬,然后用熱壓機(jī)(CarverInc,USA)熱壓成型(壓力1 MPa,溫度與時(shí)間為90 ℃ 1 h+100 ℃ 1 h+冷壓 1 h)[10],制成平均厚度1 mm的復(fù)合材料,復(fù)合材料制備過(guò)程如圖1。
圖1 BS/EP復(fù)合材料制備過(guò)程示意圖
采用Nexus670型傅立葉變換紅外光譜儀,分析堿處理前后竹篾表面功能團(tuán)變化,測(cè)試參數(shù)為光譜范圍400~4 000 cm-1,分辨率為4 cm-1,掃描次數(shù)為32;場(chǎng)發(fā)射環(huán)境掃描電鏡(FE-SEM,型號(hào)XL30,美國(guó)FEI公司)觀察堿處理前后竹篾的表面形貌,測(cè)試參數(shù)為真空度小于5×10-5Pa,掃描電壓為7 kV;KrussK100MK2接觸角測(cè)量?jī)x,測(cè)量堿處理前后竹篾分別在水、乙二醇和二碘甲烷三種溶劑中的接觸角,采用Owens-Wendt法計(jì)算極性分量[19-20],即:
式中表示表面能,d、p分別表示色散分量和極性分量,mN/m。
接觸角測(cè)量?jī)x的分辨率0.05N/m、位移傳感器分辨率10 nm,測(cè)量速度3 mm/s,浸入深度5 mm;X射線衍射儀,進(jìn)行測(cè)定堿處前后理竹篾結(jié)晶度,測(cè)試參數(shù)為Cu-Ka靶,管壓40 kV,管流40 mA,掃描角度5°~40°,掃描速率10°/min,采用式(2)計(jì)算結(jié)晶度[21-22]:
式中為質(zhì)量結(jié)晶度,%;I、002分別為非晶體部分(或無(wú)定型部分)的衍射強(qiáng)度和晶體衍射部分的強(qiáng)度,cps,對(duì)應(yīng)2分別是16°和22°。
Q50熱重分析儀用于觀察竹篾粉末熱解特性,測(cè)試參數(shù)為掃描溫度為室溫至600 ℃,升溫速率為20 ℃/min,通過(guò)測(cè)試竹篾剩余重量在溫度變化下的關(guān)系,得到熱重曲線,并進(jìn)一步進(jìn)行求導(dǎo)得到熱重微分曲線,以反映竹篾的失重速率;采用MTS-WA204A力學(xué)試驗(yàn)機(jī),參照GB/T13022-1991進(jìn)行竹篾拉伸性能測(cè)試,測(cè)試參數(shù)為加載速率2 mm/min,傳感器載荷量程為1 kN;參考ASTMD7028-07,使用Q800動(dòng)態(tài)熱機(jī)械分析儀測(cè)試復(fù)合材料動(dòng)態(tài)熱力學(xué)性能,該測(cè)試試樣尺寸為60 mm× 10 mm×1 mm,溫度40~140 ℃,升溫速率1 ℃/min,振幅15m,頻率1 Hz,雙懸臂梁測(cè)試模式[10]。
通過(guò)紅外光譜測(cè)試判斷浸漬前后表面官能團(tuán)的變化、分析化學(xué)鍵對(duì)界面性能的影響,是表征竹篾表面改性的常用手段。堿處理前后竹篾的紅外光譜圖如圖2所示,1 700~1 755 cm-1處為半纖維素中羰基的振動(dòng)峰,堿處理后竹篾此處的特征峰強(qiáng)度整體趨勢(shì)為減弱,這表明竹篾經(jīng)過(guò)堿處理后,半纖維素含量減少;1543 cm-1處的吸收峰為木質(zhì)素苯環(huán)骨架振動(dòng)的吸收特征峰,隨著堿溶液濃度的增加,苯環(huán)骨架逐漸減弱并最終消失,說(shuō)明堿處理可以去除竹篾表面部分半纖維素和木質(zhì)素類雜質(zhì)。然而,峰的變化是不規(guī)則的,因?yàn)槿芙獾哪举|(zhì)素和半纖維素由于纖維素的氫鍵而被重新吸附在竹篾表面。3 310 cm-1附近出現(xiàn)的特征峰為-OH的伸縮振動(dòng)吸收峰,2 920 cm-1附近是C-H(-CH3和-CH2)的伸縮振動(dòng)吸收峰,是纖維素的特征吸收峰,隨著堿處理濃度的增強(qiáng),竹篾纖維素特征峰整體趨勢(shì)為增強(qiáng),表明經(jīng)過(guò)堿處理,纖維素更多的暴露出來(lái);此外,1 030 cm-1處的峰對(duì)應(yīng)于纖維素的羥基,與未處理的竹篾相比,堿處理的竹篾羥基峰明顯增強(qiáng),這表明由于纖維束之間的物理粘附作用,更多的羥基暴露在竹篾的表面,使竹篾表面極性增強(qiáng)。
注:1% NaOH-BS為濃度為1%的NaOH處理的竹篾,其他同。
竹篾的纖維和薄壁細(xì)胞是重要的力學(xué)承載單元。圖3是堿處理前后竹篾表面電鏡圖。未經(jīng)堿處理的竹篾表面非常粗糙,微觀特點(diǎn)是結(jié)構(gòu)松散,這是因?yàn)橹耋砻娲嬖谥耆菢O性的蠟質(zhì)、木質(zhì)素和半纖維素等物質(zhì)以及由氣體、氧化物和雜質(zhì)組成的表面層[23]。堿處理后的竹篾表面纖維形態(tài)趨于規(guī)則,結(jié)構(gòu)精致光滑,纖維素結(jié)構(gòu)出現(xiàn)片狀分布。當(dāng)NaOH溶液濃度為2%時(shí),竹篾的表面光滑,薄壁細(xì)胞排列整齊有序,有利于樹(shù)脂滲透;但是隨著濃度的增加,大部分蠟質(zhì)及雜質(zhì)被去除,NaOH溶液與纖維素發(fā)生反應(yīng),導(dǎo)致竹篾的薄壁細(xì)胞被破損。這是因?yàn)檫m當(dāng)?shù)膲A處理可以解散纖維束彼此之間的交合或去除初始微纖維之間的木質(zhì)素及其他雜質(zhì),不僅可以迅速提高竹篾的強(qiáng)度和韌性,而且可以明顯改善竹纖維的表面特性。同時(shí),堿處理使更多極性更強(qiáng)的纖維素暴露在表面,因此竹篾的極性會(huì)出現(xiàn)上升的情況,該現(xiàn)象與紅外光譜分析結(jié)果一致;但是當(dāng)堿溶液濃度太高時(shí),會(huì)對(duì)薄壁細(xì)胞產(chǎn)生破壞,從而影響竹篾的性能。
圖3 堿處理前后竹篾表面形貌
堿處理前后竹篾接觸角及表面能結(jié)果如表1。經(jīng)過(guò)堿處理的竹篾表面能在33~39 mN/m范圍,試樣均是低能固體。
表1 不同處理竹篾接觸角及表面能
根據(jù)堿處理前后竹篾分別在水、乙二醇和二碘甲烷三種不同溶劑中的接觸角,采用Owens-Wendt法計(jì)算出極性分量,與未處理的竹篾相比,相同時(shí)間內(nèi)1% NaOH溶液處理的竹篾極性略有下降,這可能是因?yàn)檩^低濃度的NaOH溶液雖能將表面雜質(zhì)層去除,但并不能完全去除非極性蠟質(zhì),導(dǎo)致部分蠟質(zhì)暴露出來(lái),使竹篾極性出現(xiàn)下降的情況。隨著NaOH溶液濃度的增大,竹篾表面非極性的蠟質(zhì)逐漸被完全去除。同時(shí),竹篾受到的刻蝕程度逐漸變大,使纖維素更多地顯現(xiàn)出來(lái),而纖維素比木質(zhì)素、半纖維素等物質(zhì)具有更強(qiáng)的極性,所以其表面極性也逐漸增大。當(dāng)NaOH溶液濃度升至5%時(shí),竹篾極性有所下降。這是因?yàn)檩^高濃度的NaOH溶液會(huì)使纖維素受到一定破壞,導(dǎo)致竹篾出現(xiàn)了一定的破損,使其極性下降。這種變化與竹篾表面掃描電鏡所得結(jié)論一致。綜上所述,適當(dāng)濃度的堿溶液處理雖然使竹篾的極性有所提高,但是其溶解了半纖維素、木質(zhì)素、蠟質(zhì)等物質(zhì)及表面的雜質(zhì)層,更有利于樹(shù)脂的浸潤(rùn)。
圖4為竹篾改性前后X射線衍射圖。竹篾的X射衍射峰位出現(xiàn)在2為16°和22°,為纖維素I結(jié)構(gòu)的特征峰。堿處理前后竹篾的主要晶面(101)和(002)所對(duì)應(yīng)的特征峰位置幾乎沒(méi)有變化,表明在處理過(guò)程中纖維素的晶體結(jié)構(gòu)未發(fā)生變化。晶體平面(101)在無(wú)定形物質(zhì)存在時(shí)會(huì)匯于一體,無(wú)定形物質(zhì)為半纖維素、木質(zhì)素和無(wú)定形的纖維素等。晶體平面(002)的峰強(qiáng)增加表明樣品結(jié)晶度指數(shù)的增大[24-25]。
圖4 不同處理竹篾X射線衍射圖
從表2可以看出,竹篾經(jīng)堿處理后,結(jié)晶度從60.0%增加到63.6%。這是由于堿處理使竹篾非結(jié)晶區(qū)中的部分半纖維素和木質(zhì)素被溶出,分子結(jié)合力減弱,纖維素鏈松動(dòng),無(wú)定形區(qū)破壞,纖維結(jié)晶區(qū)重排。同時(shí),非晶區(qū)竹篾的微纖的-OH裸露出來(lái),與結(jié)晶區(qū)表面微纖的-OH締合成氫鍵,使非結(jié)晶區(qū)的微纖向結(jié)晶區(qū)靠攏并取向,導(dǎo)致結(jié)晶區(qū)寬度增加,進(jìn)而提高了竹篾結(jié)晶度,同時(shí)結(jié)晶度升高,表明材料內(nèi)部分子排列規(guī)整,材料的熱穩(wěn)定性增強(qiáng)。
表2 不同處理竹篾X射線衍射峰
材料的熱性能是衡量其使用溫度范圍的重要指標(biāo),也反映了材料的熱穩(wěn)定性。圖5為堿處理前后竹篾熱重曲線和熱重微分曲線。由熱重曲線可以看出,竹篾質(zhì)量損失過(guò)程均主要分為4個(gè)階段。第一階段,30~120 ℃范圍內(nèi),堿處理前后的竹篾都出現(xiàn)輕微的質(zhì)量損失。這是由于竹篾所含的表面自由水、分子內(nèi)部結(jié)晶水等水分蒸發(fā),而引起竹篾質(zhì)量輕微下降;第二階段,在120~250 ℃范圍內(nèi),堿處理前后竹篾的質(zhì)量損失較少,基本沒(méi)有變化;第三階段,分別在250~408 ℃和250~380 ℃范圍內(nèi),堿處理前后的竹篾均發(fā)生劇烈的質(zhì)量損失反應(yīng)。這主要是因?yàn)橹耋肿咏Y(jié)構(gòu)在高溫下發(fā)生了變化,纖維素等化學(xué)成分的結(jié)構(gòu)被破壞而析出氣體,如二氧化碳等。在此過(guò)程中,堿處理的竹篾使纖維素脫水碳化更容易發(fā)生,導(dǎo)致第二階段結(jié)束時(shí)溫度下降。第四階段,堿處理前后的竹篾分別在408、380 ℃之后質(zhì)量損失趨于平緩,產(chǎn)生的熱解物質(zhì)進(jìn)一步消解,部分纖維素和木質(zhì)素進(jìn)一步裂解,最終形成殘?zhí)?。堿處理前后的竹篾熱分解行為基本相同,同時(shí),堿處理的竹篾殘余質(zhì)量均大于未處理的竹篾,說(shuō)明堿處理后竹篾中部分半纖維、果膠等雜質(zhì)被去除,其熱穩(wěn)定性有所改善。熱重微分曲線表明,在熱分解過(guò)程中,堿處理后竹篾的最大分解速率小于未經(jīng)處理的竹篾,劇烈反應(yīng)時(shí)間基本相同,表明堿處理竹篾的耐熱分解性能更優(yōu)。結(jié)合結(jié)晶度分析結(jié)果,表明堿處理后竹篾熱穩(wěn)定性有所提高。
圖5 不同處理竹篾熱重曲線和熱重微分曲線
圖6為堿處理前后竹篾的拉伸強(qiáng)度及其復(fù)合材料的剪切強(qiáng)度。隨著NaOH溶液濃度的增加,竹篾自身的拉伸強(qiáng)度均有所提高,整體趨勢(shì)為先增加后降低,其中2% NaOH-BS拉伸強(qiáng)度為153.89 MPa,比未處理的竹篾提高了52.11%。這是因?yàn)榈蜐舛萅aOH溶液去除了竹篾中的雜質(zhì),使得竹篾橫截面積變小,單位面積內(nèi)的纖絲更多,竹篾的拉伸強(qiáng)度提高。但是隨著NaOH溶液濃度的增大,其會(huì)對(duì)竹篾表面造成刻蝕,濃度太高時(shí),竹篾出現(xiàn)損傷,導(dǎo)致其拉伸強(qiáng)度下降。而且竹篾結(jié)晶區(qū)的纖維素會(huì)隨著NaOH溶液濃度增加逐漸轉(zhuǎn)變?yōu)闊o(wú)定形區(qū)的纖維素,導(dǎo)致竹篾因結(jié)晶度下降而出現(xiàn)力學(xué)性能下降的情況。
隨著NaOH溶液濃度的增加,復(fù)合材料剪切強(qiáng)度呈現(xiàn)先增加后降低的趨勢(shì),并且在濃度為2%時(shí)達(dá)到最大值1.64 MPa,較未處理的復(fù)合材料提升55.24%。這是因?yàn)閺?fù)合材料的剪切性能可以反映復(fù)合材料界面結(jié)合情況,適當(dāng)濃度的NaOH溶液去除了竹篾表面的雜質(zhì),纖維素含量增加,纖維“長(zhǎng)徑比”增加,竹篾原纖間的地方變得更加疏松柔軟,在受到外力時(shí),原纖沿縱向能較好的解旋和重排,使應(yīng)力傳遞在原纖間得到更好的分布,增加了竹篾與樹(shù)脂的界面嚙合,復(fù)合材料的界面性能越好。
注:不同大寫(xiě)字母表示各樣品間顯著性差異(P<0.01)。
動(dòng)態(tài)熱機(jī)械分析(Dynamic Mechanical Analysis)可反映其界面性能的優(yōu)劣,亦可反映材料的結(jié)構(gòu)、組分間的相容性和分子運(yùn)動(dòng)能,與靜態(tài)力學(xué)相比,其更能客觀反映材料在實(shí)際使用時(shí)的基本性能[26-28]。圖7為堿處理前后BS/EP復(fù)合材料動(dòng)態(tài)熱機(jī)械分析曲線。在30~90 ℃范圍,復(fù)合材料的剛度取決于竹篾的密度和強(qiáng)度。相比于BS/EP,2% NaOH-BS/EP復(fù)合材料顯著提高,其最大值達(dá)到9 900 MPa,是BS/EP復(fù)合材料的1.3倍,說(shuō)明2% NaOH溶液處理的竹篾強(qiáng)度得到提高,其復(fù)合材料也在動(dòng)態(tài)載荷作用下有更好的結(jié)構(gòu)穩(wěn)定性[29-30]。同時(shí),BS/EP復(fù)合材料的剛性也與混合物之間的界面特性有關(guān),2% NaOH-BS/EP復(fù)合材料的分子運(yùn)動(dòng)能量較低、剛性較大。這可能是因?yàn)閴A處理后的復(fù)合材料較強(qiáng)的界面結(jié)合起到了物理連接的作用,在受到周期載荷作用時(shí),更好地限制了基體分子鏈的運(yùn)動(dòng),從而提高了復(fù)合材料的。在90~140 ℃范圍,堿處理前后復(fù)合材料的相差不明顯。
由損耗模量-溫度曲線可以看出,在30~60 ℃范圍,2% NaOH-BS/EP、3% NaOH-BS/EP復(fù)合材料的損耗模量()均高于BS/EP復(fù)合材料,說(shuō)明增強(qiáng)相在低溫區(qū)分子鏈相互移動(dòng)摩擦較大,分子運(yùn)動(dòng)時(shí)將彈性能轉(zhuǎn)變?yōu)榉肿舆\(yùn)動(dòng)的熱能較多,因此表現(xiàn)出的宏觀較大。在60~140 ℃范圍內(nèi),堿處理的復(fù)合材料整體低于未經(jīng)處理的,說(shuō)明未經(jīng)堿處理的竹篾和樹(shù)脂基體之間界面相容性較差,存在界面斷層,使能量在材料內(nèi)部的傳遞時(shí)有損失,從而表現(xiàn)為損耗模量較高。
在損耗因子-溫度曲線上,30~60℃范圍內(nèi),環(huán)氧樹(shù)脂鏈段的運(yùn)動(dòng)以及分子間的相互摩擦,導(dǎo)致?lián)p耗因子隨著溫度的升高而升高。在60~140 ℃范圍,堿處理后復(fù)合材料損耗因子整體上低于未處理,表明其彈性較好,這主要是因?yàn)閴A處理使竹篾部分半纖維素和木質(zhì)素被去除,纖維素的相對(duì)含量增加,從而提供良好的機(jī)械強(qiáng)度。同時(shí)表明竹篾經(jīng)表面復(fù)合改性后,提高了與環(huán)氧樹(shù)脂的界面相容性,阻尼性能提高,力學(xué)性能得到改善。此外,氫鍵作用改善了BS/EP復(fù)合材料的界面性能。這與前文靜態(tài)力學(xué)測(cè)試結(jié)果是相一致的。
圖7 不同處理BS/EP復(fù)合材料動(dòng)態(tài)熱機(jī)械分析曲線
1)經(jīng)過(guò)NaOH堿處理后,竹篾表面的果膠、蠟質(zhì)等雜質(zhì)被去除,結(jié)晶度從60.0%增加到63.6%,使竹篾的熱穩(wěn)定性提高;同時(shí),竹篾的比表面積增加,有利于樹(shù)脂浸潤(rùn),對(duì)竹篾/環(huán)氧樹(shù)脂復(fù)合材料界面結(jié)合改善起到非常積極的作用。
2)堿處理對(duì)竹篾及其環(huán)氧樹(shù)脂復(fù)合材料靜態(tài)力學(xué)有顯著影響。2% NaOH溶液處理的竹篾性能最優(yōu),與環(huán)氧樹(shù)脂界面結(jié)合性能最好。改性后的竹篾拉伸強(qiáng)度比未處理提高了52.11%,其復(fù)合材料剪切強(qiáng)度提升了55.24%。
3)堿處理對(duì)BS/EP復(fù)合材料的動(dòng)態(tài)力學(xué)有明顯影響。在30~90 ℃范圍內(nèi),堿處理的BS/EP復(fù)合材料在動(dòng)態(tài)載荷作用下有更好的結(jié)構(gòu)穩(wěn)定性,2% NaOH-BS/EP復(fù)合材料儲(chǔ)能模量最大值是未處理的1.3倍;在60~140 ℃范圍內(nèi),堿處理的BS/EP復(fù)合材料損耗模量和損耗因子整體呈下降趨勢(shì)。
[1] Hude S, Reddy N, Yang Y Q. Ultra-light-weight composites from bamboo strips and polypropylene web with exceptional flexural properties[J]. Composites Part B: Engineering, 2012, 43(3): 1658-1664.
[2] Obataya E, Kitin P, Yamauchi H. Bending characteristics of bamboo (Phyllostachys pubescens) with respect to its fiber-foam composite structure[J]. Wood Science & Technology, 2007, 41(5): 385-400.
[3] Deng J C, Li H D, Wang G, et al. Effect of removing extent of bamboo green on physical and mechanical properties of laminated bamboo-bundle veneer lumber (BLVL)[J]. European Journal of Wood & Wood Products, 2015, 73(4): 499-506.
[4] 楊越飛,徐建鋒,賴佳佳,等. 玄武巖纖維改進(jìn)亞麻纖維/不飽和聚酯復(fù)合材料的耐候性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(8):308-314.
Yang Yuefei, Xu Jianfeng, Lai Jiajia, et al. Aging-resistant performance of flax/basalt fiber fabrics reinforced unsaturated polyester resin hybrid composites[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(8): 308-314. (in Chinese with English abstract).
[5] Anandamurthy A, Guna V, Ilangovan M, et al. A review of fibrous reinforcements of concrete[J]. Journal of Reinforced Plastics and Composites, 2017, 36(7): 519-552.
[6] Philippe B, Nuno C. Numerical forming of continuous fibre reinforced composite material: A review[J]. Composites Part A: Applied Science & Manufacturing, 2018, 113: 12-31.
[7] Sharma B, Bock M, Gatoo A, et al. Engineered bamboo: State of the art[J]. Construction Materials, 2015, 168: 57-67.
[8] 顧少華,張文福,丁力,等. 玻璃纖維布對(duì)竹篾層積材強(qiáng)度和韌性的影響[J]. 林業(yè)工程學(xué)報(bào),2020,5(2):144-150.
Gu Shaohua, Zhang Wenfu, Ding Li, et al. Effect of utilization of fiberglass cloth in laminated bamboo sliver lumber on its strength and toughness[J]. Journal of Forestry Engineering, 2020, 5(2): 144-150. (in Chinese with English abstract).
[9] 楊赟,劉璇,崔益華,等. 植物纖維增強(qiáng)樹(shù)脂基復(fù)合材料界面納米化改性的研究進(jìn)展及應(yīng)用[J]. 材料導(dǎo)報(bào),2023(8):1-19.
Yang Yun, Liu Xuan, Cui Yihua, et al. Research progress and application of interfacial nano-modification on natural fiber reinforced resin matrix composites[J]. Materials Reports, 2023(8): 1-19. (in Chinese with English abstract).
[10] 顧少華,陳季荷,張文福,等. 梯度結(jié)構(gòu)對(duì)竹束纖維復(fù)合材料界面失效的影響[J]. 復(fù)合材料學(xué)報(bào),2022,39(8):4065-4073.
Gu Shaohua, Chen Jihe, Zhang Wenfu, et al. Effect of gradient structure on the interface failure of bamboo bundle fiber composite material[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4065-4073. (in Chinese with English abstract).
[11] 王翠翠,程海濤,羨瑜,等. 納米CaCO3增強(qiáng)竹漿纖維/環(huán)氧樹(shù)脂復(fù)合材料的動(dòng)態(tài)力學(xué)性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(6):281-287.
Wang Cuicui, Cheng Haitao, Xian Yv, et al. Improving dynamic mechanical property of bamboo pulp fiber reinforced epoxy resin composite treated by nano calcium carbonate[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(6): 281-287. (in Chinese with English abstract).
[12] 王戈,顧少華,張文福,等. 植物纖維增強(qiáng)環(huán)氧樹(shù)脂復(fù)合材料界面改性研究進(jìn)展[J]. 中南林業(yè)科技大學(xué)學(xué)報(bào),2020,40(7):144-152.
Wang Ge, Gu Shaohua, Zhang Wenfu, et al. Research progress on interface modification of plant fiber reinforced epoxy resin composites[J]. Journal of Central South University of Forestry & Technology, 2020, 40(7): 144-152. (in Chinese with English abstract).
[13] Chen H, Zhang W F, Wang X H, et al. Effect of alkali treatment on wettability and thermal stability of individual bamboo fibers[J]. Journal of Wood Science, 2018, 64(4): 398-405.
[14] Fortea-Verdejo M, Bumbaris E, Burgstaller C, et al. Plant fibre-reinforced polymers: Where do we stand in terms of tensile properties?[J]. International Materials Reviews, 2017, 62(8): 441-464.
[15] 張伏,佟金. 植物纖維及其增強(qiáng)復(fù)合材料的研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006,22(10):252-256.
Zhang Fu, Tong Jin. Status and developmental trends of plant fibers and their reinforced composites[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(10): 252-256. (in Chinese with English abstract)
[16] Das M, Chakraborty D. The effect of alkalization and fiber loading on the mechanical properties of bamboo fiber composites, part 1:Polyester resin matrix[J]. Journal of Applied Polymer Science, 2009, 112(1): 489-495.
[17] Kushwaha P, Kumar R. Enhanced mechanical strength of BRFP composites using modified bamboos[J]. Journal of Reinforced Plastics and Composites, 2009, 28: 2851-2859.
[18] Rassiah K, Ahmad M M H, Ali A. Mechanical properties of laminated bamboo strips from Gigantochloa Scortechinii/ polyester composites[J]. Materials & Design, 2014, 57(1): 551-559.
[19] 程海濤,王戈,諶曉夢(mèng),等. 光學(xué)法和力學(xué)法測(cè)定單根纖維接觸角及相關(guān)性分析[J]. 林產(chǎn)工業(yè),2013,40(1):49-51.
Cheng Haitao, Wang Ge, Shen Xiaomeng, et al. Single fiber contact angle measured by different methods and correlation analysis[J]. China Forest Products Industry, 2013, 40(1): 49-51. (in Chinese with English abstract).
[20] Fuentes C A, Trana L Q N, Dupont-Gillainb C, et al. Wetting behaviour and surface properties of technical bamboo fibres[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 380(1/2/3): 89-99.
[21] 李衛(wèi)林,林維晟,楊雯,等. 堿煮氧化工藝制備竹篾及結(jié)構(gòu)性能表征[J]. 林產(chǎn)工業(yè),2021,58(1):6-10.
Li Weilin, Lin Weisheng,Yang Wen, et al. Preparation and structure characterization of bamboo fiber by alkali-boiling and NaClO oxidation[J]. China Forest Products Industry, 2021, 58(1): 6-10. (in Chinese with English abstract).
[22] Johari A P, Mohanty Y S, Kurmvanshi S K, et al. The influence of different treated cellulose fibers on the mechanical and thermal properties of PLA[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1619-1629.
[23] 王春紅,劉勝凱. 堿處理對(duì)竹纖維及竹纖維增強(qiáng)聚丙烯復(fù)合材料性能的影響[J]. 復(fù)合材料學(xué)報(bào),2015,32(3):683-690.
Wang Chunhong, Liu Shengkai. Effects of alkali treatment on properties of bamboo fiber and bamboo fiber reinforced polypropylene composites[J]. Acta Materiae Compositae Sinica, 2015, 32(3): 683-690. (in Chinese with English abstract).
[24] Xu X Z, Liu F, Jiang L, et al. Cellulose nanocrystals vs. cellulose nanofibrils: A comparative study on their microstructures and effects as polymer reinforcing agents[J]. Applied Materials & Interfaces, 2013, 5(8): 2999-3009.
[25] Ghali L, Msahli S, Zidi M, et al. Effect of pre-treatment of Luffa fibres on the structural properties[J]. Materials Letters, 2009, 63: 61-63.
[26] Ren W H, Zhang D, Wang G, et al. Mechanical and thermal properties of bamboo pulp fiber reinforced polyethylene composites[J]. Bioresources, 2014, 9(3): 4117-4127.
[27] Xian Y, Wang C C, Wang G, et al. Understanding the mechanical and interfacial properties of core-shell structured bamboo-plastic composites[J]. Journal of Applied Polymer Science, 2016, 133(10): 1-8.
[28] 王翠翠,李明鵬,王戈,等. 植物纖維/熱塑性聚合物預(yù)浸料在汽車輕量化領(lǐng)域的應(yīng)用進(jìn)展[J]. 林業(yè)科學(xué),2021,57(9):168-180.
Wang Cuicui, Li Mingpeng, Wang Ge, et al. Application progress of plant fiber/thermoplastic polymer prepreg in automotive lightweight field[J]. Scientia Silvae Sinicae, 2021, 57(9): 168-180. (in Chinese with English abstract).
[29] ASTM, Standard test method for glass transition temperature (DMA Tg) of polymer matrix composites by dynamic mechanical analysis (DMA). ASTM standard D7028-07. [S]. United States, ASTM International, 2008.
[30] 朱禮智. 木粉-聚丙烯復(fù)合材料界面分子運(yùn)動(dòng)弛豫過(guò)程解析[D]. 北京:北京林業(yè)大學(xué),2013.
Zhu Lizhi. Analyses of the Relaxation Processes Of Molecular Movement on Wood Flour/Polypropylene Composite Interface[D]. Beijing: Beijing Forestry University, 2013. (in Chinese with English abstract).
Effects of NaOH alkali treatment concentration on the properties of moso bamboo strips and their epoxy resin composites
Chen Jihe, Gu Shaohua, Li Wenting, Yuan Zhitong, Cheng Haitao※
(,,100102)
Cost-effective bamboo strip composite materials have been developed with the low energy consumption, excellent product quality, and high utilization rate, due to the refinement, homogenization, and standardization of bamboo strip. However, there is the low interface compatibility between polar hydroxyl groups on the surface of bamboo strips and non-polar resin matrix. The purpose of this study is to fabricate the structural or sub structural bamboo strips composite materials. The alkali solution was used to treat the bamboo strips for the penetration of resin on the interface and the mechanical properties of composite materials. A systematic investigation was made to clarify the effect of NaOH alkali treatment concentration on the properties of bamboo strips and the epoxy resin composites. The bamboo strips were used as the reinforcement phase, whereas, the epoxy resin as matrix phase. The composites with an average content of 75% bamboo strips were then prepared by hot pressing. Four concentration gradients of NaOH solution were set in the treatment. The properties of bamboo strips and their epoxy resin composites were characterized by means of Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM), Thermogravimetric Analysis (TG), and Dynamic Mechanical Analysis (DMA). The experimental results showed that the alkali treatment efficiently removed some impurities, such as lignin, hemicellulose, and wax on the surface of bamboo strips, further to enhance the tensile strength and thermal stability of bamboo strips. SEM results show that the surface fiber morphology of bamboo strips tended to be regular after the proper alkali treatment. Specifically, the fine and smooth microstructure was conducive to the resin penetration. The polarity of bamboo strips first increased and then decreased with the increase of NaOH solution concentration. The crystallinity increased from 60.0% to 63.6% after treatment. The TG analysis demonstrated that there were the lower end degradation temperature of alkali treated bamboo strips, and the lower maximum decomposition rate, indicating the better performance of thermal decomposition. More importantly, the best properties were achieved at the concentration of NaOH solution of 2%, including the tensile property of bamboo strips, the interfacial bonding property with the epoxy resin, and the shear strength. Specifically, the tensile strength of bamboo strips, the shear strength of the composites increased by 52.11%, and 55.24%, respectively. The DMA test results showed that the bamboo strip/epoxy resin composites after the alkali treatment presented the better structural stability under dynamic load in the single frequency (1 Hz) test condition in the range of 30-90 ℃. Once the concentration was 2%, the maximum storage modulus of the bamboo strip/epoxy resin composite was 1.3 times that of the untreated. There was no outstanding difference of storage modulus before and after treatment in the range of 9-140 ℃. A downward trend was found in the loss modulus and loss factor of the composites after alkali treatment in the range of 60-140 ℃. Consequently, the alkali treatment can be expected to enhance the thermal stability and tensile strength of bamboo strips. The interface strength between bamboo strips and epoxy resin was improved, together with the static and dynamic mechanics of bamboo strips reinforced epoxy resin composite resin. The improved composites can also be used in the outdoor agricultural engineering, buildings, and outdoor gardens, in order to reduce the production cost and the comprehensive utilization rate of bamboo strips.
surface treatment; mechanical properties; bamboo composite material; thermosetting resin; interface properties
10.11975/j.issn.1002-6819.2022.15.025
TB332
A
1002-6819(2022)-15-0234-07
陳季荷,顧少華,李文婷,等. NaOH堿處理濃度對(duì)毛竹篾及其環(huán)氧樹(shù)脂復(fù)合材料性能影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(15):234-240.doi:10.11975/j.issn.1002-6819.2022.15.025 http://www.tcsae.org
Chen Jihe, Gu Shaohua, Li Wenting, et al. Effects of NaOH alkali treatment concentration on the properties of moso bamboo strips and their epoxy resin composites[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(15): 234-240. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.15.025 http://www.tcsae.org
2022-04-21
2022-07-16
國(guó)際竹藤中心基本科研業(yè)務(wù)費(fèi)專項(xiàng)資助(1632021002);國(guó)家自然科學(xué)基金(32101607)
陳季荷,研究方向?yàn)橹衲纠w維復(fù)合材料加工與應(yīng)用。Email:18800466928@163.com
程海濤,研究員,博士生導(dǎo)師,研究方向?yàn)橹窭w維復(fù)合材料及其應(yīng)用。Email:htcheng@icbr.ac.cn