国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

雙圓弧諧波剛輪刮齒加工原理及刀具設(shè)計(jì)

2022-11-14 01:11莫帥王賽賽羅炳睿岑國(guó)建

莫帥 王賽賽 羅炳睿 岑國(guó)建

摘要:為提高諧波齒輪的加工精度和效率,提出一種適應(yīng)雙圓弧諧波剛輪的刮齒加工原理和刀具設(shè)計(jì)方法.根據(jù)包絡(luò)理論求解諧波剛輪共軛齒廓,并采用最小二乘法擬合;通過(guò)構(gòu)建刮齒加工坐標(biāo)系和前刀面坐標(biāo)系求解刮齒刀具共軛面和前刀面模型,并用NURBS曲面擬合;根據(jù)牛頓迭代法求解前刀面與共軛面交點(diǎn)獲取切削刃數(shù)據(jù),導(dǎo)入CAD軟件建立刮齒刀具數(shù)學(xué)模型.在此基礎(chǔ)上,分析不同前角和后角對(duì)刮齒刀具齒廓誤差的影響,結(jié)果表明:由于前角和后角,刮齒刀具切削刃實(shí)際齒廓和理論齒廓產(chǎn)生一定偏差,該齒廓偏差從齒頂?shù)烬X根逐漸增大,并隨著前角和后角的增大而增大.

關(guān)鍵詞:齒輪加工;齒輪刀具;諧波傳動(dòng);刮齒工藝;三次B樣條曲面

中圖分類號(hào):TG721文獻(xiàn)標(biāo)志碼:A

Machining Principle and Cutter Design of Double-arc Harmonic Rigid Gear Skiving

MO Shuai1,2,4,WANG Saisai1,2,LUO Bingrui1,2,CEN Guojian3

(1. School of Mechanical Engineering,Tiangong University,Tianjin 300387,China;2. Tianjin Modern Electromechanical Equipment Technology Key Laboratory,Tianjin 300387,China;3. Ningbo Zhongda Leader Intelligent Transmission Technology7 Industry Co.,Ltd.,Ningbo 315301,China;4. Jiangsu Wanji Transmission Technology Co.,Ltd.,Taizhou 225400,China)

Abstract:In order to improve the machining accuracy and efficiency of harmonic gear,this paper proposes a skiving machining and the tool design method for double-arc harmonic rigid wheels. Based on the envelop theory,the conjugate tooth profile of the harmonic rigid wheels is solved,and the least squares method is used to fit it. The conjugate surface and rake surface are solved by constructing the skiving machining coordinate system and rake face coordinate system,and NURBS surface is used to fit. The rake and conjugate surface are intersected by Newton interative method to obtain the cutting edge data,and the mathematical model of skiving tool is established by importing the data to CAD software. On this basis,the influence of different rake edge angles and back edge angles on tool profileerror is analyzed. The results show that the skiving tool has a certain deviation between the actual tooth profile and the theoretical tooth profile due to the rake edge angle and back edge angle,and this deviation increases gradually from the tooth tip to the tooth root with the increase of rake angle and back angle.

Key words:gear cutting;gear cutters;harmonic drive;skiving process;three-times B-splines (NURBS )surface

在諧波傳動(dòng)中,齒輪的齒形設(shè)計(jì)及加工工藝對(duì)其傳動(dòng)特性有較大影響.隨著科學(xué)技術(shù)的發(fā)展,國(guó)內(nèi)外學(xué)者對(duì)諧波齒輪做了大量分析研究[1-4],辛洪兵[1]和王家序等[4]指出雙圓弧齒形的諧波減速器具有良好的傳動(dòng)質(zhì)量.由于齒形復(fù)雜,諧波齒輪制造工藝受到極大限制,王仕璞等[3]提出以具有正前角的滾刀加工諧波柔輪,并建立刀具模型;Yoshino等[5]根據(jù)單元去除理論提出一種特殊齒形齒輪的插齒刀具設(shè)計(jì)方法.刮齒作為一種新型齒輪加工技術(shù)具有比插齒更高的精度和效率.目前,國(guó)內(nèi)關(guān)于刮齒刀具設(shè)計(jì)方法的研究成果較少[6-15],其中賈康等[7]基于展成加工原理,給出一種由刮齒前刀面與離散曲面相交構(gòu)建切削刃的方法;Guo等[9]提出一種無(wú)理論誤差直齒刮齒刀具結(jié)構(gòu),并建立數(shù)學(xué)模型,為刮齒刀具參數(shù)優(yōu)化提供參考.

刮齒加工技術(shù)尚未應(yīng)用到諧波齒輪的加工中. 本文以偏離端面一定角度的平面作為前刀面,設(shè)計(jì)適應(yīng)雙圓弧齒形諧波剛輪加工的刮齒刀具模型,降低刀具加工和磨削難度,使工件具有較小的刃形誤差,提高雙圓弧諧波剛輪的加工精度和效率.

1刮齒加工原理

刮齒加工方式與插齒類似,都是基于展成加工原理,區(qū)別在于切削的作用方式不同.插齒加工時(shí)工件和刀具做無(wú)間隙嚙合運(yùn)動(dòng),同時(shí)插齒刀沿工件軸向做往復(fù)切削運(yùn)動(dòng).刮齒加工示意圖如圖1所示,工件與刀具保持恒定的軸交角,同時(shí)做旋轉(zhuǎn)嚙合運(yùn)動(dòng)和軸向進(jìn)給運(yùn)動(dòng),工件和刀具由于強(qiáng)制嚙合而產(chǎn)生一系列微小溝壑,構(gòu)成工件曲面.在機(jī)床作用下刀具沿徑向推進(jìn),最終完成齒輪的加工[9].

2諧波齒輪齒廓設(shè)計(jì)方法

2.1雙圓弧諧波柔輪齒廓方程

雙圓弧諧波柔輪齒廓如圖2所示,其基準(zhǔn)形式為圓弧-公切線-圓弧.建立柔輪齒廓坐標(biāo)系XOY,圓弧段圓心坐標(biāo)Oa(xa,ya)、Ob(xb,yb),其中xa=-ca,ya=ha+hf+dala,xb=πm/2+cb,yb=hf+da+lb.以柔輪單側(cè)齒廓為例,各參數(shù)取值如表1所示,表中ra和rb分別為凸圓弧和凹圓弧半徑,3為公切線傾角,lf為公切線豎直距離,α為OaB與水平方向的夾角.以齒廓弧長(zhǎng)s為變量,建立公切線雙圓弧諧波柔輪的凸段齒廓、切線段齒廓和凹段齒廓的分段方程.

諧波柔輪凸圓弧BC段齒廓方程為:

諧波柔輪公切線CD段齒廓方程為:

諧波柔輪凹圓弧DE段齒廓方程為:

式中:l1=rb{π/2-arccos[(lb+hf)/2]-δ}-cb.

2.2剛輪齒廓方程求解

諧波齒輪傳動(dòng)過(guò)程中,柔輪因?yàn)椴òl(fā)生器的作用而發(fā)生變形,因此常用包絡(luò)法求解諧波剛輪齒廓[10].圖3為諧波齒輪傳動(dòng)坐標(biāo)系,在圖3中,當(dāng)柔輪在諧波發(fā)生器的作用下沿原始曲線Cl運(yùn)動(dòng)時(shí),齒廓曲線Rl的包絡(luò)即為所求剛輪齒廓Gl.

諧波齒輪傳動(dòng)的基本設(shè)計(jì)參數(shù)如表2所示.其中柔輪徑向最大變形量w0取0.5 mm,設(shè)柔輪和剛輪齒廓坐標(biāo)分別為(xr,yr)(xg,yg).

方程(4)為諧波柔輪齒廓坐標(biāo)系向剛輪齒廓坐標(biāo)系的轉(zhuǎn)換方程,式中包含未知變量φ與s.諧波齒輪在傳動(dòng)嚙合過(guò)程中滿足嚙合方程(5),選取并離散s值,代入式(5)可求出對(duì)應(yīng)的φ值.將求解得到的φ與s代入式(4),可得到剛輪齒廓坐標(biāo).

圖4通過(guò)坐標(biāo)變換模擬柔輪與剛輪的相對(duì)運(yùn)動(dòng),直觀反映出諧波齒輪傳動(dòng)的嚙合特征,剛輪齒廓在柔輪的包絡(luò)中得到正確驗(yàn)證.

為便于圖4的工藝實(shí)現(xiàn),對(duì)剛輪齒廓公切線段以直線y=kx+b擬合,對(duì)圓弧段以圓形方程(6)擬合.

x2+y2+ax+by+c=0(6)

設(shè)剛輪齒廓點(diǎn)(xi,yi),令y=f(x,tj),j=1,2,…,m.取精度為0.000 1,p(tj)滿足式(7),各常數(shù)滿足式(8).

將齒廓離散坐標(biāo)點(diǎn)代入擬合公式,可得剛輪凸、凹圓弧段圓心坐標(biāo)分別為Og1(0.139 1,0.332 5)和Og2(0.338 8,0.582 2);半徑分別為r1=0.693 7、r2= 0.759 9;公切線段分別為k=-7.840 1、b=28.507 7.設(shè)齒廓方程為F(x,y),在z方向離散可得剛輪齒面坐標(biāo)點(diǎn)云如圖5所示.工件齒面上任意點(diǎn)法失N的分量分別為:

3剛輪刮齒刀具幾何參數(shù)計(jì)算

刮齒刀具與其他齒輪加工刀具類似,都具有切削刃和前后刀面等結(jié)構(gòu)要素[11].刮齒刀具結(jié)構(gòu)如圖6所示.

3.1前刀面數(shù)學(xué)模型

在刮齒加工中,刀具與工件之間存在軸交角,因此采用與端面一定角度的平面作為前刀面,使刮齒刀具兩側(cè)刃切削角度相近,減小刃形誤差[12].

圖7為刮齒刀具前刀面坐標(biāo)系.在圖7中,坐標(biāo)系XYZ為前刀面坐標(biāo)系,XaYaZa為輔助面坐標(biāo)系,X2Y2Z2為刀具運(yùn)動(dòng)坐標(biāo)系.前刀面法向量在坐標(biāo)系XYZ中可表示為n(0,0,1),根據(jù)式(10)可得,在刀具運(yùn)動(dòng)坐標(biāo)系中的前刀面法向量為n1(sinαcosβ,sinβ,cosβcosα).

式中:B1為前刀面向輔助面變換的矩陣;B2為輔助面向刀具運(yùn)動(dòng)坐標(biāo)系變換的矩陣.

在X2Y2Z2坐標(biāo)系中前刀面方程為:

x2sinαcosβ+(y2-r1)sinβ+z2cosβcosα=0(13)

3.2共軛面數(shù)學(xué)模型

3.2.1相對(duì)運(yùn)動(dòng)速度

刮齒加工坐標(biāo)系如圖8所示.S1-O1X1Y1Z1為工件坐標(biāo)系,S2-O2X2Y2Z2為刀具坐標(biāo)系,S0-O0X0Y0Z0和SP-OPXPYPZP為參考坐標(biāo)系,i、j、k和ip、jp、kp分別為坐標(biāo)系S0和SP對(duì)應(yīng)坐標(biāo)軸的單位向量.加工運(yùn)動(dòng)時(shí)刀具以w2轉(zhuǎn)動(dòng)并沿z1軸負(fù)方向移動(dòng),工件以w1定軸轉(zhuǎn)動(dòng),共軛面與刀具齒面在M點(diǎn)共軛.

S0和SP的位置關(guān)系為:

k=sin γjp+cosγkp(14)

共軛點(diǎn)M在坐標(biāo)系SP中滿足式(15):

解得v12在SP中的分量為:

式中:β1和β2分別為工件和刀具螺旋角;n1和n2分別為工件和刀具齒數(shù);m為模數(shù).

將式(9)、式(16)代入式(21),可解得S1繞ZP轉(zhuǎn)過(guò)的角度θ1.齒面在M點(diǎn)嚙合時(shí)滿足:

整理得共軛面坐標(biāo)點(diǎn)為:

[xPyPzP1]=MP1[x1y1z11]T(19)

式中:Mp1為S1向SP的變換矩陣.

三次B樣條曲面(Non-Uniform Rational B-

(a)主視圖

Splines,NURBS)具有良好的局部性質(zhì)[14-15].為便于切削刃的求解,將共軛面擬合,在其上選取K×L個(gè)型值點(diǎn),設(shè)參數(shù)u方向?yàn)镕i,j.

3.2.2共軛關(guān)系

共軛點(diǎn)在嚙合運(yùn)動(dòng)時(shí)滿足嚙合原理[13].

NPv12=MP1Nv12=0(21)

根據(jù)自由端點(diǎn)條件(27)可求得u向控制點(diǎn)Vi,j,將其作為w方向的型值點(diǎn),以同樣的方法求出B樣條曲面控制點(diǎn)pi,j.當(dāng)參數(shù)u和w掃過(guò)它的整個(gè)定義域時(shí),等參數(shù)線描述成如圖9所示擬合曲面.

B樣條曲面擬合方程如式(28)所示.

3.3主刃和主后刀面模型

共軛面經(jīng)三次B樣條曲面擬合,其中x2=P1(u,w)、y2=P2(u,w)、z2=P3(u,w).前刀面方程為:

f(x2,y2,z2)=0

x2、y2和z2關(guān)系如式(13)所示.共軛面與前刀面交線方程為:

f(P1(u,w),P2(u,w),P3(u,w))=P(u,w)=0

本文采用牛頓迭代法逼近共軛面,擬合點(diǎn)云與等值線P(u,w)=0的距離,獲得主切削刃.

將u、w均分為n份,擬合后的共軛面上每一個(gè)網(wǎng)格間距為Δu=Δw=1/n,矩形單元Δij的4個(gè)頂點(diǎn)與前刀面交線方程對(duì)應(yīng)函數(shù)值分別為P(ui,wj)、P(ui,wj+1)、P(ui+1,wj)、P(ui+1,wj+1).主切削刃的求取就是計(jì)算共軛面網(wǎng)格單元邊與P(u,w)=0的交點(diǎn),具體步驟如下:

1)將擬合后的共軛面點(diǎn)云代入交線方程并判斷每個(gè)網(wǎng)格頂點(diǎn)的符號(hào)(大于0記為“+”,否則記為“-”).

2)若共軛面網(wǎng)格單元的頂點(diǎn)符號(hào)相同,則與等值線P(u,v)=0無(wú)交點(diǎn),否則轉(zhuǎn)到3).

3)對(duì)于兩端異號(hào)的單元邊,采用牛頓迭代計(jì)算交點(diǎn),對(duì)于單元邊wj-wj+1,設(shè)P(ui+1,wj+1)為“-”,P(ui+1,wj)為“+”,交點(diǎn)(ut,wt)中ut=ui+1,wt利用牛頓迭代公式(11)求取.

令w1=wj、w2=wj+1,設(shè)置迭代精度ξ=0.001,迭代至wk+1-wk<ξ時(shí)wt=wk+1.求出對(duì)應(yīng)的u、w值代入x2、y2和z2,可獲得交點(diǎn)如圖10所示.

當(dāng)?shù)毒呷心ズ螅暗睹嬖诘毒哌\(yùn)動(dòng)坐標(biāo)系中沿Z2軸方向移動(dòng)Δb,同時(shí)為保證工件全齒高,刀具工件中心距增大Δa,構(gòu)成一個(gè)新的主刃,將所有主刃特征點(diǎn)擬合就構(gòu)成主后刀面.

4刮齒刀具數(shù)字化設(shè)計(jì)

以雙圓弧諧波剛輪為例,設(shè)計(jì)刮齒刀具三維模型.工件參數(shù)為:模數(shù)m=0.5 mm,齒數(shù)z1=102,螺旋角β=0,轉(zhuǎn)速n1=1 000 r/min.刀具參數(shù)為:轉(zhuǎn)速n2= 1 522.4 r/min,齒數(shù)z2=67,速度v=0.1 mm/r.

刮齒刀具設(shè)計(jì)流程如圖11所示.參照3.1節(jié)內(nèi)容求得前刀面方程;根據(jù)工件參數(shù)按照3.2節(jié)內(nèi)容建立齒面方程.設(shè)γ=5°,計(jì)算得到共軛面坐標(biāo)點(diǎn)云,并用三次B樣條曲面擬合;根據(jù)3.3節(jié)內(nèi)容,設(shè)初始中心距a=8.75 mm,改變交點(diǎn)參數(shù)Δa = 0.1 mm,Δb = 2 mm,部分交點(diǎn)坐標(biāo)數(shù)據(jù)如表3所示.利用式(30)擬合交點(diǎn)即得到切削刃.

將B樣條曲線擬合后的切削刃點(diǎn)云導(dǎo)入CAD軟件中構(gòu)建刮齒刀齒面,通過(guò)曲面縫合構(gòu)建單齒模型,將單齒實(shí)體陣列獲得刮齒刀具實(shí)體模型,如圖12 所示.

5刮齒刀具齒廓誤差分析

在《圓柱齒輪精度制第1部分:輪齒同側(cè)齒面偏差的定義和允許值》(GB/T 10095.1—2008)中,將漸開線齒廓誤差定義為實(shí)際齒廓偏離設(shè)計(jì)齒廓的量,該量在端平面內(nèi)且垂直于漸開線齒廓的方向.區(qū)別于漸開線,雙圓弧齒廓刀具齒廓偏差Δf可看作齒廓對(duì)應(yīng)點(diǎn)在其半徑方向與偏移齒廓的距離.圖13為齒廓誤差示意圖.圖13(b)中刮齒刀具剖面I-I端面齒廓對(duì)應(yīng)圖13(a)中標(biāo)準(zhǔn)齒廓a,II-II端面齒廓對(duì)應(yīng)標(biāo)準(zhǔn)齒廓b.齒廓b為齒廓a的變位齒廓,標(biāo)準(zhǔn)齒廓凸圓弧段點(diǎn)坐標(biāo)為(x1,y1),對(duì)應(yīng)齒廓b上坐標(biāo)(x2,y2),圓心Oa2對(duì)應(yīng)坐標(biāo)(xoa2,yoa2).以凸圓弧段為例,將齒廓b繞圓心Oa2逆時(shí)針旋轉(zhuǎn)Δθ得到齒廓3.在雙圓弧齒廓中忽略長(zhǎng)度較小的公切線段,根據(jù)位置轉(zhuǎn)換關(guān)系可知,對(duì)應(yīng)弧長(zhǎng)s的點(diǎn)齒廓偏差Δf如式(32)所示,其中Δθ可根據(jù)B1、B2和圓心Oa1的坐標(biāo)求得.

在實(shí)際齒廓中,由于前后角的存在,刮齒刀具切削刃上任意點(diǎn)對(duì)應(yīng)端面齒廓變位量Δa不同,其關(guān)系如式(33)所示,其中Δl為弧長(zhǎng)s對(duì)應(yīng)點(diǎn)與齒廓頂點(diǎn)的垂直距離.將刀具刃磨參數(shù)代入齒廓誤差計(jì)算公式,可得切削刃上任意點(diǎn)齒廓偏差如圖14所示.刮齒刀具側(cè)刃齒廓偏差隨弧長(zhǎng)s的增大而增大,最大齒廓偏差約為3μm.

Δa=Δl tan αetan γe(33)

改變頂刃后角和前角,取側(cè)刃最大誤差值對(duì)應(yīng)點(diǎn)計(jì)算前后角對(duì)齒廓最大誤差的影響,如圖15所示.由圖15可知,最大誤差隨前后角增大而增大,在對(duì)應(yīng)范圍內(nèi),最大齒廓誤差小于15 μm.在實(shí)際切削過(guò)程中,雖然較小的前角和后角能有效降低齒廓誤差,但也會(huì)影響切削效率和刀具壽命.

6結(jié)論

1)提出一種諧波齒輪新型加工方法,根據(jù)曲面展成原理,通過(guò)改變傳統(tǒng)加工刀具切削刃與切削的作用位置,設(shè)計(jì)加工精度和效率更高的刮齒刀具加工諧波剛輪,優(yōu)化了其加工工藝.

2)根據(jù)諧波傳動(dòng)特性求解并擬合剛輪齒廓;由嚙合原理和刮齒刀結(jié)構(gòu)特點(diǎn)構(gòu)建坐標(biāo)系,求解并擬合共軛面和前刀面模型;將前刀面與共軛面求交并擬合獲取切削刃數(shù)據(jù),導(dǎo)入CAD軟件建立刮齒刀具數(shù)學(xué)模型.

3)該雙圓弧齒廓刮齒刀具設(shè)計(jì)及對(duì)應(yīng)齒廓誤差計(jì)算方法,具有一定的通用性,進(jìn)一步完善了刮齒刀具設(shè)計(jì)理論,可為其他雙圓弧齒廓齒輪加工刀具設(shè)計(jì)、誤差分析及修形等提供參考.

參考文獻(xiàn)

[1]辛洪兵.雙圓弧諧波齒輪傳動(dòng)基本齒廓設(shè)計(jì)[J].中國(guó)機(jī)械工程,2011,22(6):656-662.

XIN H B. Design for basic rack of harmonic drive with doublecircular-arc tooth profile [J]. China Mechanical Engineering,2011,22(6):656-662.(In Chinese)

[2]董惠敏,董博,王德倫,等.基于瞬心線的諧波傳動(dòng)雙圓弧齒形設(shè)計(jì)方法[J].華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,48 (4):55-60.

DONG H M,DONG B,WANG D L,et al. Double circular arc tooth profile design method of harmonic drives based on centrodes[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition),2020,48(4):55 - 60. (In Chinese)

[3]王仕璞,宋朝省,朱才朝,等.正前角雙圓弧諧波傳動(dòng)柔輪滾刀設(shè)計(jì)與齒形誤差分析[J].西安交通大學(xué)學(xué)報(bào),2021,55(1):127-135.

WANG S P,SONG C S,ZHU C C,et al. Design and tooth profile error analysis of double-circular-arc harmonic flexspline hob with positive rake angle [J]. Journal of Xi'an Jiaotong University,2021,55⑴:127-135. (In Chinese)

[4]王家序,周祥祥,李俊陽(yáng),等.公切線式雙圓弧齒廓諧波齒輪傳動(dòng)設(shè)計(jì)[J].湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,43(2):56-63.

WANG J X,ZHOU X X,LI J Y,et al. Design of double-circulararc and common tangent tooth profile of harmonic drive[J]. Journal of Hunan University(Natural Sciences),2016,43(2):56-63 (In Chinese)

[5]YOSHINO H,SHAO M,ISHIBASHI A. Design and manufacture of pinion cutters for finishing gears with an arbitrary profile[J]. JSME International Journal,1992,35(2):313-319.

[6]TSAI C Y Mathematical model for design and analysis of power skiving tool for involute gear cutting[J] Mechanism and Machine Theory,2016,101:195-208.

[7]賈康,鄭帥,郭俊康,等.一種刮削加工切削齒刃形計(jì)算與加工運(yùn)動(dòng)仿真方法[J].機(jī)械工程學(xué)報(bào),2019,55(1):216-224.

JIA K,ZHENG S,GUO J K,et al. A method of cutter profile identification and machining motion simulation for skiving[J]. Journal of Mechanical Engineering,2019,55(1):216-224 (In Chinese)

[8]CHEN X C,LI J,LOU B C. A study on the design of error-free spur slice cutter[J]. The International Journal of Advanced Manufacturing Technology,2013,68(1/2/3/4):727-738.

[9]GUO Z,MAO S M,LIANG H Y,et al. Research and improvement of the cutting performance of skiving tool[J]. Mechanism and Machine Theory,2018,120:302-313.

[10] CHEN X X,LIU Y S,XING J Z,et al. The parametric design of double-circular-arc tooth profile and its influence on the functional backlash of harmonic drive[J]. Mechanism and Machine Theory,2014,73:1-24.

[11]李佳,婁本超,陳新春.基于自由曲面的剮齒刀結(jié)構(gòu)設(shè)計(jì)[J].機(jī)械工程學(xué)報(bào),2014,50(17):157-164.

LI J,LOU B C,CHEN X C. Structural design of slice cutter based on free-form surface[J]. Journal of Mechanical Engineering,2014,50(17):157-164. (In Chinese)

[12]馬恩旭.車齒刀結(jié)構(gòu)設(shè)計(jì)和車齒加工誤差分析[D].重慶:重慶大學(xué),2016:29-39.

MA E X Structure design of skiving cutter and error analysis of skiving processing [D]. Chongqing:Chongqing University,2016:29-39 (In Chinese)

[13]陳兵奎,高艷娥,梁棟.共軛曲線齒輪齒面的構(gòu)建[J].機(jī)械工程學(xué)報(bào),2014,50(3):18-24.

CHEN B K,GAO Y E,LIANG D. Tooth profile generation of conjugate-curve gears [J]. Journal of Mechanical Engineering,2014,50(3):18-24. (In Chinese)

[14]王磊,楊彬,張其林.非均勻有理B樣條曲面形狀優(yōu)化方法[J].湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,39(7):14-19.

WANG L,YANG B,ZHANG Q L. Shape optimization of nonuniform rational B-spline surface[J]. Journal of Hunan University (Natural Sciences),2012,39(7):14-19. (In Chinese)

[15] JIA Z Y,SONG D N,MA J W,et al. A NURBS interpolator with constant speed at feedrate-sensitive regions under drive and contour-error constraints[J]. International Journal of Machine Tools and Manufacture,2017,116:1-17