国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

求解鞍點(diǎn)問(wèn)題的修正MSOR-like方法

2022-12-25 12:42:16趙耿威黃敬頻
關(guān)鍵詞:鞍點(diǎn)迭代法將式

趙耿威,黃敬頻

(廣西民族大學(xué) 數(shù)學(xué)與物理學(xué)院, 南寧 530006)

0 引言

鞍點(diǎn)問(wèn)題出現(xiàn)在許多計(jì)算科學(xué)與工程學(xué)領(lǐng)域[1-3],比如大型稀疏矩陣壓縮存儲(chǔ)與求解[4]、約束最優(yōu)化計(jì)算[5]。文獻(xiàn)[6]指出高維非凸優(yōu)化問(wèn)題之所以困難,是因?yàn)榇嬖诖罅康陌包c(diǎn)而不是局部極值。這些鞍點(diǎn)通常被一個(gè)具有相同誤差的平面所包圍,使得各個(gè)維度上的梯度都趨于零且導(dǎo)致隨機(jī)梯度下降難于逃脫。鞍點(diǎn)矩陣一般是不定矩陣且具有較弱的譜條件,因此對(duì)鞍點(diǎn)問(wèn)題的計(jì)算是困難而重要的研究領(lǐng)域。多年來(lái),國(guó)內(nèi)外學(xué)者針對(duì)鞍點(diǎn)問(wèn)題的研究提出了較多的研究方法,其中包括變尺度外梯度離散方法[7]、Uzawa類方法[8-9]、SOR類方法[10]和HSS類方法[11-12]等。此后一些學(xué)者又提出了改進(jìn)的方法,如GSOR迭代法[13-14]、ASOR迭代法[15]等。

鞍點(diǎn)問(wèn)題的一般形式為:

(1)

式中A∈Rm×m為非對(duì)稱正定矩陣,B∈Rm×n(m>n)為列滿秩矩陣,BT為B的轉(zhuǎn)置矩陣,x,f∈Rm且y,g∈Rn,這里f,g是已知向量,x,y是未知向量。

文獻(xiàn)[16]引入對(duì)稱正定矩陣Q∈Rn×n并對(duì)式(1)的系數(shù)矩陣作如下分解:

DM-LM-UM

(2)

并給出MSOR-like的迭代格式為[16]:

(3)

分析迭代(3)可知,MSOR-like迭代至少存在2個(gè)方面的缺陷:

1) 參變量正定矩陣Q在矩陣分裂(2)中不確定,使得應(yīng)用過(guò)程難以把握。

2) 單一松弛變量ω關(guān)聯(lián)系數(shù)矩陣的靈敏度低,不利于增強(qiáng)整體收斂速度。

針對(duì)上述問(wèn)題,進(jìn)一步改進(jìn)MSOR-like迭代十分必要,從而提升式(1)的求解效率。

1 修正MSOR-like迭代構(gòu)建

為進(jìn)一步改進(jìn)MSOR-like迭代,在對(duì)矩陣A進(jìn)行H,S分裂的基礎(chǔ)上,得到新的分解矩陣D,L,U,同時(shí)新增加2個(gè)參數(shù)來(lái)提高迭代關(guān)聯(lián)系數(shù)矩陣的靈敏度,以期提升迭代收斂速度。首先引入待定的對(duì)稱正定矩陣Q∈Rn×n及參數(shù)α和β,并對(duì)式(1)的系數(shù)矩陣分裂如下:

(4)

(5)

式中:ω>0,α>0,β≥0且D,L,U如式(4)所示。稱迭代(5)為修正MSOR-like方法,記為MMSOR-like。

顯然,當(dāng)α=1,β=0時(shí),式(5)即為MSOR-like迭代(3)[16];當(dāng)H=A,S=0時(shí),式(5)即為SOR-like迭代[17];當(dāng)H=A,S=0,α=1,β=0時(shí),式(5)即為SOR-like迭代[18];當(dāng)H=A,S=0,α=1時(shí),式(5)即為SOR-like迭代[19];當(dāng)H=A,S=0,β=1/2時(shí),式(5)即為SOR-like迭代[20]。因此,新迭代格式(5)具有更廣泛的參數(shù)選取,從而進(jìn)一步提升式(1)的求解效率。下面具體導(dǎo)出式(5)的求解格式。由于

(6)

根據(jù)矩陣H,Q的正定性和S的反對(duì)稱可知,矩陣D-ωL是非奇異的當(dāng)且僅當(dāng)ωβ≠1。因此假設(shè)ωβ≠1,并記

G=(D-ωL)-1[(1-ω)D+ωU]

T=ω(D-ωL)-1

通過(guò)簡(jiǎn)單的計(jì)算可得

(7)

(8)

于是式(5)等價(jià)于

(9)

式中:G,T如式(7)和(8)所示。

2 MMSOR-like方法的收斂性

本節(jié)主要討論MMSOR-like迭代(9)的收斂性及相關(guān)參數(shù)的選取方法。用ρ(G)表示矩陣G的譜半徑,則由數(shù)值分析理論可知,迭代(9)收斂當(dāng)且僅當(dāng)ρ(G)<1。下面先給出幾個(gè)引理。

引理1設(shè)λ為矩陣(7)中G的非零特征值,則λ≠1。

證明由條件可設(shè)(xT,yT)T∈Rm+n為非零特征值λ對(duì)應(yīng)的特征向量,則有

G(xT,yT)T=λ(xT,yT)T

(10)

若λ=1,則把式(7)代入式(10)得

(11)

由式(11)及ω>0,可以導(dǎo)出

由于矩陣A是正定矩陣,B是列滿秩矩陣,從而方程(1)是非奇異的,所以有x=0,y=0,這與 (xT,yT)T是矩陣G的一個(gè)特征向量矛盾,因此λ≠1。證畢。

引理2設(shè)H∈Rm×m是一個(gè)對(duì)稱正定矩陣,S∈Rm×m是一個(gè)反對(duì)稱矩陣,非零向量x∈Rm,則H,S的Rayleigh商RH(x)>0,RS(x)=0。

證明根據(jù)Rayleigh商定義得

RH(x)=(xTHx)/(xTx)

由于H∈Rm×m是一個(gè)對(duì)稱正定矩陣,所以?0≠x∈Rm,xTHx>0,從而RH(x)>0。同理,當(dāng)S是反對(duì)稱矩陣時(shí)xTSx=0,所以RS(x)=0。證畢。

引理3設(shè)λ為式(7)中矩陣G的1個(gè)特征值且(xT,yT)T為λ對(duì)應(yīng)的特征向量,則x≠0。若y=0且限制0<αω<1,那么λ是實(shí)特征值且-1<λ<1。

證明設(shè)λ是G的特征值,(xT,yT)T為對(duì)應(yīng)的特征向量,則有等式(10)成立,把矩陣(7)代入式(10)可得

(12)

由式(12)可得

(13)

由式(13)可推知x≠0,否則由B列滿秩,從式(13)中第一式可得y=0,這與(xT,yT)T是矩陣G的一個(gè)特征向量相矛盾。若y=0,那么從式(13)中第一式可得

(14)

式(14)兩邊同時(shí)左乘xT/(xTx)得

(15)

引理4[21]實(shí)二次方程λ2-pλ+q=0的2個(gè)根的模均小于1,當(dāng)且僅當(dāng)|q|<1且|p|

定理1設(shè)式(7)中矩陣G的參數(shù)ω,α,β滿足以下條件:

(16)

式中:λmin[·]表示矩陣[·]的最小特征值,則求鞍點(diǎn)問(wèn)題(1)的MMSOR-like迭代(9)收斂。

證明由引理1可得,迭代矩陣G的特征值λ≠1,因此當(dāng)0<ωβ<1時(shí)可以將特征方程(13)寫成如下形式:

(17)

將式(17)中的第二個(gè)等式y(tǒng)代入第一個(gè)等式,并兩邊同時(shí)左乘xT/(xTx),可得

(18)

式中:a,b,c分別是矩陣H,S,BQ-1BT的Rayleigh商。注意到矩陣H對(duì)稱正定,S反對(duì)稱,BQ-1BT半正定,因此由引理2得a>0,b=0,c≥0。于是可將式(18)進(jìn)一步化簡(jiǎn)為:

(19)

又由式(19)及引理4得,若要滿足|λ|<1,當(dāng)且僅當(dāng)

(20)

從而由ω>0,0<ωβ<1求解不等式(20)可得

(21)

由式(21)的第二個(gè)不等式的右邊式子可知

所以有

(22)

(23)

(24)

式中:

將式(24)代入式(23),并令u=Uv=(u1,u2,…,un)T得

λ1|u1|2+λ2|u2|2+…+λn|un|2

(25)

由于‖u‖2=‖Uv‖2=‖v‖2=1,故由式(25)可得

λ1(|u1|2+|u2|2+…+|un|2)=λ1

(26)

綜合式(22)和(26)可得,當(dāng)參數(shù)ω,α,β滿足不等式(16)時(shí)ρ(G)<1,即MMSOR-like迭代(9)收斂。證畢。

根據(jù)定理1,立即可得如下推論

(27)

3 預(yù)優(yōu)矩陣Q的選取

在矩陣分裂(4)中,引入了待定的對(duì)稱正定矩陣Q∈Rn×n,由于Q的不確定,導(dǎo)致應(yīng)用過(guò)程難以把握,因此在執(zhí)行迭代(9)之前,很有必要考慮Q的選取問(wèn)題。根據(jù)定理1可知,參數(shù)α的選取范圍是

表1 預(yù)處理矩陣Q具體形式

4 數(shù)值實(shí)驗(yàn)

考慮如下形式的鞍點(diǎn)問(wèn)題[16]:

式中:

?表示克羅內(nèi)克積,取h=1/(p+1)為離散網(wǎng)絡(luò)值且m=2p2,n=p2。

分別用MMSOR-like和MSOR-like方法計(jì)算case 1和case 2,IT和CPU結(jié)果見(jiàn)表2和表3。

表2 Q=BT[diag(H)]-1B時(shí)2種迭代的IT和CPU(case 1)

表3 Q=BT[tridiag(H)]-1B時(shí)2種迭代的IT和CPU(case 2)

數(shù)值實(shí)驗(yàn)結(jié)果表明,適當(dāng)選取對(duì)稱正定矩陣Q及參數(shù)ω,α,β時(shí),所提的求解鞍點(diǎn)問(wèn)題(1)的MMSOR-like方法相比文獻(xiàn)[16]所給的MSOR-like方法具有更快的收斂速度。

5 結(jié)論

為更高效求解鞍點(diǎn)問(wèn)題,在MSOR-like迭代法的基礎(chǔ)上,提出了一種修正的迭代方法,即MMSOR-like迭代方法(9)。該方法在對(duì)矩陣A進(jìn)行H,S分裂后,引入?yún)?shù)建立新的分解矩陣D,L,U,使得迭代格式適用范圍更廣。在定理1用特征值理論證明了迭代的收斂性,并獲得參數(shù)ω,α,β的選取范圍(16);同時(shí)給出了預(yù)優(yōu)矩陣Q的2種選取方法,使得矩陣Q與矩陣A,B的關(guān)聯(lián)性強(qiáng)且易計(jì)算。數(shù)值實(shí)驗(yàn)結(jié)果表明,適當(dāng)選取正定矩陣Q及相關(guān)參數(shù)ω,α,β,MMSOR-like方法能顯著提高收斂效率。

猜你喜歡
鞍點(diǎn)迭代法將式
迭代法求解一類函數(shù)方程的再研究
AKNS方程的三線性型及周期孤立波解
求解無(wú)約束函數(shù)局部鞍點(diǎn)的數(shù)值算法
因子von Neumann代數(shù)上非線性*-Lie導(dǎo)子的刻畫
單自由度系統(tǒng)
含有二階冪零鞍點(diǎn)的雙同宿環(huán)附近的極限環(huán)分支
SKT不變凸非線性規(guī)劃的鞍點(diǎn)特征研究
迭代法求解約束矩陣方程AXB+CYD=E
預(yù)條件SOR迭代法的收斂性及其應(yīng)用
改進(jìn)的復(fù)制動(dòng)態(tài)方程及其穩(wěn)定性分析
乌海市| 东乌珠穆沁旗| 即墨市| 加查县| 东明县| 古浪县| 东至县| 施甸县| 卓资县| 鱼台县| 东宁县| 定陶县| 正安县| 铁力市| 玉环县| 青州市| 莎车县| 涞水县| 明水县| 潜江市| 奉化市| 灵丘县| 孟村| 安岳县| 宁明县| 湖南省| 西乌珠穆沁旗| 阳原县| 通城县| 偏关县| 郧西县| 依安县| 永定县| 天水市| 沂水县| 永胜县| 探索| 巴林右旗| 平湖市| 保德县| 尖扎县|