国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

多巴胺表面修飾在醫(yī)療領域的研究進展

2022-12-29 13:14劉雨晗劉德王意王虎鳴曹攀
表面技術(shù) 2022年11期

劉雨晗,劉德,王意,王虎鳴,曹攀

多巴胺表面修飾在醫(yī)療領域的研究進展

劉雨晗,劉德,王意,王虎鳴,曹攀

(揚州大學 機械工程學院 表面工程研究所,江蘇 揚州 225127)

多巴胺(DA)及其聚合物聚多巴胺(PDA)含有鄰苯二酚基團、氨基等大量活性官能團,使其具有良好的黏附性、生物相容性、反應活性和還原性,被廣泛用于醫(yī)療器械材料、船舶材料、傳感器件材料、藥物運輸?shù)炔牧媳砻娴母男?,其中對醫(yī)療器械材料表面的修飾研究前景尤為廣闊。分析了多巴胺的理化特性及相關功能,歸納了多巴胺在生物工程材料上的應用,包括增強材料的骨組織再生能力和提高材料表面細胞的黏附、增殖等。在此基礎上,重點綜述了近年來多巴胺在醫(yī)療領域的改性研究進展,其中多巴胺對骨修復及骨移植材料的修飾包括復合材料和高分子材料等,多巴胺對牙種植體及牙修復材料的修飾包括納米金屬材料和合金材料等,多巴胺對新型醫(yī)療材料的修飾包括人工血管、人工韌帶材料和醫(yī)用膜材料等。闡述了改性材料的優(yōu)缺點和作用,以及多巴胺如何對材料表面進行改性來彌補材料的缺陷。針對不同材料的多巴胺改性,分別從制備方法、實驗對比結(jié)果等方面進行歸納。最后展望了多巴胺表面修飾技術(shù)的發(fā)展方向。

多巴胺;聚多巴胺;表面修飾;醫(yī)療器械;人體植入材料

全球醫(yī)療器械市場迅猛發(fā)展,隨著我國人口平均壽命增加,老齡化日益嚴重,促進了對醫(yī)療器械尤其是心腦血管、骨科和美容等植入物的需求,但是醫(yī)療器械和人體植入物的表面會與人的體液、血液和組織等發(fā)生接觸,它們的表面易于被細菌黏附,從而形成生物膜,危害人類健康。多巴胺含有大量的鄰苯二酚基團、氨基等活性官能團,使其具有極佳的黏附性和化學反應活性,可以借助共價鍵或非共價鍵作用將骨修復材料和生長因子結(jié)合,兩者的結(jié)合力會顯著提升,從而使骨組織的再生能力增強[1]。多巴胺可作為連接工程支架與細胞的橋梁,有效促進支架材料表面細胞的黏附與增殖,提高骨修復材料表面細胞黏附[2];DA氧化聚合可形成PDA,利用PDA改性基底,可顯著改善細胞的貼附能力[3],而且有利于固定成骨因子,使得細胞的增殖、分化以及成骨基因表達功能得到改善[4-5]。DA以及其聚合物PDA在醫(yī)療器械表面改性領域具有廣闊前景,因此,本文對多巴胺表面修飾在醫(yī)療領域的研究進展進行綜述。

1 多巴胺在改性骨修復及骨移植材料中的研究進展

1.1 多巴胺改性骨科修復材料

聚多巴胺富含—OH、—NH2等基團,擁有極佳的親水性、生物活性和穩(wěn)定性[6]。楊曉玲等[7]以碳/碳(C/C)復合材料為基底材料,將PDA涂層沉積在材料表面,然后與不同濃度的精氨酸-甘氨酸-天冬氨酸(RGD)共價偶聯(lián)。結(jié)果(圖1)顯示,RGD-PDA涂層成功改善了基底材料的親水性和生物活性。聚乳酸(PLA)是醫(yī)用高分子材料,生物可降解性、力學性能、生物相容性等性能良好,被廣泛用于骨組織修復材料。但其親水性和細胞相容性較差,且存在缺乏成骨、成血管化功能等缺陷。對材料表面進行生物學修飾可有效改善PLA材料的功能。多巴胺是貽貝黏附蛋白的關鍵成分,它幾乎可以黏附在任何材料的表面,能夠有效改善材料表面的親水性和細胞相容性。此外,多巴胺自聚形成的聚多巴胺層可以作為二級反應平臺,在基體材料表面進一步修飾生物活性分子,賦予基體材料優(yōu)異的生物學性能。李慧華[8]用聚(D、L-乳酸)(PDLLA)材料制備膜,并用PDA對其表面進行改性,得到一系列不同濃度的PDLLAP/PDA-x復合膜。研究發(fā)現(xiàn):經(jīng)PDA改性后,PDLLA膜的親水性得到顯著改善,其表面粗糙度和表面能明顯增大。

圖1 接種于C/C復合材料上MC3T3-E1細胞的增殖情況(空白組:原始C/C復合材料;PDA涂層組:表面有PDA涂層的C/C復合材料;35RGD-PDA涂層組:表面有RGD-PDA涂層的C/C復合材料,其中RGD質(zhì)量濃度為35 μg/mL;50RGD-PDA涂層組:表面有RGD-PDA涂層的C/C復合材料,其中RGD質(zhì)量濃度為50 μg/mL)(*p<0.05表明存在顯著差異)[7]

聚己內(nèi)酯(PCL)生物相容性、可加工性、生物可降解性、機械性能、物理性能等良好,被廣泛用于骨組織修復工程。但PCL存在親水性差、生物活性不理想等缺陷,國內(nèi)外學者常借助DA改性提升PCL的性能。閆歡歡[1]以苯胺四聚體、多巴胺和聚乙二醇為原料,通過自由基加成反應合成了具有黏附性的導電無規(guī)共聚物poly(PAT)。測試表明:此材料不僅保持一定的導電性和電活性,還具有良好的親水性和生物相容性。栗可心等[9]復合了羥基磷灰石(HA)和聚己內(nèi)酯(PCL),制備出PCL-HA骨組織工程多孔支架,該支架材料具有良好的生物相容性和生物活性,但難以實現(xiàn)生物活性因子在材料底物上的固定化附著。徐燕等[10]利用DA的黏附性,將軟骨源性形態(tài)發(fā)生蛋白1(CDMP-1)引入至 PCL-HA三維多孔支架材料表面,并將其與成人骨髓間充質(zhì)干細胞(hBMSCs)體外培養(yǎng)。實驗表明:經(jīng)多巴胺改性修飾后,支架材料的親水性能得到改善,且對細胞的黏附、增殖及成軟骨分化有顯著促進作用。Xu等[11]通過3D打印制備了聚多巴胺涂層的聚-(乳酸-共-乙醇酸)/β-磷酸三鈣復合支架,并進行了一系列表征和生物相容性測試。結(jié)果表明,PDA涂層含量越高的支架對新骨形成的效果越好。Chen等[12]使用PDA涂層的仿生工藝處理3D聚乳酸-羥基乙酸共聚物(PLGA)多孔支架,加強了人骨形態(tài)發(fā)生蛋白-2(BMP-2)和ponericin G1在3D PLGA多孔支架上的固定。BMP-2/ponericin G1固定后,MC3T3-E1細胞在3D PLGA 支架上的附著、增殖與成骨分化顯著提高。

1.2 多巴胺改性骨科移植材料

生物陶瓷材料可通過PDA改性來改善表面活性,從而促進成骨細胞在陶瓷表面的黏附、增殖和分化,以達成骨整合[13]。PDA具有一定程度的弱還原性,能夠?qū)崿F(xiàn)各種材料表面的無電金屬化。Tan等[14]以鈦為基底材料,將PDA進行表面改性后的鈦片浸泡在硝酸銀溶液中,成功制備出表面載銀的鈦片。結(jié)果表明,經(jīng)PDA改性后的鈦片抗菌性、細胞相容性良好。

納米銀被視為一種良好的抗菌試劑。王勇[15]利用PDA涂層將吸附的[Ag(NH3)2]+原位還原為Ag納米粒子,成功在聚醚醚酮(PEEK)材料表面制備出Ag納米粒子涂層。實驗結(jié)果顯示,PEEK-PDA-Ag材料的抗菌性能良好。張維波[16]在微納米多孔及光滑的鈦表面成功制備了聚多巴胺-納米銀修飾涂層,得出結(jié)論:構(gòu)建的修飾涂層解決了多孔表面易發(fā)生感染的問題,DA介導的礦化有效改善了表面成骨細胞相容性。

鎂合金具有極佳的生物相容性和獨特的機械性能,而且它能減小甚至消除“應力遮擋”,被用作生物醫(yī)學領域可降解骨科植入材料。但是臨床應用中發(fā)現(xiàn):醫(yī)用鎂合金在生理體液環(huán)境中釋放氫氣以及降解速度具有不可控性。王鄧莉[17]利用PDA涂層修飾醫(yī)用鎂合金(AZ31)表面,然后將經(jīng)PDA改性的AZ31浸入仿生礦化液中以形成HA涂層,并對鎂和鎂合金的改性方法進行了初步研究。研究表明,經(jīng)PDA改性的HA涂層能夠成功降低醫(yī)用鎂合金在人體的降解速率。

鈦合金的物理性能優(yōu)異、機械性能良好、耐腐蝕性較強、生物相容性極佳,常用作骨移植材料。但是醫(yī)用鈦合金表面疏水,耐腐蝕性能還需加強,且它與人骨間并未完成化學骨性結(jié)合。張松營[18]采用PDA改性醫(yī)用鈦合金(SA)材料表面。實驗表明,PDA涂層完全均勻的覆蓋在SA基底表面,材料基底形貌和粗糙度未改變,表面親水性、細胞相容性良好,能促進成骨細胞的早期黏附、增殖。尤瑩[19]以金屬純鈦材料為基體材料,經(jīng)熱堿處理后材料形成微觀多孔網(wǎng)狀結(jié)構(gòu)。利用PDA在此結(jié)構(gòu)上黏附羥基磷灰石形成復合涂層。研究表明,堿熱處理后的多孔鈦表面形成的PDA生物活性復合涂層能夠顯著促進骨髓間充質(zhì)干細胞(BMSCs)的黏附和早期增殖,見圖2。

圖2 BMSCs在材料表面培養(yǎng)24 h后SEM觀察固定在各種材料表面的細胞[19]

2 多巴胺在改性牙種植體及牙修復材料中的研究進展

2.1 多巴胺改性牙植入材料

牙種植體植入后首先與人體血液相接觸。在骨整合中,種植體與血液間血凝塊的形成起重要作用。采用共價鍵結(jié)合的方法可以將生物分子連接到材料表面。多巴胺僅通過簡單浸泡的方式即可在幾乎任何無機和有機材料表面形成聚多巴胺涂層,且形成的聚多巴胺涂層還可通過鄰苯二酚結(jié)構(gòu)與含有氨基、巰基等基團的化合物發(fā)生一系列反應,形成牢固穩(wěn)定的化學鍵[20-21]。張冉冉等[22]利用PDA的特性將具有促血小板聚集作用的二磷酸腺苷(Adenosine Di-phosphate,ADP)接枝到材料表面(細胞爬片)。實驗表明,通過PDA偶聯(lián)作用將二磷酸腺苷接枝到材料表面后仍能保持其生物活性,材料表面經(jīng)改性后能夠促進血小板的黏附、聚集與激活,見圖3。

金屬鈦中,六鋁四礬鈦的生物相容性和抗腐蝕性良好,力學性能如拉伸強度和彈性模量等較低,且相關機械參數(shù)非常接近骨皮質(zhì),常被用作口腔種植體。鈦作為生物惰性材料,存在骨結(jié)合時間較長、骨結(jié)合強度不足等缺陷。周田園等[23]利用DA偶聯(lián)在純鈦(Ti)表面構(gòu)建Ti陶瓷生物膜-多巴胺-Arg-Gly-Asp(RGD)環(huán)肽活性層。實驗結(jié)果顯示,純鈦-微弧氧化-多巴胺-環(huán)肽活性涂層能促進成骨細胞的早期黏附和增殖,并能有效促進成骨細胞擴散。Guo等[24]為使鈦材料表面獲得良好的抗菌性能,利用DA涂層螯合Ag+并將它們還原成Ag的特性,在多孔鈦表面成功制備了聚電解質(zhì)(poly-L-lysine/sodium alginate/poly- L-lysine,PSP)、多巴胺和銀納米顆粒(AgNPs)的復合涂層。結(jié)果表明:pTi/PSP/DA/Ag可以防止細菌黏附和定植,且該涂層在模擬體液(SBF)中培養(yǎng)時可誘導表面礦化,表現(xiàn)出了良好的細胞相容性。Choi等[25]研究了經(jīng)PDA涂層和Ag改性Ti材料對變形鏈球菌和牙齦卟啉菌的抗菌特性,結(jié)果表明,與未經(jīng)表面處理的Ti相比,經(jīng)PDA涂層和Ag改性的Ti抗菌性能明顯更好。Marinas等[26]優(yōu)化了Ti-6Al-6V合金表面的聚多巴胺薄膜涂層,使用氧化劑KMnO4來減少PDA的沉積時間,并擴大了DA實現(xiàn)其氧化優(yōu)勢的pH范圍。

圖3 細胞體外增殖評價hBMSCs在材料表面增殖檢測(P>0.05)[22]

2.2 多巴胺改性人體牙質(zhì)

牙體硬組織缺乏完善的自我修復功能,國內(nèi)外學者就促進牙本質(zhì)再生的方法展開了研究。邱瀅等[27]研究發(fā)現(xiàn)載BMP-2多巴胺-肝素-透明質(zhì)酸支架能夠促進牙髓干細胞在牙本質(zhì)表面的黏附、增殖、分化、遷移并形成牙本質(zhì)。Liu等[28]將DA修飾的透明質(zhì)酸(DA-HA)涂層處理牙本質(zhì)表面,成功將牙髓干細胞(DPSC)穩(wěn)定黏附在牙本質(zhì)上,且制備的涂層進一步促進了DPSCs的增殖,有效提高牙本質(zhì)的再生能力。

牙本質(zhì)的再礦化和黏結(jié)修復一直是臨床醫(yī)學關注的重點問題,材料領域?qū)W者也對此展開了研究。Zhou等[29]研究了PDA涂層對牙本質(zhì)再礦化的影響,使用亞穩(wěn)定的鈣磷溶液來實現(xiàn)牙本質(zhì)的再礦化。實驗對比發(fā)現(xiàn),經(jīng)PDA涂層的牙本質(zhì)再礦化功能得到極大改善。在Zhou等的研究基礎上,De Lima等[30]采用PDA和具有膠原蛋白及鈣結(jié)合結(jié)構(gòu)域的合成多巴肽等材料進行原位制備。用制備出的聚(兒茶酚)仿生藥物處理牙本質(zhì)樣品,在體外測試樣品礦化能力。結(jié)果表明:牙本質(zhì)經(jīng)藥物處理后,表面特性改變、礦物質(zhì)形成能力增加。曾玲等[31]研究了DA溶液對牙本質(zhì)黏結(jié)力的影響,得出結(jié)論:使用適宜濃度的DA溶液對牙本質(zhì)進行處理,可以增強牙本質(zhì)黏結(jié)強度,DA溶液的質(zhì)量濃度為2 mg/mL時效果最佳。

3 多巴胺改性在其他醫(yī)療材料中的研究進展

3.1 多巴胺改性人工血管、人工韌帶材料

臨床常用的小口徑(直徑<6 mm)人工血管生物相容性較差,移植后效果不佳,易形成血栓。鑒于對DA改善材料生物相容性的研究,Luo等[32]發(fā)現(xiàn)在聚合物材料表面,DA會發(fā)生自氧化和自聚合。自聚合后,肝素接枝到多巴胺氨基位置后,材料表面血液相容性優(yōu)良。Davoudi等[33]利用DA的自聚合特性,將肝素和血管內(nèi)皮生長因子(VEGF)固定在聚氨酯(PU)納米纖維血管支架上,抗血栓性能良好,同時促進了內(nèi)皮的單層生長和融合。研究發(fā)現(xiàn),模仿貽貝黏附蛋白的PDA技術(shù)可以在聚四氟乙烯(PTFE)材料表面自聚合形成膜[34-35],可在引入活性基團鄰苯二酚的同時提高材料表面的親水性,從而實現(xiàn)帶有氨基或巰基功能物質(zhì)的單層改性,這項技術(shù)可以固定能夠選擇性黏附在聚四氟乙烯血管表面上的內(nèi)皮細胞的活性肽,并構(gòu)建出特定結(jié)構(gòu)來促進內(nèi)皮細胞的選擇性生長,成功使人工血管的內(nèi)皮化快速有效地進行[36]。汪濤等[37]利用DA修飾聚四氟乙烯人工血管,并用MTT比色法檢測血管對內(nèi)皮細胞的毒性。檢測發(fā)現(xiàn),聚四氟乙烯人工血管經(jīng)處理后對內(nèi)皮細胞的生長無毒性作用,且細胞親和性、細胞相容性良好,見圖4。賈山山[38]利用DA自聚合的特點,使其在膨體聚四氟乙烯上形成自聚成膜,并與聚乙烯亞胺共混以增加氨基的數(shù)量。人工血管經(jīng)多巴胺/聚乙烯亞胺覆蓋處理后,成功將肝素固定在表面,人工血管表面的血液相容性得到顯著提升。Mi等[39]為了同時提高PTFE材料對內(nèi)皮細胞的親和力和抗血栓形成能力,使用包括DA、RGD和肝素在內(nèi)的生物活性分子對PTFE進行功能化。實驗表明,PTFE材料經(jīng)修飾后生物相容性和細胞親和力顯著改善。

圖4 與經(jīng)多巴胺預處理后聚四氟乙烯人工血管共培養(yǎng)后內(nèi)皮細胞的形態(tài)學變化(40×)[37]

人工韌帶移植物材料Polyethylene terephthalate(PET)的疏水性很強,因而造成細胞在其上的黏附和生長困難,導致與骨骼之間的黏附力弱,植入后難以和人體骨形成骨整合,易導致重建失敗[40]。俞斌等[41]在基于PET材料骨隧道部分預涂DA改性上,引入了納米Fe3O4材料。研究發(fā)現(xiàn),PET人工韌帶材料經(jīng)DA修飾過的四氧化三鐵涂層處理后,小鼠胚胎成骨細胞前體細胞(MC3T3-E1)的黏附、增殖和分化顯著增強,見圖5。Yu等[42]用PDA修飾Mesoporous Bioactive glass(MBG),人工韌帶經(jīng)PDA-MBG涂層處理后生物相容性和生物活性顯著提升,動物試驗表明,改良的PET移植物可以加速與骨的愈合。Wu等[43]在弱氧化性弱堿性水溶液中,用PDA修飾PET人工韌帶表面,然后以PDA為黏合層,在PET表面改性nano-hydroxyapatite(nHA),利用DA的還原性和nHA中所含的磷酸鹽成功將銀原子吸附在PET表面。抗菌試驗結(jié)果表明,經(jīng)修飾的PET表面具有顯著的抗菌性能。生物活性試驗結(jié)果表明,PDA能顯著促進細胞增殖。

3.2 多巴胺修飾醫(yī)用膜材料

聚砜(PSf)膜的機械強度高、熱穩(wěn)定性好、化學惰性強,可用作醫(yī)用血液透析膜,在臨床應用中具有廣闊的前景,但聚砜膜與血液的相容性較差。研究表明,蛋白質(zhì)或多肽固定在膜表面能夠明顯抑制蛋白質(zhì)在界面處的吸附,因此將蛋白固定在膜表面可以用作開發(fā)高性能血液凈化膜的有效方式。吉明波[44]利用DA在聚砜膜上分別黏附牛血清白蛋白(BSA)和具有抗凝血生物活性的納豆激酶和蚓激酶分子。結(jié)果表明,PDA涂層和BSA分子固定化可以降低膜表面孔隙率,并使膜表面的孔徑分布更窄。PSf/PDA-BSA膜的親水性高于PSf膜。修飾后的膜減少了非特異性蛋白質(zhì)的吸附和血小板黏附,抗污性能、生物相容性提高。DA涂覆時間短時,輔助BSA固定有利于改善膜滲透性能。Xie等[45]利用PDA層作為反應平臺,將heparin(Hep)和BSA共價固定在聚砜膜表面,Hep和BSA同時固定后,所得膜具有良好的血液相容性且在細胞黏附、生長和增殖方面表現(xiàn)出優(yōu)異的細胞相容性。

蠶絲蛋白因抗氧化、抗菌能力較強和生物相容性良好等特性,能夠提升人體創(chuàng)傷組織的再生能力。目前,理想的創(chuàng)傷敷料通常需要具備透氣性、保濕性、抗菌性以及優(yōu)良的生物相容性和生物降解性,改善蠶絲蛋白材料的細胞相容性是優(yōu)化其在組織工程中應用的關鍵。研究表明,DA的修飾可以吸附血清蛋白并使其結(jié)構(gòu)保持活性,從而有效增強材料的細胞黏附性[46]。周官山[47]以蠶絲蛋白膜為基體材料,利用DA對其表面進行修飾,由此獲得了具有高細胞黏附特性的皮膚創(chuàng)傷修復材料,有效加速創(chuàng)傷的愈合,并研究出經(jīng)DA改性的蠶絲蛋白膜,包括絲素納米纖維膜和柞蠶絲素膜。Hao等[48]利用PDA納米顆粒的光熱性能,將其作為光敏劑對絲素蛋白進行功能化,成功研制出具有光熱腫瘤治療和骨組織再生的雙重功能的PDA@SF組織工程支架,見圖6。

圖5 PET人工韌帶材料經(jīng)不同方式處理后細胞接種培養(yǎng)第3 d和第7 d時PET組、DA組、100Fe3O4組和200Fe3O4組Hoechst 33258的染色結(jié)果[41]

有研究者利用PDA的光熱效應來實現(xiàn)癌癥額光熱治療。Jiang等[49]提出了紅細胞(RBC)膜包被的PDA(PDA@RBC)作為體內(nèi)癌癥光熱療法(PTT)的治療平臺。PDA納米顆粒上的RBC膜包被不僅保持了平臺優(yōu)異的光熱性能,而且還改善了腫瘤的積累。此外,國內(nèi)外學者利用PDA自身良好的生物相容性,促進細胞的黏附和增殖生長。Zhu等[50]以PDA為連接橋梁將牛血清蛋白(BSA)固定在多孔聚乙烯(PE)膜上,有效改善PE膜的親水性,從而促進了細胞在膜表面的黏附與增殖,與PE/PDA-BSA復合膜表面相比,PE/PDPA復合膜表面更有利于細胞的黏附、增殖、分化和擴散。利用PDA層的二級反應平臺,能夠?qū)⒛繕朔肿咏又Φ侥ど?。An等[51]通過DA在聚偏二氟乙烯(PVDF)膜表面自聚合形成聚多巴胺層,將半胱氨酸共價接枝到該涂層上,改性后的PVDF膜被證實具有優(yōu)異的親水性、穩(wěn)定的力學性能和良好的血液相容性(動態(tài)和靜態(tài)抗蛋白吸附、溶血率、血漿凝固),并且這些特性隨著聚多巴胺和半胱氨酸的加入而增加。

4 結(jié)論

將多巴胺加入Tris-HCl緩沖液中,再用溶液浸泡材料,即可使多巴胺在材料表面形成膜。多巴胺涂層可以增強材料表面抗菌性能、親水性和細胞相容性等。此外,它可以通過共價鍵的結(jié)合方式將生物分子連接到材料表面。聚多巴胺涂層可通過鄰苯二酚結(jié)構(gòu)與含有氨基、巰基等基團的化合物發(fā)生一系列反應,形成牢固穩(wěn)定的化學結(jié)合,通過聚多巴胺偶聯(lián)法可以向材料表面接枝抗生素類藥物。

多巴胺可以在有溶解氧的弱堿性條件下進行氧化自聚合反應,在材料表面形成生物相容性較強的聚多巴胺涂層,廣泛應用于醫(yī)療器械表面改性研究中。本文從多巴胺改性骨修復及骨移植材料、牙種植體及牙修復材料、新型醫(yī)療材料3個方面闡述多巴胺表面改性在醫(yī)療領域的研究進展,指出了多巴胺改性醫(yī)療器械表面存在的黏附力、耐摩擦、抗菌廣譜性和時效性不足的缺點。為了克服以上缺點,需要從多巴胺聚合、黏附機制出發(fā),提高多巴胺修飾涂層的時效性,在不影響其生物相容性的基礎上摻入抗菌防污有機物,提高其抗生物膜廣譜性、黏附力等特性,為多巴胺在醫(yī)療領域的應用提供理論基礎。

[1] 閆歡歡. 貽貝仿生導電性苯胺齊聚物生物材料的制備及在組織工程中的應用[D]. 合肥: 中國科學技術(shù)大學, 2020.

YAN Huan-huan. Preparation of Mussel-Inspired Conduc-tive Oligoaniline Biomaterials for Tissue Engineering Applications[D]. Hefei: University of Science and Tech-no-logy of China, 2020.

[2] 秦澤昭. 高強度可注射水凝膠的設計與制備[D]. 合肥: 中國科學技術(shù)大學, 2019.

QIN Ze-zhao. Design Andpreparationof Injectable Hydro-gel with High Mechanical Strength[D]. Hefei: University of Science and Technology of China, 2019.

[3] 韓璐. 仿貽貝多功能水凝膠及其生物醫(yī)學應用的研究[D]. 成都: 西南交通大學, 2017.

HAN Lu. Mussel-Inspired Hydrogel with Multi-Functions for Biomedical Applications[D]. Chengdu: Southwest Jiaotong University, 2017.

[4] WU Jiu-ping, LIU Yan-ting, CAO Qi-dong, et al. Growth Factors Enhanced Angiogenesis and Osteogenesis on Polydopamine Coated Titanium Surface for Bone Re-generation[J]. Materials & Design, 2020, 196: 109162.

[5] PACELLI S, CHAKRAVARTI A R, MODARESI S, et al. Investigation of Human Adipose-Derived Stem-Cell Be-ha-vior Using a Cell-Instructive Polydopamine-Coated Gelatin-Alginate Hydrogel[J]. Journal of Biomedical Ma-terials Research Part A, 2021, 109(12): 2597-2610.

[6] YAN Ji, WU Ruo-yin, LIAO Si-si, et al. Applications of Polydopamine-Modified Scaffolds in the Peripheral Nerve Tissue Engineering[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 590998.

[7] YANG Xiao-ling, LIU Xue, WU Qian-qian, et al. Dopa-mine-Assisted Immobilization of Peptide Arginine-Gly-cine-Aspartic Acid to Enhance the Cellular Performances of MC3T3-E1 Cells of Carbon-Carbon Composites[J]. Journal of Biomaterials Applications, 2019, 34(2): 284- 296.

[8] 李慧華. 基于聚多巴胺黏附層生物學修飾聚乳酸及其細胞相容性研究[D]. 廣州: 暨南大學, 2016.

LI Hui-hua. Biological Modification of Polylactide Mem-brane Based on Polydopamine Adhesive Coating and the Study of Cytocompatibility[D]. Guangzhou: Jinan Uni-ver-sity, 2016.

[9] 栗可心, 鐘聚婧, 郭華超, 等. PCL/HA骨組織工程多孔支架的制備及其理化性能研究[J]. 高分子通報, 2021(5): 88-95.

LI Ke-xin, ZHONG Ju-jing, GUO Hua-chao, et al. Prepa-ration and Physicochemical Properties of PCL/HA Bone Tissue Engineering Porous Scaffold[J]. Polymer Bulletin, 2021(5): 88-95.

[10] 徐燕, 魏波, 周進, 等. 多巴胺表面修飾/負載軟骨源性形態(tài)發(fā)生蛋白1的3D打印聚己內(nèi)酯-羥基磷灰石三維多孔支架促進人BMSCs成軟骨分化的實驗研究[J]. 中國修復重建外科雜志, 2018, 32(2): 215-222.

XU Yan, WEI Bo, ZHOU Jin, et al. Dopamine Modified and Cartilage Derived Morphogenetic Protein 1 Laden Polycaprolactone-Hydroxyapatite Composite Scaffolds Fabricated by Three-Dimensional Printing Improve Chon-drogenic Differentiation of Human Bone Marrow Mesen-chymal Stem Cells[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2018, 32(2): 215-222.

[11] XU Zhi-min, WANG Ning-ning, LIU Peng, et al. Poly (Dopamine) Coating on 3D-Printed Poly-Lactic-Co-Gly-colic Acid/β-Tricalcium Phosphate Scaffolds for Bone Tissue Engineering[J]. Molecules, 2019, 24(23): 4397.

[12] CHEN Lei, SHAO Li-ping, WANG Feng-ping, et al. Enhancement in Sustained Release of Antimicrobial Peptide and BMP-2 from Degradable Three Dimen-sional-Printed PLGA Scaffold for Bone Regeneration[J]. RSC Advances, 2019, 9(19): 10494-10507.

[13] ZHANG Meng, ZHANG Ji-ting, BAN Li-na, et al. Poly-dopamine Regulated Hydroxyapatite Microspheres Grown in the Three-Dimensional Honeycomb-Like Mollusk Shell- Derived Organic Template for Osteogenesis[J]. Biofabri-ca-tion, 2020, 12(3): 035022.

[14] 譚英, 譚幗馨, 寧成云, 等. 聚多巴胺修飾鈦表面納米載銀及其抗菌和細胞相容性[J]. 無機材料學報, 2014, 29(12): 1320-1326.

TAN Ying, TAN Guo-xin, NING Cheng-yun, et al. Bioin-s-pired Polydopamine Functionalization of Titanium Sur-face for Silver Nanoparticles Immobilization with Anti-bac-terial Property[J]. Journal of Inorganic Materials, 2014, 29(12): 1320-1326.

[15] 王勇. 基于聚多巴胺輔助表面沉積含銀涂層的聚醚醚酮的制備及抗菌性能與生物相容性研究[D]. 蘇州: 蘇州大學, 2016.

WANG Yong. Preparation and Antibacterial Property and Biocompatibility of Silver-Coated PEEK Using Polydo-pamine-Assisted Deposition Technique[D]. Suzhou: Soo-chow University, 2016.

[16] 張維波. 多巴胺介導鈦表面納米銀涂層的構(gòu)建及其抗菌和成骨活性評價[D]. 濟南: 山東大學, 2019.

ZHANG Wei-bo. Construction of Dopamine-Mediated Nano-Silver Coating on Titanium Surface and Its Antibac-terial and Osteogenic Activity Evaluation[D]. Jinan: Shan-dong University, 2019.

[17] 王鄧莉. 多巴胺誘導AZ31醫(yī)用鎂合金仿生礦化HA涂層的體內(nèi)研究[D]. 蘭州: 蘭州大學, 2017.

WANG Deng-li. In Vivo Study of AZ31 Medical Magne-sium Coated with Hydroxyapatite by Polydopamine- Assisted Biomimetic Technique[D]. Lanzhou: Lanzhou University, 2017.

[18] 張松營. 醫(yī)用鈦合金表面不同粒度Al2O3噴砂酸蝕及多巴胺涂層研究[D]. 蘭州: 蘭州大學, 2014.

ZHANG Song-ying. Surface Treatments of Medical Tita-nium Alloy by Al2O3Blasting with Different Sizes and Acid Etching and Dopamine Coating[D]. Lanzhou: Lanzhou University, 2014.

[19] 尤瑩. 多孔鈦表面聚多巴胺黏附羥基磷灰石的復合涂層制備及對細胞黏附和增殖的研究[D]. 南京: 南京醫(yī)科大學, 2018.

YOU Ying. Preparation of Poly Dopamine-Hydroxya-patite Composite Coating on Porous Titanium and Study on Cell Adhesion and Proliferation[D]. Nanjing: Nanjing Medical University, 2018.

[20] MULYATI S, MUCHTAR S, ARAHMAN N, et al. Two- Step Dopamine-to-Polydopamine Modification of Polye-the-rsulfone Ultrafiltration Membrane for Enhancing Anti- Fouling and Ultraviolet Resistant Properties[J]. Polymers, 2020, 12(9): 2051.

[21] TIAN Jin, XU Ting, ZHANG Zhong-wei, et al. Study on the Construction of Polyethyleneimine/Nano-Silica Multi-layer Film on the Carbon Fiber Surfaces to Improve the Interfacial Properties of Carbon Fiber/Epoxy Compo-sites[J]. Composite Interfaces, 2022, 29(4): 361-381.

[22] 張冉冉, 韓慧, 魏世成, 等. 基于聚多巴胺的材料表面修飾對二磷酸腺苷促血小板聚集功能的影響[J]. 口腔頜面修復學雜志, 2016, 17(4): 202-206.

ZHANG Ran-ran, HAN Hui, WEI Shi-cheng, et al. The Effects of Polydopamine Surface Modification on Platelet Aggregation Activated by Adenosine Diphosphate[J]. Chinese Journal of Prosthodontics, 2016, 17(4): 202-206.

[23] 周田園, 李德超, 李慕勤, 等. 純鈦微弧氧化-多巴胺-環(huán)型多肽涂層的細胞相容性研究[J]. 口腔醫(yī)學研究, 2017, 33(7): 703-706.

ZHOU Tian-yuan, LI De-chao, LI Mu-qin, et al. Cyto-com-patibility of Ultrasonic Micro-Arc Oxidation-Dopa-mine-Cyclo(RGD)Coating on Pure Titanium[J]. Journal of Oral Science Research, 2017, 33(7): 703-706.

[24] GUO Chu-chu, CUI Wen-di, WANG Xiao-wei, et al. Poly-l-Lysine/Sodium Alginate Coating Loading Nanosi-lver for Improving the Antibacterial Effect and Inducing Mineralization of Dental Implants[J]. ACS Omega, 2020, 5(18): 10562-10571.

[25] CHOI S H, JANG Y S, JANG J H, et al. Enhanced Antibacterial Activity of Titanium by Surface Modifica-tion with Polydopamine and Silver for Dental Implant Application[J]. Journal of Applied Biomaterials & Func-tional Materials, 2019, 17(3): 2280800019847067.

[26] MARINAS I C, TIHAUAN B M, DIACONU A G, et al. Polydopamine-Assisted Surface Modification of Ti-6Al- 4V Alloy with Anti-Biofilm Activity for Dental Implanto-logy Applications[J]. Coatings, 2021, 11(11): 1385.

[27] 邱瀅, 李祥偉, 劉亞楠, 等. 載BMP-2多巴胺-肝素-透明質(zhì)酸促進牙本質(zhì)形成的研究[C]//中華口腔醫(yī)學會第十一次全國牙體牙髓病學學術(shù)大會論文匯編. 長沙: 中華口腔醫(yī)學會, 2018: 205-206.

QIU Ying, LI Xiang-wei, LIU Ya-nan, et al. Dopamine- He-parin-Hyaluronic Acid Loaded with BMP-2 Promotes Dentin Formation[C]//Dissertation Compile of the 11th National Conference on Endodontics and Endodontics of the Chinese Association of Stomatology. Professional Committee of odontology and endodontics of Chinese Stomatological Association: Chinese Stomatological As-so-ciation,2018:205-206.

[28] LIU Ya-nan, QIU Ying, NI Shi-lei, et al. Mussel‐Inspi-red Biocoating for Improving the Adhesion of Dental Pulp Stem Cells in Dental Pulp Regeneration[J]. Macromo-lecular Rapid Communications, 2020, 41(24): 2000102.

[29] ZHOU Yun-zhi, CAO Ying, LIU Wei, et al. Polydopa-mine-Induced Tooth Remineralization[J]. ACS Applied Materials & Interfaces, 2012, 4(12): 6901-6910.

[30] FIGUEIREDO MACEDO DE LIMA J, AGUIAR JORD?O MAINARDI M D C, PUPPIN-RONTANI R M, et al. Bioinspired Catechol Chemistry for Dentin Remine-ralization: A New Approach for the Treatment of Dentin Hypersensitivity[J]. Dental Materials, 2020, 36(4): 501-511.

[31] 曾玲, 董波, 仲琪, 等. 多巴胺對牙本質(zhì)黏結(jié)強度的實驗研究[J]. 微量元素與健康研究, 2019, 36(6): 4-6.

ZENG Ling, DONG Bo, ZHONG Qi, et al. Experimental Study on the Bonding Strength of Dopamine to Dentin[J]. Studies of Trace Elements and Health, 2019, 36(6): 4-6.

[32] LUO Ri-fang, WANG Xin, DENG Jin-chuan, et al. Dopamine-Assisted Deposition of Poly(ethylene imine) for Efficient Heparinization[J]. Colloids and Surfaces B: Biointerfaces, 2016, 144: 90-98.

[33] DAVOUDI P, ASSADPOUR S, DERAKHSHAN M A, et al. Biomimetic Modification of Polyurethane-Based Na-no-fibrous Vascular Grafts: A Promising Approach towards Stable Endothelial Lining[J]. Materials Science and Engineering: C, 2017, 80: 213-221.

[34] GREWAL M S, ABE H, MATSUO Y, et al. Aqueous Dispersion and Tuning Surface Charges of Polytetrafluo-roethylene Particles by Bioinspired Polydopamine-Polye-thyleneimine Coating via One-Step Method[J]. Royal So-ciety Open Science, 2021, 8(8): 210582.

[35] 朱利平, 徐又一, 奚振宇, 等. DOPA在聚乙烯微孔膜上的自聚合及肝素固定化[J]. 高分子學報, 2009(4): 394-397.

ZHU Li-ping, XU You-yi, XI Zhen-yu, et al. self-Poly-merization of Dopa on Polyethylene Porous Membranes and Immobilization of Heparin[J]. Acta Polymerica Si-nica, 2009(4): 394-397.

[36] 肖琳琳, 魏雨, 計劍. 基于聚多巴胺輔助自組裝單分子層技術(shù)的PTFE表面修飾及其內(nèi)皮細胞選擇性黏附研究[J]. 高分子學報, 2010(4): 479-483.

XIAO Lin-lin, WEI Yu, JI Jian. Surface Tailoring of Ptfe for Endotheleal Cells Selectivity Based on polydopa-mine-Assisted self-Assembly Monolayer Technique[J]. Acta Polymerica Sinica, 2010(4): 479-483.

[37] 汪濤, 趙珺, 張健, 等. 多巴胺處理聚四氟乙烯人工血管對體外種植內(nèi)皮細胞的影響[J]. 中國現(xiàn)代普通外科進展, 2016, 19(1): 11-15.

WANG Tao, ZHAO Jun, ZHANG Jian, et al. Influence of Growth of Cultivatable Endothelial Cells by Polytetra-fluoroethylene Artificial Blood Vessels Processed with Dopamine in Vitro[J]. Chinese Journal of Current Advan-ces in General Surgery, 2016, 19(1): 11-15.

[38] 賈山山. 多巴胺共混聚乙烯亞胺并接枝肝素對膨體聚四氟乙烯人工小血管表面改性的研究[D]. 廣州: 南方醫(yī)科大學, 2018.

JIA Shan-shan. Study on the Surface Modification of Expanded Polytetrafluoroethylene Artificial Small Blood Vessel with Dopamine Blend Polyethylene Imine and Graft Heparin[D]. Guangzhou: Southern Medical Univer-sity, 2018.

[39] MI Hao-yang, JING Xin, THOMSOM J A, et al. Pro-moting Endothelial Cell Affinity and Antithrombogenicity of Polytetrafluoroethylene (PTFE) by Mussel-Inspired Modification and RGD/Heparin Grafting[J]. Journal of Materials Chemistry B, 2018, 6(21): 3475-3485.

[40] 李亞民. 生物活性人工韌帶移植物的構(gòu)建及促進移植物-骨整合的實驗研究[D]. 上海: 上海交通大學, 2020.

LI Ya-min. Optimal Construction of Bioactive Engineered Ligament for Enhancing Graft—Bone Osseointegration[D]. Shanghai: Shanghai Jiao Tong University, 2020.

[41] 俞斌, 丁惠鋒, 楊超華, 等. Fe3O4涂層多巴胺修飾PET人工韌帶對MC3T3-E1細胞黏附、增殖和分化影響的實驗研究[J]. 中國運動醫(yī)學雜志, 2016, 35(5): 438-444.

YU Bin, DING Hui-feng, YANG Chao-hua, et al. Fe3O4and Dopamine Coating Improves the Adhesion, Prolife-ration and Differentiation of MC3T3-E1 Cells on the Surface of PET[J]. Chinese Journal of Sports Medicine, 2016, 35(5): 438-444.

[42] YU Bin, PEI Peng, YU Bao-qing, et al. Enhance the Bioactivity and Osseointegration of the Polyethylene- Terephthalate-Based Artificial Ligament via Poly(Dopa-mine) Coating with Mesoporous Bioactive Glass[J]. Ad-van-ced Engineering Materials, 2017, 19(5): 1600708.

[43] WU Yang, ZHANG Yu-han, ZHANG Ren, et al. Prepara-tion and Properties of Antibacterial Polydopamine and Nano-Hydroxyapatite Modified Polyethylene Terephtha-late Artificial Ligament[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 630745.

[44] 吉明波. 聚砜超濾膜仿生改性及其在血液凈化中的應用[D]. 北京: 中國科學院大學(中國科學院過程工程研究所), 2017.

JI Ming-bo. Biomimetic Modification of Polysulfone Ultrafiltration Membrane and Its Application in Blood Purification[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2017.

[45] XIE Bing-wu, ZHANG Ran-ran, ZHANG Huan, et al. Decoration of Heparin and Bovine Serum Albumin on Polysulfone Membrane Assisted via Polydopamine Stra-tegy for Hemodialysis[J]. Journal of Biomaterials Scien-ce, Polymer Edition, 2016, 27(9): 880-897.

[46] KU S H, RYU J, HONG S K, et al. General Functiona-lization Route for Cell Adhesion on Non-Wetting Surfa-ces[J]. Biomaterials, 2010, 31(9): 2535-2541.

[47] 周官山. 多巴胺改性絲蛋白膜皮膚創(chuàng)傷修復功能的研究[D]. 杭州: 浙江大學, 2018.

ZHOU Guan-shan. Silk Fibroin Film Modified by Dopa-mine and Its Application in Skin Wound Repair[D]. Hang-zhou: Zhejiang University, 2018.

[48] MIAO Hao, SHEN Run-qing, ZHANG Wen-hai, et al. Near-Infrared Light Triggered Silk Fibroin Scaffold for Photothermal Therapy and Tissue Repair of Bone Tu-mors[J]. Advanced Functional Materials, 2021, 31(10): 2007188.

[49] JIANG Qin, LUO Zi-miao, MEN Yong-zhi, et al. Red Blood Cell Membrane-Camouflaged Melanin Nanopar-ticles for Enhanced Photothermal Therapy[J]. Biomate-rials, 2017, 143: 29-45.

[50] ZHU Li-ping, JIANG Jin-hong, ZHU Bao-ku, et al. Im-mo-bi-lization of Bovine Serum Albumin Onto Porous Polyethylene Membranes Using Strongly Attached Poly-dopamine as a Spacer[J]. Colloids and Surfaces B: Bioi-nterfaces, 2011, 86(1): 111-118.

[51] AN Zi-han, DAI Feng-ying, WEI Chen-jie, et al. Polydo-pamine/Cysteine Surface Modified Hemocompatible Poly (vinylidene fluoride) Hollow Fiber Membranes for Hemo-dialysis[J]. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 2018, 106(8): 2869-2877.

Research Progress of the Surface Modification by Dopamine in Medical Field

,,,,

(Institute of Surface Engineering, School of Mechanical Engineering, Yangzhou University, Jiangsu Yangzhou 225127, China)

Dopamine (DA) and polydopamine (PDA) contain a large number of active and hydrophilic functional groups like catechol groups and amino groups. Therefore, they possess many properties such as strong adhesive property, good biocompatibility, outstanding reactivity and reducibility and they are widely used for surface modification of medical device materials, ship materials, sensor materials, drug transportation materials, etc. Among them, the research prospects for the surface modification of medical device materials are particularly broad. materials.

This article analyzes the various properties and functions of dopamine, and summarizes the specific application of dopamine in bioengineering materials such as enhancing the bone tissue regeneration ability of the material and improving the adhesion and proliferation of cells on the surface of the material. On this basis, the manuscript focuses on the research progress of dopamine modification in the medical field in recent years. Explains the advantages, disadvantages and functions of each material, and how dopamine's characteristics modify the surface of the material to make up for the defects of the material. In view of the dopamine modification of different materials, the preparation methods and experimental comparison results were summarized. The future perspectives of dopamine surface modification technology are discussed rationally at the end.

The modification of dopamine on bone repair and bone graft materials includes composite materials and polymer materials, etc.; Dopamine on dental implants and dental restoration materials Modifications include nano-metal materials and alloy materials; the modification of new medical materials by dopamine includes artificial blood vessels, artificial ligament materials and medical membrane materials. In most articles, dopamine coatings are prepared in much the same way. Dopamine is added to Tris-HCl buffer, and then the material is soaked in solution to form a film of dopamine on the surface of the material. Due to its excellent adhesion and chemical reaction activity, dopamine can be used as a bridge between engineered scaffolds and cells, effectively promoting the adhesion and proliferation of cells on the surface of scaffolds and improving the adhesion of cells on the surface of bone repair materials. Due to the large number of active functional groups, such as catechol groups and amino groups, dopamine can combine bone repair materials with growth factors through covalent bond or non-covalent bond, and the binding force of the two is significantly improved, thus enhancing the regeneration ability of bone tissue. Due to its good adhesion, dopamine can improve the regeneration ability of the bone tissue by guiding the surface mineralization of the scaffold material, so as to slow down the occurrence of the stress shielding phenomenon of the scaffold. Dopamine contains a large number of amino, hydroxyl and other hydrophilic groups. By adding hydrophilic groups on the hydrophobic surface of the material, dopamine can improve the hydrophilic properties of the material, thus improving cell adhesion and proliferation, making artificial blood vessels, artificial ligaments and other materials more suitable for medical applications. Dopamine can undergo oxidation self-polymerization under weak alkaline conditions with dissolved oxygen, forming a biocompatible polydopamine coating on the surface of the material. Polydopamine coatings can react with compounds containing groups such as amino groups and thiols through the structure of phthalol to form a strong and stable chemical bond, and antibiotic drugs can be grafted to the surface of the material by polydopamine coupling. The surface of dopamine-modified medical devices has the disadvantages of adhesion, friction resistance, antibacterial broad spectrum and insufficient timeliness. In order to overcome the above shortcomings, it is necessary to improve the timeliness of dopamine modification coatings from the dopamine polymerization and adhesion mechanism, and incorporate antibacterial and antifouling organic matter on the basis of not affecting its biocompatibility, so as to improve the broad spectrum and adhesion of the anti-biofilm.

dopamine; polydopamine; surface modification; medical apparatus; medical implant materials

TB34

A

1001-3660(2022)11-0164-10

10.16490/j.cnki.issn.1001-3660.2022.11.014

2021–09–13;

2022–03–17

2021-09-13;

2022-03-17

國家自然科學基金項目(51905468);江蘇省自然科學基金項目(BK20190916)

The National Natural Science Foundation of China (51905468); the Natural Science Foundation of Jiangsu Province (BK20190916)

劉雨晗(2000—),女,碩士生,主要研究方向為表面與界面工程。

LIU Yu-han (2000-), Female, Postgraduate, Research focus: surface and interface engineering.

曹攀(1989—),男,博士,講師,主要研究方向為船體綠色防污新技術(shù)。

CAO Pan (1989-), Male, Doctor, Lecturer, Research focus: new technology of hull green antifouling.

劉雨晗, 劉德, 王意, 等. 多巴胺表面修飾在醫(yī)療領域的研究進展[J]. 表面技術(shù), 2022, 51(11): 164-173.

LIU Yu-han, LIU De, WANG Yi, et al. Research Progress of the Surface Modification by Dopamine in Medical Field[J]. Surface Technology, 2022, 51(11): 164-173.

責任編輯:萬長清

宝鸡市| 冷水江市| 双辽市| 桐城市| 兴安盟| 隆子县| 晋中市| 太康县| 通海县| 托克托县| 徐闻县| 广安市| 聂荣县| 延川县| 陆良县| 泽库县| 汪清县| 抚顺县| 台安县| 枣强县| 南投市| 连山| 齐河县| 苗栗市| 双峰县| 时尚| 黄石市| 栾城县| 惠州市| 阿荣旗| 黄冈市| 香格里拉县| 申扎县| 讷河市| 望城县| 清涧县| 闻喜县| 大石桥市| 广丰县| 重庆市| 孝感市|