王 婷, 茹小尚, 張立斌
海上風(fēng)電對(duì)海洋生態(tài)環(huán)境與海洋生物資源的綜合影響研究進(jìn)展
王 婷1, 2, 3, 4, 6, 7, 茹小尚1, 2, 3, 4, 6, 張立斌1, 2, 3, 4, 5, 6
(1. 中國科學(xué)院海洋生態(tài)與環(huán)境科學(xué)重點(diǎn)實(shí)驗(yàn)室, 山東 青島 266071; 2. 青島海洋科學(xué)與技術(shù)試點(diǎn)國家實(shí)驗(yàn)室海洋生態(tài)與環(huán)境科學(xué)功能實(shí)驗(yàn)室, 山東 青島 266237; 3. 中國科學(xué)院海洋大科學(xué)研究中心, 山東 青島 266071; 4. 中國科學(xué)院海洋牧場工程實(shí)驗(yàn)室, 山東 青島 266071; 5. 中國科學(xué)院大學(xué), 北京 100049; 6. 山東省實(shí)驗(yàn)海洋生物學(xué)重點(diǎn)實(shí)驗(yàn)室, 山東 青島 266071; 7. 青島科技大學(xué)環(huán)境與安全工程學(xué)院, 山東 青島 266042)
海上風(fēng)電具有就近消納方便、發(fā)電效率高和不消耗化石能源等特點(diǎn), 在低碳經(jīng)濟(jì)發(fā)展背景下, 加快海上風(fēng)電開發(fā)已成為全球各國促進(jìn)能源結(jié)構(gòu)轉(zhuǎn)型與可持續(xù)發(fā)展的普遍共識(shí)。但海上風(fēng)電在建設(shè)及運(yùn)營過程中所產(chǎn)生的噪音和磁場對(duì)海洋環(huán)境和生物的影響尚不明確。本文系統(tǒng)梳理了全球海上風(fēng)電發(fā)展現(xiàn)狀, 分析了海上風(fēng)電開發(fā)對(duì)海洋生態(tài)環(huán)境與生物資源的綜合影響, 從生理、行為和分子三個(gè)層面重點(diǎn)分析了海上風(fēng)電所產(chǎn)生的噪音和磁場對(duì)海洋生物的潛在影響, 以期為科學(xué)利用海上風(fēng)電提供參考。
海上風(fēng)電; 環(huán)境影響; 噪音; 電磁效應(yīng); 生態(tài)效應(yīng)
在低碳經(jīng)濟(jì)背景下, 加速能源結(jié)構(gòu)的清潔化轉(zhuǎn)型得到了世界各國的普遍重視[1]。清潔能源是指能源在生產(chǎn)和消費(fèi)的過程中對(duì)環(huán)境影響較小且污染風(fēng)險(xiǎn)極小的能源類型, 主要包括風(fēng)能、水能、太陽能、地?zé)崮芎秃Q竽艿萚2]。近年來, 風(fēng)力發(fā)電作為典型的清潔能源, 在全球范圍內(nèi)迅速發(fā)展[3]。據(jù)國際可再生能源署(IRENA)數(shù)據(jù)表明, 2020年全球能源投資為3 830億美元, 其中風(fēng)能投資占全球能源投資的37.3%, 總金額高達(dá)1 428.59億美元[4]。
與陸地相比, 海洋風(fēng)力資源更為豐富。海上風(fēng)電發(fā)電效率比陸地高50%, 年平均使用時(shí)間高達(dá)2 500 h, 開發(fā)價(jià)值和利用潛能更高[5]。全球海上風(fēng)電開發(fā)以丹麥研發(fā)安裝的第一臺(tái)海上風(fēng)力渦輪機(jī)為起點(diǎn), 歷經(jīng)了初始研究階段(1980—1990)、實(shí)驗(yàn)測試階段(1991—2000)和商業(yè)化階段(2001至今)3個(gè)關(guān)鍵時(shí)期[6]。自2001年海上風(fēng)電大規(guī)模產(chǎn)業(yè)化技術(shù)實(shí)現(xiàn)突破以來, 全球海上風(fēng)電裝機(jī)容量以20%的速度出現(xiàn)連年增長。當(dāng)前, 全球海上風(fēng)電建設(shè)主要集中在英國、荷蘭、丹麥等歐洲各國, 累計(jì)裝機(jī)占比高達(dá)75%, 其次為亞洲和北美洲[7]。
我國海上風(fēng)電資源十分豐富, 且我國電力負(fù)荷中心位于東部沿海地區(qū), 具有就地消納便捷的優(yōu)勢, 發(fā)展海上風(fēng)電可減小火電壓力, 為保障電力穩(wěn)定供應(yīng)提供重要支持[8-9]。與歐美不同, 我國海上風(fēng)電開發(fā)主要集中于潮間帶或淺海區(qū)域, 開發(fā)成本和技術(shù)難度遠(yuǎn)低于深海風(fēng)電開發(fā), 因此近年來裝機(jī)規(guī)??焖僭鲩L[10]。根據(jù)國家能源局統(tǒng)計(jì)數(shù)據(jù), 截至2021年4月底, 我國海上風(fēng)電并網(wǎng)容量達(dá)到1 042萬千瓦, 已連續(xù)3年高居全球新增裝機(jī)容量最多的國家, 正成為全球海上風(fēng)電產(chǎn)業(yè)發(fā)展的新中心。
在“十四五”期間, 海上風(fēng)電作為我國實(shí)施能源安全新戰(zhàn)略的重要環(huán)節(jié), 落實(shí)碳達(dá)峰、碳中和目標(biāo)的重要落腳點(diǎn), 發(fā)展前景更為廣闊??煞e極推動(dòng)我國海上風(fēng)電在近海規(guī)?;l(fā)展、遠(yuǎn)海示范化發(fā)展的戰(zhàn)略布局, 實(shí)現(xiàn)海上風(fēng)電“近?!h(yuǎn)?!眳f(xié)同發(fā)展的新局面。
然而, 海上風(fēng)電的開發(fā)全過程可能會(huì)對(duì)海洋生態(tài)造成一定的潛在影響[11]。例如, 在建設(shè)階段, 海底工程作業(yè)會(huì)產(chǎn)生廢棄污染物, 風(fēng)機(jī)安裝過程中會(huì)產(chǎn)生強(qiáng)噪音引起魚類出現(xiàn)應(yīng)激反應(yīng)[12-13], 海底電纜的鋪設(shè)可能會(huì)改變海底原有地形地貌[14], 導(dǎo)致底棲生物棲息環(huán)境喪失或退化; 在運(yùn)營階段, 風(fēng)機(jī)機(jī)組會(huì)產(chǎn)生低頻噪音和電磁輻射等可能會(huì)對(duì)海洋生物造成慢性影響, 而風(fēng)機(jī)葉片轉(zhuǎn)動(dòng)可能會(huì)誤撞鳥類, 影響鳥類遷徙等[15-18]。目前我國正處于海上風(fēng)電建設(shè)增長的關(guān)鍵期, 尤其是提出了將海上風(fēng)電和海洋牧場的融合發(fā)展的全新理念, 在“綠水青山就是金山銀山”根本前提下, 全面了解海上風(fēng)電對(duì)海洋生態(tài)環(huán)境和海洋生物資源的綜合影響具有重要的研究意義與產(chǎn)業(yè)價(jià)值[19]。
海上風(fēng)電產(chǎn)生的資源環(huán)境效應(yīng)是指風(fēng)機(jī)基礎(chǔ)的淹沒部分可起到人工魚礁的作用, 可為生物增殖提供棲息地, 增加該區(qū)域的生物資源量和多樣性[20-23]。在德國灣5 000個(gè)海上風(fēng)電機(jī)組規(guī)模下, 沉積物中生物量與最初相比預(yù)計(jì)可增加4 000倍[24]。De Mesel等[25]調(diào)查了在比利時(shí)北海建造的C-power海上風(fēng)電場, 并分析了風(fēng)機(jī)基礎(chǔ)上的附著生物群落演替, 演替第一年, 有大量新物種殖民遷入, 附著貝類迅速繁殖, 隨后能夠吸引20多種遷移性生物來此提升該區(qū)域的生物多樣性。Stenberg等[26]對(duì)丹麥Horns Rev 1海上風(fēng)電場進(jìn)行了10年(2001—2010)的長期跟蹤調(diào)查, 發(fā)現(xiàn)底棲生物及游泳動(dòng)物數(shù)量保持了基本穩(wěn)定, 但生物多樣性明顯提升; Leonhard等[27]發(fā)現(xiàn)該海上風(fēng)電場魚類和其他生物的食物供應(yīng)增加了50倍, 能夠吸引誘集戀礁型生物到此處繁殖, 進(jìn)而在風(fēng)機(jī)基礎(chǔ)周圍發(fā)揮人工礁效應(yīng)。Lindeboom等[28]通過對(duì)荷蘭Egmond aan Zee海上風(fēng)電場進(jìn)行了5年(2004—2009)跟蹤調(diào)查, 發(fā)現(xiàn)風(fēng)機(jī)基礎(chǔ)及四周覆石區(qū)聚集了更多生物, 舌鰨、鱈魚等魚類數(shù)量顯著提升。類似的現(xiàn)象在德國Bight、瑞典Lillgrund海上風(fēng)電場也有報(bào)道[29-30]。
除長期的跟蹤調(diào)查外, Ecopath with Ecosim(EwE)等生態(tài)模型也被用來預(yù)測海上風(fēng)電場建設(shè)后的物種多樣性變化。例如, Wang等[31]分析發(fā)現(xiàn)了江蘇如東風(fēng)電場建設(shè)后風(fēng)電場內(nèi)浮游動(dòng)植物、部分底棲生物及魚類等物種的豐度和生物量均呈增加的趨勢。Raoux等[32]對(duì)英吉利海峽內(nèi)的Courseulles-sur-mer海上風(fēng)電場進(jìn)行模擬預(yù)測, 結(jié)果表明30年后海上風(fēng)電場系統(tǒng)內(nèi)總生物量將增加55%, 主要原因是海上風(fēng)電場建成后, 系統(tǒng)內(nèi)物質(zhì)循環(huán)率提升, 高營養(yǎng)級(jí)生物向風(fēng)電場區(qū)域遷移。以上結(jié)果表明, 風(fēng)機(jī)基礎(chǔ)可以作為一種潛在人工礁以達(dá)到吸引魚群的目的[33-34]。此外, 德國等國家在海上風(fēng)電區(qū)域開展生態(tài)漁業(yè)[35], 對(duì)海洋資源的修復(fù)和養(yǎng)護(hù)起到的作用更加明顯[36]。海上風(fēng)電作為我國大力發(fā)展的產(chǎn)業(yè)之一, 具有海洋生物資源養(yǎng)護(hù)作用, 能夠較好地固碳增匯, 未來可以與海洋牧場融合發(fā)展擴(kuò)大其資源環(huán)境效應(yīng)的發(fā)揮。
海上風(fēng)電開發(fā)規(guī)模較大, 其建設(shè)、運(yùn)營、退役各個(gè)階段都可能會(huì)對(duì)海洋生態(tài)環(huán)境與生物資源產(chǎn)生潛在負(fù)面影響, 系統(tǒng)客觀地掌握并評(píng)估海上風(fēng)電開發(fā)對(duì)其影響的研究進(jìn)展, 對(duì)促進(jìn)海上風(fēng)電開發(fā)建設(shè)有指導(dǎo)作用。
海上風(fēng)電的潛在負(fù)面影響通常包括開發(fā)過程中對(duì)沉積環(huán)境的擾動(dòng)、產(chǎn)生物理能量的排放和對(duì)鳥類的視覺干擾等[37]。海上風(fēng)電選址通常是細(xì)沙沉積物區(qū), 其建設(shè)過程會(huì)改變海底地形地貌, 風(fēng)機(jī)基礎(chǔ)打樁鉆探及海底電纜鋪設(shè)都會(huì)對(duì)海洋沉積環(huán)境造成一定的破壞[38], 導(dǎo)致海底水體濁度上升, 溶解氧降低, 對(duì)海洋生物造成缺氧等影響。風(fēng)機(jī)基礎(chǔ)的防腐裝置還會(huì)產(chǎn)生重金屬析出等[39]。此外, 風(fēng)機(jī)基礎(chǔ)建設(shè)會(huì)造成海底基質(zhì)硬化[40], 導(dǎo)致部分底棲生物的生境喪失及惡化, 生物多樣性下降。海上風(fēng)電場建成后, 海流經(jīng)過風(fēng)機(jī)基礎(chǔ)時(shí), 會(huì)產(chǎn)生湍流作用并持續(xù)沖刷樁基下方的沉積物, 導(dǎo)致樁基迎水面及其后方主要呈現(xiàn)淤積趨勢, 而兩側(cè)呈現(xiàn)沖刷趨勢, 在海底電纜附近也發(fā)現(xiàn)一定程度的海床侵蝕[41-42]。張晶磊[43]以情景分析法為框架, 運(yùn)用GIS技術(shù)和數(shù)學(xué)模型, 對(duì)我國江蘇濱海海上風(fēng)電工程開發(fā)進(jìn)行環(huán)境累積影響評(píng)價(jià)。結(jié)果表明: 隨著海上風(fēng)電建設(shè)區(qū)域的擴(kuò)增, 海水污染因子超標(biāo)率增加, 浮游生物及底棲生物產(chǎn)生一定的損失, 其累積影響會(huì)隨著建設(shè)規(guī)模的擴(kuò)大而增加。
海上風(fēng)電建設(shè)及運(yùn)營過程會(huì)產(chǎn)生噪音、電磁輻射和樁基振動(dòng)等物理能量的排放[44-46]。其中, 噪音會(huì)導(dǎo)致海洋聲景發(fā)生改變, 海上風(fēng)電建設(shè)打樁噪音約226 dB re 1μPa, 距離打樁點(diǎn)80 km才降至背景噪音水平[47]; 運(yùn)營噪音約為120~140 dB re 1μPa, 頻率為1 kHz以內(nèi), 與風(fēng)速、風(fēng)機(jī)類型密切相關(guān), 且風(fēng)機(jī)排列具有一定距離, 因此噪音的累加效應(yīng)尚不明確。但在風(fēng)機(jī)周圍, 會(huì)對(duì)石首魚科等聲音敏感的生物造成影響[48-51]。海上風(fēng)電運(yùn)營期間, 海底電纜的電力傳輸會(huì)產(chǎn)生電磁場[46], 產(chǎn)生磁場強(qiáng)度在110~3 200 μT的極低頻電磁場[52]。同時(shí)也可能使該區(qū)域磁場傾角發(fā)生改變, 進(jìn)而對(duì)鰻魚等依靠地磁場導(dǎo)航的生物會(huì)造成一定影響[53-54]。運(yùn)營中的海上風(fēng)電是一個(gè)長期存在的振動(dòng)源[55], Lin等[56]通過不同頻率的水下振動(dòng)實(shí)驗(yàn), 研究了樁基振動(dòng)對(duì)仿刺參()運(yùn)動(dòng)行為的影響, 結(jié)果發(fā)現(xiàn)高頻率的振動(dòng)可能會(huì)誘發(fā)刺參出現(xiàn)的規(guī)避行為。
海上風(fēng)電也會(huì)對(duì)鳥類產(chǎn)生一定影響, 具體表現(xiàn)為風(fēng)機(jī)轉(zhuǎn)動(dòng)會(huì)對(duì)鳥類形成視覺干擾[57], 而磁場的改變又會(huì)對(duì)依靠地磁場導(dǎo)航的鳥類造成影響[58], 但與陸地風(fēng)電場經(jīng)常發(fā)生的鳥類、蝙蝠和風(fēng)機(jī)葉片發(fā)生的碰撞事件相比[59], 國內(nèi)外研究普遍認(rèn)為海上風(fēng)電場對(duì)鳥類的影響較小, 僅發(fā)生在海鳥遷徙期間, “鳥撞”事件發(fā)生概率較低[60]。
噪音存在于海上風(fēng)電開發(fā)的整個(gè)過程[61]。建設(shè)期產(chǎn)生的打樁聲, 聲級(jí)最高, 為急性噪音[62-63]; 運(yùn)營期的噪音具有累積性, 影響更為長久[64]。噪音會(huì)產(chǎn)生聲學(xué)干擾, 掩蔽聲學(xué)交流[65], 進(jìn)而改變白鯨等的海洋生物的行為模式, 并影響海洋生物的生理狀況等, 嚴(yán)重時(shí)還會(huì)對(duì)其生命造成威脅。
2.2.1 海上風(fēng)電噪音對(duì)海洋生物行為模式的影響
噪音會(huì)對(duì)海洋生物的行為造成影響, 且在不同生物中行為響應(yīng)差異較大[66]。急性噪音會(huì)導(dǎo)致海洋生物出現(xiàn)應(yīng)激行為, 長期暴露于噪音環(huán)境中則會(huì)導(dǎo)致其聽覺系統(tǒng)發(fā)生改變, 削弱其感受環(huán)境的能力[67-69]。
噪音對(duì)海洋生物行為的影響具體表現(xiàn)為埋棲行為、集群行為、捕食行為、求偶行為等發(fā)生改變。例如, 噪音會(huì)影響縊蟶()的埋棲行為, 高強(qiáng)度的噪音會(huì)導(dǎo)致其埋棲更深, 原因?yàn)榭O蟶()為了緩沖聲波產(chǎn)生的粒子振動(dòng)干擾而深埋泥沙中[70]。斑馬魚()在噪音暴露下會(huì)出現(xiàn)明顯的行為改變, 具體表現(xiàn)游泳速度短暫增大, 個(gè)體間分散距離變大, 進(jìn)而對(duì)集群行為產(chǎn)生干擾[71]。噪音對(duì)魚類的捕食行為影響研究較多。例如, 噪音干擾導(dǎo)致歐洲鰻鱺()側(cè)化行為變?nèi)? 反捕食性能降低[72], 打樁噪音會(huì)導(dǎo)致長鰭近海魷魚()的捕食效率降低[73], 同時(shí)也會(huì)對(duì)其警報(bào)行為造成干擾[74], 而三刺魚()在風(fēng)電噪音回放暴露下, 會(huì)出現(xiàn)捕食誤差增加, 捕食效率降低等[75]。此外, 在噪音暴露后, 雙斑蝦虎魚()和彩繪蝦虎魚()均會(huì)出現(xiàn)雄魚視覺、聽覺求愛行為降低, 雌魚產(chǎn)卵率降低的現(xiàn)象, 進(jìn)而對(duì)該物種的種群數(shù)量造成一定影響[76]。
噪音對(duì)哺乳動(dòng)物危害最為嚴(yán)重, 大部分海洋哺乳動(dòng)物對(duì)聲音比較敏感[47, 77]。在蘇格蘭Moray Firth海域海上風(fēng)電打樁近點(diǎn)處擬合打樁噪音水下衰減曲線, 通過和寬吻海豚()的聲學(xué)特性曲線對(duì)比, 發(fā)現(xiàn)在距離打樁5 m處寬吻海豚()會(huì)出現(xiàn)聽覺永久性損傷, 在10 m處會(huì)出現(xiàn)短暫的聽力缺失[78]。此外, 海洋哺乳動(dòng)物多通過聲音進(jìn)行種間交流, 因此運(yùn)營期的海上風(fēng)電可能會(huì)對(duì)種間交流造成掩蔽效應(yīng)[79]。但是, 與觀察到結(jié)果不同的是, 目前全球海上風(fēng)電場附近有海洋哺乳動(dòng)物分布和活動(dòng)的觀測報(bào)道, 原因可能為風(fēng)機(jī)基礎(chǔ)產(chǎn)生的增殖效應(yīng)和保護(hù)地效應(yīng), 對(duì)大型哺乳動(dòng)物具有較強(qiáng)吸引和保護(hù)作用[32]。但具體機(jī)制有待研究。
2.2.2 海上風(fēng)電噪音對(duì)海洋生物生理狀態(tài)的影響
海上風(fēng)電建設(shè)對(duì)海洋生物生理的影響主要表現(xiàn)在應(yīng)激生理方面, 并存在明顯的時(shí)間效應(yīng)[80]。例如, 在魚類中, 大吻異線鳚()在高聲壓級(jí)的間歇噪音中應(yīng)激反應(yīng)最為強(qiáng)烈[81]。在初期噪音暴露中, 尼羅羅非魚()表現(xiàn)出高呼吸頻率, 但暴露超過120天后, 應(yīng)激反應(yīng)趨于緩和并表現(xiàn)出正常的生理狀態(tài)[82]。大西洋鱈魚()和青鱈魚()都會(huì)在反復(fù)的噪音暴露試驗(yàn)中表現(xiàn)出逐漸適應(yīng)狀態(tài)[80]。而皮質(zhì)醇是反應(yīng)噪音對(duì)魚類應(yīng)激生理的關(guān)鍵指標(biāo)[81, 83]。
在雙殼貝類中, 研究多集中在生物大分子酶的活性方面。例如, 縊蟶()在強(qiáng)噪音下會(huì)出現(xiàn)代謝酶活性下降, 新陳代謝降低[70], 高頻噪聲對(duì)地中海藍(lán)貽貝()消化腺生理有負(fù)面影響[84]。此外, 噪音會(huì)加劇重金屬對(duì)貝類的毒性效應(yīng), 例如泥蚶()在70~100 dB的噪音下會(huì)通過協(xié)同作用增強(qiáng)對(duì)Cd的富集[85]。
2.2.3 海上風(fēng)電噪音對(duì)海洋生物影響的分子機(jī)制
風(fēng)電噪音對(duì)海洋生物影響的分子機(jī)制解析研究極少, 僅在貝類中有相關(guān)報(bào)道。例如, 當(dāng)縊蟶()暴露于噪音時(shí), 其糖酵解、脂肪酸合成、色氨酸代謝和三羧酸循環(huán)等10個(gè)相關(guān)代謝基因的表達(dá)發(fā)生改變, 在80 dB re 1μPa的噪音環(huán)境下, 相關(guān)基因均被誘導(dǎo)表達(dá)升高, 在100 dB re 1μPa的噪音環(huán)境下, 相關(guān)基因均被抑制表達(dá)[70]。Shi等將泥蚶()暴露在Cd和人為噪音下, 發(fā)現(xiàn)其與神經(jīng)遞質(zhì)分泌的相關(guān)基因(MAO、AChE和mAChR3)表達(dá)顯著下調(diào), 表明暴露于噪音污染可以抑制其神經(jīng)遞質(zhì)分泌, 進(jìn)而通過協(xié)同效應(yīng)加強(qiáng)了Cd對(duì)泥蚶()的毒理影響作用影響[85]。
海洋環(huán)境中存在自然地磁場, 海鷗等許多電磁感生物依靠地磁場進(jìn)行導(dǎo)航遷移[54, 86]。而海上風(fēng)電中風(fēng)機(jī)、升壓站、海底電纜均會(huì)產(chǎn)生額外的電磁場[87], 但由于不同介質(zhì)間電磁輻射衰減較快, 因此位于海平面上方的風(fēng)機(jī)和升壓站所產(chǎn)生的磁場對(duì)海洋生物影響很小, 海上風(fēng)電的電磁輻射主要來源于海底電纜, 而最可能受到海底電纜電磁場影響的海洋生物通常為運(yùn)動(dòng)能力較弱的底棲生物[88-89]。
2.3.1 海上風(fēng)電磁場對(duì)海洋生物行為模式的影響
磁場對(duì)不同海洋生物行為的影響差異極大, 相關(guān)研究多集中于甲殼類動(dòng)物。例如, 南極沙蚤()在20 nT及以下的極低頻電磁場暴露1 min后會(huì)迷失方向[90], 而歐洲螯龍蝦()在200 μT磁場內(nèi)行為模式未發(fā)現(xiàn)明顯改變[91], 但食用黃道蟹()卻表現(xiàn)出明顯的趨磁行為[92]。此外, 當(dāng)沙蠶()暴露于磁場干擾后, 其掘洞行為出現(xiàn)顯著加強(qiáng), 但磁場對(duì)海洋動(dòng)物行為的影響機(jī)制仍未得到明確的解析[93]。
2.3.2 海上風(fēng)電磁場對(duì)海洋生物生理狀態(tài)的影響
磁場對(duì)海洋生物生理影響的野外調(diào)查極少, 多在實(shí)驗(yàn)室開展模擬實(shí)驗(yàn)。沙蠶()暴露于海底電纜典型磁場后, 排氨率出現(xiàn)顯著降低[93]。食用黃道蟹()暴露于磁場后, 會(huì)出現(xiàn)L-乳酸鹽和D-葡萄糖的晝夜代謝生理紊亂[92]。磁場對(duì)魚類胚胎發(fā)育影響較為復(fù)雜, 例如, 虹鱒()受精卵放置在電磁場(50 Hz, 1 mT)內(nèi), 其存活率未發(fā)生顯著降低, 但卵黃的吸收率出現(xiàn)顯著上升[89], 類似的結(jié)果在白斑狗魚()中也有報(bào)道, 原因?yàn)榇艌霰┞都涌炝松锏拇x率[94]。但斑馬魚()在磁場干擾下, 孵化周期卻出現(xiàn)了顯著延遲[95]。在棘皮動(dòng)物中, 研究也發(fā)現(xiàn)磁場暴露下紫海膽()胚胎細(xì)胞的有絲分裂受到擾亂, 進(jìn)而影響正常的分裂與發(fā)育[96]。因此, 當(dāng)海底電纜釋放的電磁場為1 mT或更高時(shí), 在相應(yīng)范圍內(nèi)的生物會(huì)受到潛在影響[97]。
2.3.3 海上風(fēng)電磁場對(duì)海洋生物影響的分子機(jī)制
電磁場暴露對(duì)海洋生物影響的分子機(jī)制的研究也較少, 且多集中在轉(zhuǎn)錄水平。例如, Zhang等[98]采用轉(zhuǎn)錄組測序技術(shù), 發(fā)現(xiàn)瘤背石磺()為在極低頻磁場(50 Hz, 100~500 μT)中暴露一周后可誘導(dǎo)免疫應(yīng)答, 而地中海藍(lán)貽貝()在低頻電磁場(50 Hz, 400 μT)中, 熱休克蛋白HSP70和HSP90的表達(dá)出現(xiàn)上升[99-100]。在細(xì)胞水平, 當(dāng)虹鱒()、蛤蜊()和沙蠶()暴露于電磁場時(shí), 受試生物均不同程度的出現(xiàn)了微核等染色體畸變等異?,F(xiàn)象, 表明電磁場會(huì)導(dǎo)致海洋生物染色體的結(jié)構(gòu)畸變并對(duì)遺傳產(chǎn)生進(jìn)一步的影響[93]。但值得注意的是, 相關(guān)研究多集中于室內(nèi)模擬環(huán)境, 在海上風(fēng)電場中單個(gè)海洋可再生能源設(shè)備或小陣列電纜所產(chǎn)生的電磁輻射的生態(tài)影響是有限的[101-102], 因此野外調(diào)查和現(xiàn)場研究亟待開展。
海洋生態(tài)系統(tǒng)是一個(gè)動(dòng)態(tài)系統(tǒng), 海上風(fēng)電使海洋資源利用多重化、海洋空間碎片化, 目前我國海上風(fēng)電建設(shè)方興未艾, 發(fā)展海上風(fēng)電的同時(shí)更需關(guān)注其生態(tài)影響。本文系統(tǒng)總結(jié)了海上風(fēng)電對(duì)海洋生態(tài)環(huán)境和生物資源的綜合影響。然而, 因海上風(fēng)電對(duì)海洋生態(tài)環(huán)境的影響較為復(fù)雜, 需要詳細(xì)的野外調(diào)查研究來進(jìn)一步明確其作用機(jī)制。此外, 在剛性環(huán)保要求下, 環(huán)保型海上風(fēng)電機(jī)組裝備研制、生態(tài)型海洋牧場與海上風(fēng)電融合發(fā)展模式創(chuàng)制, 也是我國未來高效、生態(tài)開發(fā)利用海上風(fēng)電資源的重要舉措之一。
研制低噪音海上風(fēng)電機(jī)組裝備, 通過集成優(yōu)化風(fēng)機(jī)葉片形態(tài)設(shè)計(jì)、風(fēng)機(jī)葉尖降噪裝置、風(fēng)機(jī)發(fā)電機(jī)組降噪設(shè)計(jì), 有效減少海洋哺乳動(dòng)物、海洋魚類等敏感的低頻噪音產(chǎn)生; 研發(fā)海上風(fēng)機(jī)綠色防腐技術(shù), 通過新型海洋防腐涂料的使用, 減少鋅、鋁等犧牲陽極材料的使用, 進(jìn)而有效減少風(fēng)機(jī)基礎(chǔ)重金屬的析出污染, 并制定環(huán)保型海上風(fēng)機(jī)組件的選材、制造與安裝標(biāo)準(zhǔn)化技術(shù)體系, 以標(biāo)準(zhǔn)化保障海上風(fēng)電的綠色建設(shè)和生態(tài)安全。
研發(fā)海上風(fēng)電場精準(zhǔn)規(guī)劃與選址技術(shù), 采用高精度聲學(xué)和遙感等觀測裝備, 保障海上風(fēng)電場與魚類洄游路線和產(chǎn)卵育幼場、鳥類棲停遷飛路線、海洋哺乳動(dòng)物領(lǐng)地等生態(tài)紅線區(qū)域不沖突; 創(chuàng)制海上風(fēng)電場優(yōu)化布局技術(shù), 保障風(fēng)機(jī)基礎(chǔ)的精準(zhǔn)投放安裝, 實(shí)現(xiàn)風(fēng)機(jī)機(jī)組周年運(yùn)行穩(wěn)定, 提高海上風(fēng)電的開發(fā)利用效率, 保障海上風(fēng)機(jī)機(jī)組的年發(fā)電量, 通過海上風(fēng)電場的精準(zhǔn)選址和優(yōu)化布局, 在保障海洋生物生態(tài)安全的基礎(chǔ)上, 實(shí)現(xiàn)海上風(fēng)電資源的高效開發(fā)。
建立海上風(fēng)電區(qū)域資源環(huán)境立體監(jiān)測和實(shí)時(shí)生態(tài)安全網(wǎng)絡(luò)預(yù)警體系, 集成水下多環(huán)境因子、水下魚類和哺乳動(dòng)物視頻采集、水上鳥類視頻采集、大數(shù)據(jù)集成傳輸分析技術(shù)的應(yīng)用, 實(shí)現(xiàn)對(duì)海上風(fēng)電場區(qū)域生態(tài)安全的實(shí)時(shí)監(jiān)測并及時(shí)預(yù)警預(yù)報(bào); 針對(duì)海上風(fēng)電運(yùn)營期噪音、磁場對(duì)海洋生物影響機(jī)理不清、機(jī)制不明的研究現(xiàn)狀, 以我國海域常見物種為研究對(duì)象, 從行為、生理、分子角度開展系統(tǒng)研究, 全面闡明海上風(fēng)電對(duì)海洋生物生存繁殖的綜合影響, 為大規(guī)模開展海上風(fēng)電建設(shè)提供理論指導(dǎo)。
海上風(fēng)電是實(shí)現(xiàn)“雙碳”目標(biāo)的重要抓手, 海上風(fēng)電與海洋牧場融合發(fā)展新模式是實(shí)現(xiàn)科學(xué)、集約、生態(tài)用海的重要途徑。研制資源增殖型風(fēng)機(jī)基礎(chǔ), 充分發(fā)揮風(fēng)機(jī)基礎(chǔ)的人工魚礁效應(yīng), 增殖養(yǎng)護(hù)附著性貝類和仔稚魚等資源; 并利用風(fēng)電場內(nèi)空置海域, 創(chuàng)制風(fēng)機(jī)基礎(chǔ)與智能網(wǎng)箱、筏架、魚礁等海洋牧場典型構(gòu)建設(shè)施的有機(jī)融合模式, 在生產(chǎn)清潔能源的同時(shí), 高效產(chǎn)出優(yōu)質(zhì)水產(chǎn)蛋白, 實(shí)現(xiàn)海上風(fēng)電與海洋牧場的協(xié)同發(fā)展。
[1] Strunz S. Speeding up the energy transition[J]. Nature Sustainability, 2018, 1(8): 390-391.
[2] Aydinalp C. Clean energy for better environment[M]. Croatia: InTech publisher, 2012.
[3] Vargas S A, Esteves G R T, Macaira P M, et al. Wind power generation: A review and a research agen-da[J]. Journal of Cleaner Production, 2019, 218: 850- 870.
[4] 崔榮國, 崔娟, 程立海, 等. 全球清潔能源發(fā)展現(xiàn)狀與趨勢分析[J]. 地球?qū)W報(bào), 2021, 42(2): 179-186.
Cui Guorong, Cui Juan, Cheng Lihai, et al. Status and trends analysis of global clearn energines[J]. Acta Geoscientica Sinica, 2021, 42(2): 179-186.
[5] Bosch J, Staffell I, Hawkes A D. Temporally- explicit and spatially-resolved global onshore wind ene-rgy potentials[J]. Energy, 2017, 131: 207-217.
[6] Sun X J, Huang D G, Wu G Q. The current state of offshore wind energy technology development[J]. Ener-gy, 2012, 41(1): 298-312.
[7] Joyce Lee, Zhao F. Global offshore wind report 2020[R]. Brussels: Global Wind Energy Council (GWEC), 2020.
[8] Sherman P, Chen X Y, Mcelroy M. Offshore wind: An opportunity for cost-competitive decarbonization of China’s energy economy[J]. Science Advan-ces, 2020, 6(8): eaax9571.
[9] Lu X, Mcelroy M B, Chen X Y, et al. Opportunity for offshore wind to reduce future demand for coal- fired power plants in China with consequent savings in emissions of CO2[J]. Environment Science Technology, 2014, 48(24): 14764-14771.
[10] 謝長軍. “海上風(fēng)電三峽”工程建設(shè)的先行者——記龍?jiān)唇K海上風(fēng)電開發(fā)歷程[J]. 風(fēng)能, 2019(6): 18-25.
Xie Changjun. The forerunner of the construction of off-shore wind power Three Gorges Project-on the develop-ment process of offshore wind power in Longyuan, Jiangsu Province[J]. Wind Energy, 2019(6): 18-25.
[11] Langhamer O, Dahlgren T G, Rosenqvist G. Effect of an offshore wind farm on the viviparous eelpout: Biometrics, brood development and population studies in Lillgrund, Sweden[J]. Ecological Indicators, 2018, 84: 1-6.
[12] Nedwell J, Howell D. A review of offshore windfarm related underwater noise sources[J]. Cowrie Rep, 2004, 554: 1-57.
[13] Nedwell J R, Turnpenny A W H, Lovell J, et al. A validation of the dBht as a measure of the behavioural and auditory effects of underwater noise[R]. UK: Subacoustech Ltd, 2007.
[14] Soukissian T H, Papadopoulos A. Effects of different wind data sources in offshore wind power assessment[J]. Renewable Energy, 2015, 77: 101-114.
[15] ?hman M C, Sigray P, Westerberg H. Offshore windmills and the effects of electromagnetic fie-lds on fish[J]. AMBIO: A journal of the Human Environment, 2007, 36(8): 630-633.
[16] Furness R W, Wade H M, Robbins A M C, et al. Assessing the sensitivity of seabird populations to adverse effects from tidal stream turbines and wave energy devices[J]. Ices Journal of Marine Science, 2012, 69(8): 1466-1479.
[17] Furness R W, Wade H M, Masden E A. Assessing vulnerability of marine bird populations to offshore wind farms[J]. Journal of Environmental Management, 2013, 119: 56-66.
[18] 蘇文, 吳霓, 章柳立, 等. 海上風(fēng)電工程對(duì)海洋生物影響的研究進(jìn)展[J]. 海洋通報(bào), 2020, 39(3): 291-299.
Su Wen, Wu Ni, Zhang Liuli, et al. A review of re-search on the effect of offshore wind power project on marine organisms[J]. Marine Science Bulletin, 2020, 39(3): 291-299.
[19] 楊紅生, 茹小尚, 張立斌, 等. 海洋牧場與海上風(fēng)電融合發(fā)展: 理念與展望[J]. 中國科學(xué)院院刊, 2019, 34(6): 104-111.
Yang Hongsheng, Ru Xiaoshang, Zhang Libin, et al. Industial convergence of marine ranching and offshore wind power: Concept and prospect[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(6): 104-111.
[20] Degraer S, Carey D A, Coolen J W P, et al. Off-shore wind farm artificial reefs affect ecosystem structure and functioning[J]. Oceanography, 2020, 33(4): 48-57.
[21] Paxton A B, Shertzer K W, Bacheler N M, et al. Meta-analysis reveals artificial reefs can be effective tools for fish community enhancement but are not one- size-fits-all[J]. Frontiers in Marine Science, 2020, 7: 282.
[22] Bohnsack J A. Are high-densities of fishes at artificial reefs the result of habitat limitation or behavioral preference?[J]. Bulletin of Marine Science, 1989, 44(2): 631-645.
[23] Andersson M H. Offshore wind farms – ecological effects of noise and habitat alteration on fish[D]. Stoc-k-holm: Stockholm University, 2011.
[24] Krone R, Gutow L, Brey T, et al. Mobile demersal megafauna at artificial structures in the German Bight– Likely effects of offshore wind farm development[J]. Estuarine, Coastal and Shelf Science, 2013, 125: 1-9.
[25] De Mesel I, Kerckhof F, Norro A, et al. Succession and seasonal dynamics of the epifauna community on offshore wind farm foundations and their role as stepping stones for non-indigenous species[J]. Hydro-biologia, 2015, 756(1): 37-50.
[26] Stenberg C, Deurs M V, St?ttrup J, et al. Effect of the Horns Rev 1 offshore wind farm on fish communities: Follow-up seven years after construction[M]. Denmark: Danish Energy Authority, 2011.
[27] Leonhard S B, Pedersen J. Benthic communities at Horns Rev before, during and after construction of Horns Rev Offshore Wind Farm[R]. Copenhagen: Vattenfall, 2006.
[28] Lindeboom H J, Kouwenhoven H J, Bergman M J N, et al. Short-term ecological effects of an offshore wind farm in the Dutch coastal zone; a compilation[J]. En-vironmental Research Letters, 2011, 6(3): 35101-35113.
[29] Krone R, Dederer G, Kanstinger P, et al. Mobile demersal megafauna at common offshore wind turbine foundations in the German Bight (North Sea) two years after deployment - increased production rate of[J]. Marine Environmental Research, 2017, 123: 53-61.
[30] Langhamer O, Holand H, Rosenqvist G. Effects of an Offshore Wind Farm (OWF) on the common shore Crab: Tagging pilot experiments in the Lillgrund Offshore Wind Farm (Sweden)[J]. PLoS One, 2016, 11(10): e0165096.
[31] Wang J J, Zou X Q, Yu W W, et al. Effects of established offshore wind farms on energy flow of coastal ecosystems: A case study of the Rudong offshore wind farms in China[J]. Ocean & Coastal Management, 2019, 171: 111-118.
[32] Raoux A, Tecchio S, Pezy J P, et al. Benthic and fish aggregation inside an offshore wind farm: Which effects on the trophic web functioning?[J]. Ecological Indicators, 2017, 72: 33-46.
[33] Wilber D H, Carey D A, Griffin M. Flatfish habi-tat use near North America’s first offshore wind farm[J]. Journal of Sea Research, 2018, 139: 24-32.
[34] Wilhelmsson D, Malm T, ?hman M C. The in-fluence of offshore windpower on demersal fish[J]. Ices Journal of Marine Science, 2006, 63(5): 775-784.
[35] Griffin R, Buck B, Krause G. Private incentives for the emergence of co-production of offshore wind energy and mussel aquaculture[J]. Aquaculture, 2015, 436: 80-89.
[36] Russell D J F, Brasseur S, Thompson D, et al. Marine mammals trace anthropogenic structures at sea[J]. Current Biology, 2014, 24(14): R638-R639.
[37] Thomsen F, Gill A, Kosecka M, et al. MaRVEN – Environmental impacts of noise, vibrations and electro-magnetic emissions from marine renewable energy[M]. Luxembourg: Publications Office of the European Union, 2016.
[38] Bray L, Reizopoulou S, Voukouvalas E, et al. Expected effects of offshore wind farms on Mediter-ra-nean marine life[J]. Journal of Marine Science and Engineering, 2016, 4(1): 1-17.
[39] Kirchgeorg T, Weinberg I, H?rnig M, et al. Emissions from corrosion protection systems of offshore wind farms: Evaluation of the potential impact on the marine environment[J]. Marine Pollution Bulletin, 2018, 136: 257-268.
[40] MANGI S C. The impact of offshore wind farms on marine ecosystems: A review taking an ecosystem services perspective[J]. Proceedings of the IEEE, 2013, 101(4): 999-1009.
[41] 王陽, 楊紅, 張午. 基于MIKE21的江蘇如東海上風(fēng)電場泥沙沖淤數(shù)值模擬[J]. 海洋湖沼通報(bào), 2021, 43(2): 48-57.
Wang Yang, Yang Hong, Zhang Wu. Simulation of sediment erosion and silting on Rudong offshore wind farm project in Jiangsu Province by MIKE21[J]. Transactions of Oceanology and Limnology, 2021, 43(2): 48-57.
[42] Rivier A, Bennis A C, Pinon G, et al. Parameterization of wind turbine impacts on hydrodynamics and sediment transport[J]. Ocean Dynamics, 2016, 66(10): 1285-1299.
[43] 張晶磊. 江蘇濱海北區(qū)海上風(fēng)電工程累積環(huán)境影響評(píng)價(jià)[D]. 上海: 上海海洋大學(xué), 2018.
Zhang Jinglei. Cumulative environmental impact assessment of offshore wind power projects in Northern Binhai, Jiangsu[D]. Shanghai: Shanghai Ocean University, 2018.
[44] Andrulewicz E, Napierska D, Otremba Z. The environmental effects of the installation and functioning of the submarine SwePol Link HVDC transmission line: A case study of the Polish Marine Area of the Baltic Sea[J]. Journal of Sea Research, 2003, 49(4): 337-345.
[45] Aran M T, H. A M, Jenni S. Acoustic impacts of offshore wind energy on fishery resources[J]. Oceano-graphy, 2020, 33(4): 82-95.
[46] Hutchison Z L, Secor D H, Gill A B. The intera-ction between resource species an electromagnetic fields associated with electricity production by offshore wind farms[J]. Oceanography, 2020, 33(4): 96-107.
[47] BaIley H, Senior R, Simmons R, et al. Assessing underwater noise levels during pile-driving at an offsho-re windfarm and its potential effects on marine mamma-ls[J]. Marine Pollution Bulletin, 2010, 60(6): 888-897.
[48] DEBUSSCHERE E, DE C B, BAJEK A, et al. In situ mortality experiments with juvenile sea bass () in relation to impulsive sound levels caused by pile driving of windmill foundations[J]. PloS One, 2014, 9(10): e109280.
[49] Hawkins A D, Pembroke A E, Popper A N. Information gaps in understanding the effects of noise on fishes and invertebrates[J]. Reviews in fish biology and fisheries, 2015, 25(1): 39-64.
[50] Popper A N, Hawkins A D. An overview of fish bioacoustics and the impacts of anthropogenic sounds on fishes[J]. Journal of fish biology, 2019, 94(5): 692- 713.
[51] Shannon G, Mckenna M F, Angeloni L M, et al. A synthesis of two decades of research documenting the effects of noise on wildlife[J]. Biological Reviews of the Cambrige Philosophical Society, 2016, 91(4): 982-1005.
[52] Taormina B, Bald J, Want A, et al. A review of potential impacts of submarine power cables on the marine environment: Knowledge gaps, recommendations and future directions[J]. Renewable & Sustainable Energy Reviews, 2018, 96: 380-391.
[53] HUTCHISON Z L, GILL A B, PETER S, et al. Anth-ro-po-genic electromagnetic fields (EMF) influence the be-haviour of bottom-dwelling marine species[J]. Scientific reports, 2020, 10(1): 1-15.
[54] Gill A B, Desender M. 2020 State of the Science Report - Chapter 5: Risk to animals from electromagnetic fields emitted by electric cables and marine renewable energy devices[R]. United States: Ocean Energy Systems (OES), 2020.
[55] 楊春寶. 近海環(huán)境下風(fēng)電基礎(chǔ)振動(dòng)響應(yīng)的規(guī)律、調(diào)控與評(píng)價(jià)[D]. 北京: 清華大學(xué), 2017.
Yang Chunbao. The regulation, control and evaluation of dynamic response for offshore wind turbine foundations[D]. Beijing: Tsinghua University, 2017.
[56] Lin C G, Zhang L B, Pan Y, et al. Influence of vibration caused by sound on migration of sea cucumber[J]. Aquaculture Research, 2017, 48(9): 5072-5082.
[57] Mendel B, Schwemmer P, Peschko V, et al. Operational offshore wind farms and associated ship traffic cause profound changes in distribution patterns of Loons (spp.)[J]. Journal of Environmental Management, 2019, 231: 429-438.
[58] Masden E A, Haydon D T, Fox A D, et al. Barriers to movement: impacts of wind farms on migrating birds[J]. Ices Journal of Marine Science, 2009, 66(4): 746-753.
[59] Tabassum-Abbasi, Premalatha M, Abbasi T, et al. Wind energy: Increasing deployment, rising envi-ronmental concerns[J]. Renewable & Sustainable Energy Reviews, 2014, 31: 270-288.
[60] Vanermen N, Onkelinx T, Verschelde P, et al. Assessing seabird displacement at offshore wind farms: power ranges of a monitoring and data handling protocol[J]. Hydrobiologia, 2015, 756(1): 155-167.
[61] Marx J, Schreiber A, Zapp P. Response to ‘Life-cycle green-house gas emissions of onshore and offshore wind turbines’[J]. Journal of Cleaner Production, 2019, 219: 33-34.
[62] 張然. 海上風(fēng)電場水下打樁噪聲研究[D]. 廈門: 廈門大學(xué), 2019.
ZHANG Ran. Research on underwater pilling noise for offshore wind farm[D]. Xiamen: Xiamen University, 2019.
[63] Norro A M, Rumes B, Degraer S J. Differentia-ting between underwater construction noise of monopile and jacket foundations for offshore windmills: a case study from the Belgian part of the North Sea[J]. Scientific World Journal, 2013, 2013: 897624.
[64] Tougaard J, Hermannsen L, Madsen P T. How loud is the underwater noise from operating offshore wind turbines?[J]. Journal of the Acoustical Society of America, 2020, 148(5): 2885.
[65] ZHANG X G, GUO H Y, CHEN J, et al. Potential effects of underwater noise from wind turbines on the marbled rockfish ()[J]. Journal of Applied Ichthyology, 2021, 37(4): 514-522.
[66] Pine M K, Jeffs A G, Radford C A. Turbine sound may influence the metamorphosis behaviour of estuarine crab megalopae[J]. PLoS One, 2012, 7(12): e51790.
[67] Spiga I, Aldred N, Caldwell G S. Anthropoge-nic noise compromises the anti-predator behaviour of the European seabass,(L.)[J]. Marine Pollution Bulletin, 2017, 122(1/2): 297-305.
[68] Radford A N, Lebre L, Lecaillon G, et al. Repeated exposure reduces the response to impulsive noise in European seabass[J]. Global Change Biology, 2016, 22(10): 3349-3360.
[69] Nedelec S L, Mills S C, Lecchini D, et al. Repeated exposure to noise increases tolerance in a coral reef fish[J]. Environmental Pollution, 2016, 216: 428-436.
[70] Peng C, Zhao X G, Liu S X, et al. Effects of anthropo-genic sound on digging behavior, metabolism, Ca2+/Mg2+ATPase activity, and metabolism-related gene expression of the bivalve[J]. Scientific Reports, 2016, 6(1): 1-12.
[71] NEO Y Y, PARIE L, BAKKER F, et al. Behavioral changes in response to sound exposure and no spatial avoidance of noisy conditions in captive zebrafish[J]. Frontiers in Behavioral Neuroscience, 2015, 9: 28.
[72] Simpson S D, Purser J, Radford A N. Anthropogenic noise compromises antipredator behaviour in European eels[J]. Global Change Biology, 2015, 21(2): 586-593.
[73] Jones I T, Peyla J F, Clark H, et al. Changes in feeding behavior of longfin squid () during laboratory exposure to pile driving noise[J]. Ma-rine Environmental Research, 2021, 165: 105250.
[74] JONES I T, STANLEY J A, MOONEY T A. Impulsive pile driving noise elicits alarm responses in squid ()[J]. Marine Pollution Bulletin, 2020, 150: 110792.
[75] Purser J, Radford A N. Acoustic noise induces attention shifts and reduces foraging performance in three-spined sticklebacks ()[J]. PLoS One, 2011, 6(2): e17478.
[76] De Jong K, Amorim M C P, Fonseca P J, et al. Noise can affect acoustic communication and subsequent spawning success in fish[J]. Environmental Pollution, 2018, 237: 814-823.
[77] Madsen P T, Wahlberg M, Tougaard J, et al. Wind turbine underwater noise and marine mammals: implications of current knowledge and data needs[J]. Marine Ecology Progress Series, 2006, 309: 279-295.
[78] GRAHAM I M, PIROTTA E, MERCHANT N D, et al. Responses of bottlenose dolphins and harbor porpoises to impact and vibration piling noise during harbor construction[J]. Ecosphere, 2017, 8(5): e01793.
[79] NABI G, Richard W M, Hao Yujiang, et al. The possible effects of anthropogenic acoustic pollution on marine mammals' reproduction: an emerging threat to animal extinction[J]. Environmental Science & Pollution Research, 2018, 25: 19338-19345.
[80] Davidsen J G, Dong H F, Linne M, et al. Effects of sound exposure from a seismic airgun on heart rate, acce-leration and depth use in free-swimming Atlantic cod and saithe[J]. Conservation Physiology, 2019, 7(1): coz020.
[81] Nichols T A, Anderson T W, ?irovi? A. Intermittent noise induces physiological stress in a coastal marine fish[J]. PLoS One, 2015, 10(9): e0139157.
[82] Kusku H, Yigit ü, Yilmaz S, et al. Acoustic effects of underwater drilling and piling noise on growth and physiological response of Nile tilapia ()[J]. Aquaculture Research, 2020, 51(8): 3166- 3174.
[83] Crovo J A, Mendonca M T, Holt D E, et al. Stress and auditory responses of the otophysan fish,, to road traffic noise[J]. PLoS One, 2015, 10(9): e0137290.
[84] Vazzana M, Ceraulo M, Mauro M, et al. Effects of acoustic stimulation on biochemical parameters in the digestive gland of Mediterranean mussel(Lamarck, 1819)[J]. Journal of the Acoustical Society of America, 2020, 147(4): 2414-2422.
[85] SHI W, HAN Y, GUAN X F, et al. Anthropogenic noise aggravates the toxicity of cadmium on some physiological characteristics of the blood clam[J]. Frontiers in Physiology, 2019, 10: 377.
[86] POLAGYE B, BASSETT C. 2020 State of the Science Report, Chapter 4: Risk to marine animals from under-water noise generated by marine renewable energy devices[R]. United States: Ocean Energy Systems (OES),2020: 67-85. https://doi.org/10. 2172/1633082.
[87] 蔡靈, 姜尚, 馬麗, 等. 海上風(fēng)電電磁輻射對(duì)海洋生物影響的研究綜述[J]. 海洋開發(fā)與管理, 2019, 36(12): 71-75.
Cai Ling, Jiang Shang, Ma Li, et al. Review of the research on the effects of electromagnetic radiation from offshore wind power on marine organisms[J]. Ocean De-velopment and Management, 2019, 36(12): 71-75.
[88] Albert L, Deschamps F, Jolivet A, et al. A cur-rent synthesis on the effects of electric and magnetic fie-l-ds emitted by submarine power cables on invertebrates[J]. Marine Environmental Research, 2020, 159: 104958.
[89] Fey D P, Jakubowska M, Greszkiewicz M, et al. Are magnetic and electromagnetic fields of anthropogenic origin potential threats to early life stages of fish?[J]. Aquatic Toxicology, 2019, 209: 150-158.
[90] Tomanova K, Vacha M. The magnetic orientation of the Antarctic amphipodis cancelled by very weak radiofrequency fields[J]. Journal of Experimental Biology, 2016, 219(11): 1717-1724.
[91] Taormina B, Di Poi C, Agnalt A L, et al. Impact of magnetic fields generated by AC/DC submarine power cables on the behavior of juvenile European lobster ()[J]. Aquatic Toxicology, 2020, 220: 105401.
[92] Scott K, Harsanyi P, Lyndon A R. Understan-ding the effects of electromagnetic field emissions from Marine Renewable Energy Devices (MREDs) on the commercially important edible crab,(L.)[J]. Marine Pollution Bulletin, 2018, 131: 580-588.
[93] Jakubowska M, Urban-Malinga B, Otremba Z, et al. Effect of low frequency electromagnetic field on the behavior and bioenergetics of the polychaete[J]. Marine Environment Research, 2019, 150: 104766.
[94] Fey D P, Greszkiewicz M, Otremba Z, et al. Effect of static magnetic field on the hatching success, growth, mortality, and yolk-sac absorption of larval Northern pike[J]. Science of the Total Environment, 2019, 647: 1239-1244.
[95] PICCInetti C P C, Leo A D, Cosoli G, et al. Measurement of the 100 MHz EMF radiation in vivo effects on zebrafishembryonic development: A multi-disciplinary study[J]. Ecotoxicology & Environmental Safety, 2018, 154: 268-279.
[96] A Tenuzzo B, Vergallo C, Dini L. Early develo-p--ment of sea urchinunder static (6 mT) and pul-sed magnetic fields (15 and 72 Hz)[J]. Current Che-mical Biology, 2016, 10(1): 32-42.
[97] Fey D P, Greszkiewicz M, Jakubowska M, et al. Otolith fluctuating asymmetry in larval trout,Walbaum, as an indication of organism bilateral instability affected by static and alternating magnetic fields[J]. Science of The Total Environment, 2019, 707: 135489.
[98] Zhang Mingming, Wang Jiawei, Sun Qirui, et al. Immune response of molluskto extre-mely low-frequency electromagnetic fields (ELF-EMF, 50 Hz) exposure based on immune-related enzyme activity and De novo transcriptome analysis[J]. Fish & Shellfish Immunology, 2020, 98: 574-584.
[99] Davide M, Mauro L, Fabriziomaria G, et al. 50 Hz magnetic fields activate mussel immunocyte p38 MAP kinase and induce HSP70 and 90[J]. Comparative Biochemistry And Physiology Part C: Toxicology & pharmacology, 2004, 137(1): 75-79.
[100] Malagoli D, Gobba F, Ottaviani E. 50 Hz ma-g-netic fields of constant or fluctuating intensity: effects on immunocyte hsp70 in the mussel[J]. Bioelectromagnetics, 2006, 27(5): 427-429.
[101] 袁健美, 賁成愷, 高繼先, 等. 海上風(fēng)電磁場對(duì)12種海洋生物存活率與行為的影響[J]. 生態(tài)學(xué)雜志, 2016, 35(11): 3051-3056.
Yuan Jianmei, Ben Chengkai, Gao Jixian, et al. Effects of magnetic field of offshre wind farm on the survival and of marine organism[J]. Chinese Journal of Ecology, 2016, 35(11): 3051-3056.
[102] NYQVIST D, DURIF C, JOHNSEN M G, et al. Electric and magnetic senses in marine animals, and potential behavioral effects of electromagnetic surveys[J]. Marine Environmental Research, 2020, 155: 104888.
Research progress on the comprehensive impact of offshore wind farms on the marine ecological environment and biological resources
WANG Ting1, 2, 3, 4, 6, 7, RU Xiao-shang1, 2, 3, 4, 6, ZHANG Li-bin1, 2, 3, 4, 5, 6
(1. CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; 2. Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; 3. Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; 4. Laboratory of Marine Ranching Engineering, Chinese Academy of Sciences, Qingdao 266071, China; 5. University of Chinese Academy of Sciences, Beijing 100049, China; 6. Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China; 7. State of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China)
Offshore wind farms exhibit the characteristics of convenient consumption nearby, high energy generation efficiency and no consumption of fossil energy. In the background of low-carbon economic development, accelerating the growth of offshore wind farms has become a consensus for several countries around the world to promote the transformation and sustainable development of energy infrastructure. However, the impact of noise and magnetic fields generated by such wind farms on the marine environment and organisms remains unclear. This paper systematically reviews the current situation of global offshore wind farm development, analyzes its comprehensive impact on the marine environment and biological resources, and summarizes the potential effects of the noise and magnetic field generated by these wind farms on marine organisms from the physiological, behavioral, and molecular perspectives, thus providing a reference for scientific research on offshore wind farms.
offshore wind farm; environmental impact; noise; electromagnetic effect; ecological effect
Nov. 15, 2021
[The National Key Research and Development Plan, No. 2019YFD0902104]
P752; X[593]; Q178.53
A
1000-3096(2022)07-0095-10
10.11759/hykx20211115001
2021-11-15;
2021-12-14
國家重點(diǎn)研發(fā)計(jì)劃(2019YFD0902104)
王婷(1997—), 女, 云南保山人, 在讀研究生, 主要從事海上風(fēng)電的生態(tài)效應(yīng)相關(guān)研究, E-mail: wangting@qdio.ac.cn; 張立斌(1989—),通信作者, 男, 研究員, E-mail: zhanglibin@qdio.ac.cn
(本文編輯: 趙衛(wèi)紅)