校振華,馮亞磊,馮啟生,羅志輝
高強汽車中錳鋼的熱壓縮變形行為研究
校振華1,馮亞磊1,馮啟生2,3,羅志輝3
(1.河南農業(yè)職業(yè)學院 機電工程學院,鄭州 451450;2.河南科技大學 材料科學與工程學院,河南 洛陽 471000;3.洛陽中重鑄鍛有限責任公司,河南 洛陽 471000)
為第三代汽車中錳鋼工業(yè)化生產的加工工藝制定提供參考。采用Gleeble-3800型熱力模擬試驗機對汽車用中錳鋼進行了變形溫度900~1 150 ℃、應變速率0.1~20 s?1的熱壓縮變形處理(變形量為50%),基于不同熱壓縮變形條件下的應力應變數(shù)據(jù)建立中錳鋼的流變應力本構方程,并對本構方程進行應變補償,驗證考慮應變補償?shù)牧髯儜Ρ緲嫹匠填A測值與試驗結果的一致性。應變速率不變時,中錳鋼的峰值應力隨著變形溫度的升高逐漸減?。蛔冃螠囟炔蛔儠r,中錳鋼的峰值應力隨著應變速率的增大整體逐漸增大。在變形溫度900~1 150 ℃、應變速率0.1~20 s?1的條件下,汽車用中錳鋼考慮應變補償?shù)牧髯儜Φ纳Ⅻc預測值與實測值吻合較好;進行應變補償處理后,汽車用中錳鋼流變應力本構方程的相關系數(shù)為0.986,絕對平均誤差3.36%,相較于未考慮應變補償?shù)牧髯儜Ρ緲嫹匠?,考慮應變補償后相關系數(shù)變大,絕對平均誤差變小??紤]應變補償?shù)牧髯儜Ρ緲嫹匠炭梢詫ζ囉弥绣i鋼熱壓縮變形過程中的流變行為進行準確預測。
中錳鋼;變形溫度;應變速率;本構方程;應變補償
汽車工業(yè)的快速發(fā)展給汽車用材帶來巨大發(fā)展機遇的同時,對汽車用鋼的開發(fā)與應用提出了新的挑戰(zhàn),這主要是因為節(jié)能環(huán)保、低成本和高防撞安全性等需求的提高[1],已要求汽車用鋼從輕量化和安全性指標很低、強塑積一般(約15 GPa·%)的第一代汽車用鋼向逐漸升級到輕量化和安全性指標高、強塑積≥30 GPa·%的第三代汽車鋼的方向發(fā)展[2-4]。其中,F(xiàn)e-Mn-Al-C系中錳鋼由于具有密度低、強度高、塑性好和生產成本低等特點而成為第三代汽車用鋼的重要組成部分,科研工作者從成分設計、工藝設計、組織調控等角度已開發(fā)出了強塑積可以達到30 GPa·%以上的汽車中錳鋼[5-7]。然而,目前汽車用中錳鋼的研究主要還處于實驗室階段,仍然存在成形工藝復雜性和可控性等問題[8-9],需要進一步研究熱變形過程中變形溫度、變形速率等對汽車中錳鋼熱變形行為的影響規(guī)律,為具有良好強塑性的第三代高強汽車鋼規(guī)?;I(yè)生產過程中的加工工藝制定提供參考。
采用真空冶煉的方法制備自行設計的汽車用Fe-Mn-Al-C中錳鋼錠,鋼錠進行1 180 ℃保溫2 h的均勻化熱處理后,在1 140~900 ℃的高溫至低溫范圍內將鋼錠鍛造成截面尺寸100 mm×150 mm的鍛坯,空冷至室溫。采用電感耦合等離子發(fā)射光譜法測得其主要元素含量,如表1所示。采用DIL805型熱膨脹儀測得中錳鋼的Ac1和Ac3分別為638、1 146 ℃。
采用線切割方法從鍛坯上截取8 mm×12 mm棒狀標準試樣,在Gleeble–3800型熱力模擬試驗機上進行熱壓縮試驗。棒狀試樣以8 ℃/s的速度從室溫升高至1 200 ℃,保溫3 min后以8 ℃/s速度冷卻至設定熱壓縮溫度(900、950、1 000、1 050、1 150 ℃),保溫0.5 min后以設定應變速率(0.1、1、2.5、5、10、20 s?1)熱壓縮至50%變形量,水淬至室溫。
圖1為不同應變速率下汽車用中錳鋼的真應力-真應變曲線。在不同應變速率和變形溫度下,中錳鋼的真應力隨應變的整體變化趨勢相同。在變形初始階段,中錳鋼的應力隨著真應變的增加快速增長,這個階段對應中錳鋼中位錯密度增大而產生相互纏結和交割,加工硬化作用下應力快速增大;隨著真應變的增加,中錳鋼逐漸進入第2個變形階段,此時中錳鋼中的位錯通過滑移和攀移使得位錯密度降低,回復軟化抵消了部分加工硬化作用,真應力隨應變增大的速率變?。焕^續(xù)增加真應變,中錳鋼逐漸進入穩(wěn)定變形階段,中錳鋼的變形儲能增加使得材料發(fā)生動態(tài)再結晶,回復和再結晶軟化作用與加工硬化作用基本達到平衡,此時應力變化幅度較??;在到達峰值應力后,軟化作用逐漸占主導,真應力-真應變曲線逐漸呈現(xiàn)下降趨勢。
表1 實驗用中錳鋼的化學成分
Tab.1 Chemical composition of medium manganese steel for experiment wt.%
圖1 不同應變速率下汽車用中錳鋼的真應力-真應變曲線
在變形溫度900~1 150 ℃、應變速率0.1~20 s?1的條件下,汽車用中錳鋼的峰值應力統(tǒng)計結果如表2所示。當應變速率固定不變時,隨著變形溫度從900 ℃上升至1 150 ℃,中錳鋼的峰值應力逐漸減小,這主要是因為變形溫度的升高會使得內部熱激活能增大,材料的動態(tài)軟化行為愈發(fā)顯著而使得應力減小[10];當變形溫度固定不變時,隨著應變速率從0.1 s?1增大至20 s?1,中錳鋼的峰值應力整體呈逐漸增大的趨勢,這主要是因為在較高的應變速率下,中錳鋼中的加工硬化作用愈發(fā)顯著[11],相應地,流變應力會更大,但是在變形溫度較低時(900、950 ℃),中錳鋼仍然存在高應變速率下峰值應力較低的現(xiàn)象,這主要與中錳鋼在高應變速率下的變形熱來不及散失而造成溫度升高有關[12]。
(2)
式中:結構因子(1、2、)和應力指數(shù)(1、)為與中錳鋼有關的常數(shù);為反映動態(tài)軟化的應力水平參數(shù)(=1);為變形激活能,kJ/mol;為變形溫度,K;為氣體常數(shù),8.314 J/(mol·K)。
在設定變形溫度和應變速率的條件下,假定保持不變,對式(1)—(3)兩邊取對數(shù),得到式(4)—(6)。
表2 汽車用中錳鋼的峰值應力
Tab.2 Peak stress of medium manganese steel for automobile MPa
結合式(3)可得汽車用中錳鋼的雙曲正弦Arrhenius流變應力本構方程,見式(7)
由式(8)、式(9)結合式(7)可得汽車用中錳鋼用參數(shù)表達的應力本構方程,見式(10)。
上述流變應力本構方程的建立主要考慮變形溫度和應變速率對流變應力的影響,而未將對中錳鋼的激活能有顯著影響的應變考慮進去[16],因此,為了提高流變應力本構方程的準確性,有必要對本構方程進行應變補償。將中錳鋼的材料常數(shù)(和ln)看作是應變量的多項式函數(shù),采用6階多項式函數(shù)進行擬合[17-18],見式(11)—(14)。
(12)
圖3 ln-ln[sinh(ασ)]和ln[sinh(ασ)]-1/T關系曲線
圖4為中錳鋼的材料常數(shù)與真應變的多項式擬合曲線,真應變范圍為0.05~0.7。材料常數(shù)和ln的確定系數(shù)R2分別為0.940 3、0.995 3、0.975 4和0.957 3,而2的值越接近1,則表明回歸曲線對觀測值的擬合程度越好[19]。由此可見,考慮應變補償?shù)幕貧w方程整體的擬合度較高。
圖5為考慮應變補償?shù)钠囉弥绣i鋼的應力-應變曲線。由圖5可知,在變形溫度900~1 150 ℃、應變速率0.1~20 s?1的條件下,汽車用中錳鋼考慮應變補償?shù)牧髯儜Φ纳Ⅻc預測值與實測值吻合較好,表明考慮應變補償?shù)牧髯儜Ρ緲嫹匠炭梢暂^好地對汽車用中錳鋼的流變應力進行有效預測。
圖4 中錳鋼各材料常數(shù)與真應變的多項式擬合曲線
圖5 考慮應變補償?shù)钠囉弥绣i鋼的應力-應變曲線
進一步引入相關系數(shù)()和絕對平均誤差(AARE)來評估流變應力本構方程的預測精度[20-21]。在未考慮應變補償前,汽車用中錳鋼流變應力本構方程的相關系數(shù)為0.965、絕對平均誤差為4.97%,進行應變補償處理后,相關系數(shù)為0.986、絕對平均誤差3.36%。可見,相較于未考慮應變補償?shù)牧髯儜Ρ緲嫹匠?,考慮應變補償后相關系數(shù)變大,絕對平均誤差變小,這也說明考慮應變補償可以更好地對汽車用中錳鋼熱壓縮變形過程中的流變應力進行準確預測[22-25]。
1)汽車用中錳鋼的流變應力本構方程為
2)在變形溫度900~1 150 ℃、應變速率0.1~20 s?1的條件下,汽車用中錳鋼考慮應變補償?shù)牧髯儜Φ纳Ⅻc預測值與實測值吻合較好;進行應變補償處理后,汽車用中錳鋼流變應力本構方程的相關系數(shù)為0.986、絕對平均誤差3.36%,相較于未考慮應變補償?shù)牧髯儜Ρ緲嫹匠?,考慮應變補償后相關系數(shù)變大,絕對平均誤差變小??紤]應變補償可以更好地對汽車用中錳鋼熱壓縮變形過程中的流變行為進行準確預測。
[1] 趙征志, 陳偉健, 高鵬飛, 等. 先進高強度汽車用鋼研究進展及展望[J]. 鋼鐵研究學報, 2020, 32(12): 1059-1076.
ZHAO Zheng-zhi, CHEN Wei-jian, GAO Peng-fei, et al. Progress and Perspective of Advanced High Strength Automotive Steel[J]. Journal of Iron and Steel Research, 2020, 32(12): 1059-1076.
[2] 陳明昕, 楊曉江, 孟慶勇. 中錳鋼高溫熱塑性研究[J]. 鋼鐵研究學報, 2020, 32(6): 519-524.
CHEN Ming-xin, YANG Xiao-jiang, MENG Qing-yong. Study on High Temperature Thermoplasticity of Medium Manganese Steel[J]. Journal of Iron and Steel Research, 2020, 32(6): 519-524.
[3] 宋仁伯, 霍巍豐, 周乃鵬, 等. Fe-Mn-Al-C系中錳鋼的研究現(xiàn)狀與發(fā)展前景[J]. 工程科學學報, 2020, 42(7): 814-828.
SONG Ren-bo, HUO Wei-feng, ZHOU Nai-peng, et al. Research Progress and Prospect of Fe-Mn-Al-C Medium Mn Steels[J]. Chinese Journal of Engineering, 2020, 42(7): 814-828.
[4] 趙明杰, 黃亮, 李昌民, 等. 300M鋼的熱變形行為及熱鍛成形工藝研究現(xiàn)狀[J]. 精密成形工程, 2020, 12(6): 16-27.
ZHAO Ming-jie, HUANG Liang, LI Chang-min, et al. Research Status of the Hot Deformation Behaviors and Hot Forging Process of 300M Steel[J]. Journal of Netshape Forming Engineering, 2020, 12(6): 16-27.
[5] 何春雨, 余偉, 程知松, 等. 高強耐蝕車體用鋼熱變形行為及本構方程的研究[J]. 材料導報, 2021, 35(18): 18153-18162.
HE Chun-yu, YU Wei, CHENG Zhi-song, et al. Study on Thermal Deformation Behavior and Constitutive Equation of High Strength Corrosion-Resistant Car Body Steel[J]. Materials Reports, 2021, 35(18): 18153- 18162.
[6] CAI Z M, JI H C, PEI W C, et al. Hot Workability, Constitutive Model and Processing Map of 3Cr23Ni8Mn3N Heat Resistant Steel[J]. Vacuum, 2019, 165: 324-336.
[7] 楊大偉, 李偉, 林鶯鶯, 等. PH13-8Mo鋼熱變形行為及本構模型[J]. 鍛壓技術, 2021, 46(5): 234-239.
YANG Da-wei, LI Wei, LIN Ying-ying, et al. Hot Deformation Behavior and Constitutive Model for PH13-8Mo Steel[J]. Forging & Stamping Technology, 2021, 46(5): 234-239.
[8] 霍存龍, 霍元明, 何濤, 等. 40CrNiMo鋼高溫低速壓縮變形行為及微觀組織演變[J]. 材料熱處理學報, 2021, 42(8): 84-90.
HUO Cun-long, HUO Yuan-ming, HE Tao, et al. Deformation Behavior and Microstructure Evolution of 40CrNiMo Steel during High Temperature and Low Speed Compression[J]. Transactions of Materials and Heat Treatment, 2021, 42(8): 84-90.
[9] KISHOR B, CHAUDHARI G P, NATH S K. Hot Deformation Characteristics of 13Cr-4Ni Stainless Steel Using Constitutive Equation and Processing Map[J]. Journal of Materials Engineering and Performance, 2016, 25(7): 2651-2660.
[10] 邱宇, 袁飛, 曾元松, 等. 4Cr5MoSiV1熱作模具鋼的熱變形行為與熱加工圖[J]. 機械工程材料, 2021, 45(2): 71-77.
QIU Yu, YUAN Fei, ZENG Yuan-song, et al. Hot Deformation Behavior and Hot Processing Maps of 4Cr5MoSiV1 Hot Working Die Steel[J]. Materials for Mechanical Engineering, 2021, 45(2): 71-77.
[11] 王慶娟, 王欽仁, 杜忠澤, 等. 40Cr10Si2Mo鋼的熱變形模型及動態(tài)再結晶行為[J]. 鋼鐵, 2021, 56(11): 112-121.
WANG Qing-juan, WANG Qin-ren, DU Zhong-ze, et al. Hot Deformation Model and Dynamic Recrystallization Behavior of 40Cr10Si2Mo Steel[J]. Iron & Steel, 2021, 56(11): 112-121.
[12] 任勁宇, 陳飛, 張曉峰, 等. 鑄態(tài)ER8車輪鋼的熱變形行為及本構模型研究[J]. 鍛壓技術, 2021, 46(1): 202-207.
REN Jin-yu, CHEN Fei, ZHANG Xiao-feng, et al. Study on Hot Deformation Behavior and Constitutive Model of As-Cast ER8 Wheel Steel[J]. Forging & Stamping Technology, 2021, 46(1): 202-207.
[13] ZHANG H M, CHEN G, CHEN Q, et al. A Physically-Based Constitutive Modelling of a High Strength Aluminum Alloy at Hot Working Conditions[J]. Journal of Alloys and Compounds, 2018, 743: 283-293.
[14] 楊鵬, 寧靜, 蘇杰, 等. 新型低成本超高強度鋼熱變形行為研究[J]. 塑性工程學報, 2020, 27(7): 150-157.
YANG Peng, NING Jing, SU Jie, et al. Investigation on Hot Deformation Behavior of New Low Cost Ultra-High Strength Steel[J]. Journal of Plasticity Engineering, 2020, 27(7): 150-157.
[15] 張麗鳳. 汽車用6061鋁合金熱壓縮變形行為研究[J]. 塑性工程學報, 2020, 27(11): 174-181.
ZHANG Li-feng. Study on Hot Compression Deformation Behavior of 6061 Aluminum Alloy for Automobile[J]. Journal of Plasticity Engineering, 2020, 27(11): 174-181.
[16] WEN D X, LIN Y C, ZHOU Y. A New Dynamic Recrystallization Kinetics Model for a Nb Containing Ni-Fe-Cr-Base Superalloy Considering Influences of Initial δ Phase[J]. Vacuum, 2017, 141: 316-327.
[17] 張學忠, 劉建生, 何文武, 等. 12%Cr超超臨界轉子鋼熱變形行為及高溫塑性本構方程[J]. 鍛壓技術, 2020, 45(8): 184-189.
ZHANG Xue-zhong, LIU Jian-sheng, HE Wen-wu, et al. Hot Deformation Behavior and High Temperature Plastic Constitutive Equation for 12%Cr Ultra-Supercritical Rotor Steel[J]. Forging & Stamping Technology, 2020, 45(8): 184-189.
[18] SHAHRIARI B, VAFAEI R, SHARIFI E M, et al. Modeling Deformation Flow Curves and Dynamic Recrystallization of BA-160 Steel during Hot Compression[J]. Metals and Materials International, 2018, 24(5): 955-969.
[19] 張偉, 閆志杰, 王睿, 等. Fe–1.3C–5Cr–0.4Mo–0.4V超高碳鋼的熱變形行為與再結晶組織研究[J]. 機械工程學報, 2020, 56(12): 116-123.
ZHANG Wei, YAN Zhi-jie, WANG Rui, et al. Hot Deformation Behavior and Recrystallization Structure of Fe-1.3C-5Cr-0.4Mo-0.4V Ultra High Carbon Steel[J]. Journal of Mechanical Engineering, 2020, 56(12): 116-123.
[20] XIA Y N, ZHANG C, ZHANG L W, et al. A Comparative Study of Constitutive Models for Flow Stress Behavior of Medium Carbon Cr-Ni-Mo Alloyed Steel at Elevated Temperature[J]. Journal of Materials Research, 2017, 32(20): 3875-3884.
[21] PU E X, ZHENG W J, SONG Z G, et al. Characterization of Hot Deformation Behavior of a Fe-Cr-Ni-Mo-N Superaustenitic Stainless Steel Using Dynamic Materials Modeling[J]. Journal of Materials Engineering and Performance, 2017, 26(3): 1424-1432.
[22] CHEN F L, QU H T, WU W, et al. A Physical-Based Plane Stress Constitutive Model for High Strength AA7075 under Hot Forming Conditions[J]. Metals, 2021, 11(2): 314-319.
[23] 張佩佩, 隋大山, 齊珂, 等. 316LN鋼高溫流動應力與動態(tài)再結晶模型[J]. 塑性工程學報, 2014, 21(1): 44-51.
ZHANG P P, SUI D S, QI K, et al. Modeling of Flow Stress and Dynamic Recrystallization for 316LN Steel during Hot Deformation[J]. Journal of Plasticity Engineering, 2014, 21(1):44-51.
[24] LI N, HUANG Y, HAN R H, et al. Constitutive Modeling and Dynamic Recrystallization Mechanisms of an Ultralow-Carbon Microalloyed Steel during Hot Compression Tests[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2020, 35(5): 946-957.
[25] WU C F, CAI M H, YANG P R, et al. Physically-Based Modeling and Characterization of Hot Flow Behavior in an Interphase-Precipitated Ti-Mo Microalloyed Steel[J]. Metals, 2018, 8(4): 243.
Hot Compression Deformation Behavior of High Strength Medium Manganese Steel for Automobile
XIAO Zhen-hua1, FENG Ya-lei1, FENG Qi-sheng2,3, LUO Zhi-hui3
(1. College of Mechanical and Electrical Engineering, Henan Vocational College of Agriculture, Zhengzhou 451450, China; 2. School of Materials Science and Engineering, Henan University of Science and Technology, Henan Luoyang 471000, China; 3. Luoyang Zhongzhong Casting and Forging Co., Ltd., Henan Luoyang 471000, China)
The work aims to provide reference for the formulation of processing technology in industrial production of the third generation medium manganese steel for automobile. Gleeble-3800 thermal simulation testing machine was used to carry out the thermal compression treatment of medium manganese steel for automobile with deformation temperature of 900-1 150 ℃ and strain rate of 0.1-20 s?1(The deformation amount was 50%). Based on the stress and strain data under different hot compression deformation conditions, the flow stress constitutive equation of medium manganese steel was established, and the constitutive equation was strain compensated. The consistency between the predicted values of the rheological stress constitutive equation considering strain compensation and the experimental results was verified. The results showed that when the strain rate was constant, the peak stress of medium manganese steel decreased gradually with the increase of deformation temperature; when the deformation temperature remained unchanged, the peak stress of medium manganese steel increased gradually with the increase of strain rate. At deformation temperature of 900-1 150 ℃ and strain rate of 0.1~20 s?1, the scattered prediction value of flow stress considering strain compensation for medium manganese steel for automobile was in good agreement with the measured value; after strain compensation treatment, the correlation coefficient of the flow stress constitutive equation of medium manganese steel for automobile was 0.986, and the absolute average error was 3.36%. Compared with the flow stress constitutive equation without considering strain compensation, the correlation coefficient became larger and the absolute average error became smaller after considering strain compensation. The rheological stress constitutive equation considering strain compensation can accurately predict the rheological behavior of medium manganese steel for automobile during hot compression deformation.
medium manganese steel; deformation temperature; strain rate; constitutive equation; strain compensation
10.3969/j.issn.1674-6457.2023.02.015
TG142.1
A
1674-6457(2023)02-0125-07
2022?02?05
2022-02-05
河南省杰出人才創(chuàng)新基金(182102610014)
Henan Provincial Innovation Fund for Distinguished Talents (182102610014)
校振華(1984—),男,碩士,副教授,主要研究方向為汽車材料開發(fā)與應用。
XIAO Zhen-hua (1984-), Male, Master, Associate professor, Research focus: development and application of automobile materials.
校振華, 馮亞磊, 馮啟生, 等. 高強汽車中錳鋼的熱壓縮變形行為研究[J]. 精密成形工程, 2023, 15(2): 125-131.
XIAO Zhen-hua, FENG Ya-lei, FENG Qi-sheng, et al. Hot Compression Deformation Behavior of High Strength Medium Manganese Steel for Automobile [J]. Journal of Netshape Forming Engineering, 2023, 15(2): 125-131.