李亮,帥美榮,田恒光,王建梅,王輝綿
基于孔型形狀系數(shù)的雙相不銹鋼棒材寬展模型研究
李亮1,帥美榮1,田恒光1,王建梅1,王輝綿2
(1.太原科技大學(xué) 重型機(jī)械教育部工程研究中心,太原 030024;2.寶武集團(tuán)山西太鋼不銹鋼股份有限公司,太原 030003)
針對(duì)2209雙相不銹鋼棒材在開(kāi)坯軋制階段寬展計(jì)算精度不高、孔型設(shè)計(jì)不合理、容易產(chǎn)生“折疊”“耳子”等表面缺陷的問(wèn)題,建立一種基于“橢圓”孔型形狀系數(shù)的寬展模型,提高產(chǎn)品尺寸精度。建立11道次2209雙相不銹鋼開(kāi)坯軋制有限元模型,研究軋件溫度分布及“橢圓”孔型不同形狀系數(shù)對(duì)軋件寬展的影響,修正傳統(tǒng)С.И.古布金計(jì)算模型,并與實(shí)測(cè)數(shù)據(jù)進(jìn)行對(duì)比,驗(yàn)證修正后模型的可靠性。模擬軋制過(guò)程中,軋件溫度變化趨勢(shì)與實(shí)測(cè)值基本相同,11道次后溫降為91.87 ℃,且在孔型突變階段降幅較大。通過(guò)軋件每道次尺寸數(shù)據(jù)對(duì)比得出,С.И.古布金模型寬展計(jì)算偏差較大,在第8道次橢圓孔型偏差最大。不同形狀系數(shù)的橢圓孔型分別模擬軋制后,發(fā)現(xiàn)形狀系數(shù)為2時(shí),橢圓孔型充滿(mǎn)度為93.94%,下一道圓孔型充滿(mǎn)度為98.92%,此時(shí)軋出的產(chǎn)品尺寸精度高。修正后的寬展模型與實(shí)測(cè)值進(jìn)行對(duì)比,計(jì)算精度高于95%。構(gòu)建的形狀系數(shù)修正寬展模型提高了軋制寬展計(jì)算精度,可用于指導(dǎo)雙相不銹鋼開(kāi)坯軋制孔型設(shè)計(jì)及優(yōu)化。
雙相不銹鋼;開(kāi)坯軋制;數(shù)值模擬;形狀系數(shù);寬展模型
棒材開(kāi)坯軋制過(guò)程中,“箱形”孔型切槽淺,軋輥強(qiáng)度高,允許道次變形量大,軋制耗能少且共用性好,軋制效率高;“橢圓-圓”孔型變形均勻,可有效防止局部應(yīng)力的產(chǎn)生,軋件質(zhì)量好[1-3]。因此,“箱形”與“橢圓-圓”孔型構(gòu)成混合孔型系統(tǒng)廣泛應(yīng)用于棒線(xiàn)材軋制生產(chǎn)中。然而,軋件在“橢圓-圓”孔型中發(fā)生不規(guī)則塑性變形,其寬展難以預(yù)測(cè)與控制,從而影響軋件尺寸精度和力能參數(shù)計(jì)算等[4-6]。
目前,國(guó)內(nèi)外學(xué)者圍繞軋制成形技術(shù)進(jìn)行了大量研究和應(yīng)用,關(guān)于棒材軋制寬展的研究主要集中于諸如軋制速度、壓下量、軋制溫度、軋輥直徑及潤(rùn)滑條件等耦合因素,并且已經(jīng)形成較為成熟的關(guān)鍵技術(shù)研究和市場(chǎng)化應(yīng)用。謝紅飆等[7]研究了三輥減定徑機(jī)組軋制棒材的寬展模型,基于伸長(zhǎng)率為自變量的修正系數(shù)法修正采利柯夫?qū)捳鼓P?,單道次寬展?jì)算結(jié)果最大偏差為10%。常彬彬等[8]基于金屬流動(dòng)規(guī)律,推導(dǎo)并驗(yàn)證了圓軋件在“三角孔型”中變形及三角形軋件在“圓孔型”中變形的橫斷面計(jì)算方法,從而避開(kāi)了孔型填充系數(shù)的選取,提高了軋件橫斷面和寬展的計(jì)算精度。楊毅[9]研究了馬氏體不銹鋼95Cr18棒材連軋過(guò)程中的寬展,著重開(kāi)展了軋輥摩擦系數(shù)、軋制速度和軋制溫度的耦合影響研究,修正了筱倉(cāng)恒樹(shù)寬展公式。董永剛等[10]引入材料影響系數(shù),修正了經(jīng)典Shinokura寬展公式,并進(jìn)行了迭代優(yōu)化,推導(dǎo)出更精確的出口軋件平均等效高度和軋輥平均工作半徑,大大提高了寬展預(yù)測(cè)模型的精度。Esteban等[11]探究了軋機(jī)間張力對(duì)軋件寬展的影響,用于改善軋鋼產(chǎn)線(xiàn)控制器性能。Lambiase等[12]分析了壓下量、摩擦因數(shù)、軋件尺寸、軋輥直徑等關(guān)鍵工藝參數(shù)對(duì)低碳鋼棒線(xiàn)材寬展的影響,并擬合建立了寬展經(jīng)驗(yàn)公式來(lái)提高產(chǎn)品質(zhì)量。
然而,國(guó)產(chǎn)同類(lèi)不銹鋼棒材質(zhì)量與國(guó)外先進(jìn)水平相比還有一定差距,特別是雙相不銹鋼產(chǎn)品尺寸精度和表面缺陷比較突出,因此,需要從開(kāi)坯軋制源頭予以控制和調(diào)整。文中將開(kāi)坯孔型系統(tǒng)中使用頻率最高的“橢圓-圓”孔型系統(tǒng)作為研究對(duì)象,研究橢圓圓弧曲率,即橢圓形狀系數(shù)(定義為橢圓寬高比)對(duì)軋制寬展的影響規(guī)律,以及軋件在下一道次圓孔型中的成形質(zhì)量,以期獲得適合于2209雙相不銹鋼棒材的寬展計(jì)算模型,優(yōu)化開(kāi)坯塑性變形協(xié)調(diào)分配,提高產(chǎn)品質(zhì)量。
實(shí)驗(yàn)材料為2209雙相不銹鋼,坯料尺寸為220 mm′220 mm′1 500 mm,產(chǎn)品為86 mm圓棒。材料成分含量見(jiàn)表1。軋輥直徑850 mm,孔型系統(tǒng)為“箱-箱-箱-箱-箱-箱-變橢-橢圓-圓-橢圓-圓”,實(shí)際生產(chǎn)中各道次軋制速度見(jiàn)表2。在Gleeble-3800熱模擬實(shí)驗(yàn)機(jī)上對(duì)2209不銹鋼試樣進(jìn)行高溫壓縮實(shí)驗(yàn),實(shí)測(cè)得到其應(yīng)力-應(yīng)變曲線(xiàn)如圖1所示,并構(gòu)建如式(1)所示本構(gòu)方程。
表1 2209雙相不銹鋼的化學(xué)成分
Tab.1 Chemical composition of 2209 duplex stainless steel wt.%
表2 11道次軋制速度
Tab.2 Rolling speed of 11 passes
圖1 2209雙相不銹鋼應(yīng)力-應(yīng)變曲線(xiàn)
為了建立更準(zhǔn)確高效的有限元模型,必須了解軋制過(guò)程的基本特征,合理簡(jiǎn)化裝配模型的參數(shù)、載荷和邊界條件[13-18]。11道次開(kāi)坯軋制模型如圖2所示,假設(shè)條件如下:
1)熱軋過(guò)程中,與軋件塑性變形相比,軋輥的彈性變形很小,對(duì)軋件塑性變形的影響也很小,故將軋輥定義為恒溫剛性體,軋件定義為變形體。
2)軋輥與軋件材料屬性為均質(zhì)各向同性。
3)將開(kāi)坯軋制的11道次孔型單獨(dú)建模,為確保不形成連軋,孔型間距大于道次間軋件長(zhǎng)度;且每個(gè)軋輥慣性質(zhì)量均設(shè)為實(shí)際質(zhì)量。
圖2 有限元模型
4)軋件和軋輥均采用對(duì)稱(chēng)設(shè)置。
開(kāi)軋溫度為1 200 ℃,軋輥及環(huán)境溫度為20 ℃;軋件劃分網(wǎng)格共7 500個(gè),類(lèi)型為C3D8T,即八結(jié)點(diǎn)熱耦合六面體單元。高溫軋件與低溫軋輥發(fā)生的接觸定義為表面與表面接觸,摩擦系數(shù)為0.35;熱量交換最大為接觸面熱傳導(dǎo),接觸換熱系數(shù)與接觸面積、界面溫度、介質(zhì)材料等因素有關(guān),設(shè)為19 kW/(m2·℃)。軋件與周?chē)諝獍l(fā)生自由對(duì)流,根據(jù)材料高溫?zé)釋?dǎo)激光實(shí)驗(yàn)所測(cè)數(shù)據(jù),換熱系數(shù)為0.017 kW/(m2·℃),熱輻射發(fā)射率設(shè)為0.9。
溫度是影響軋件寬展的主要因素之一,圖3為第1道次(箱形孔型)、第8道次(橢圓孔型)、第11道次(圓孔型)出口端軋件斷面溫度分布圖??梢钥闯觯隹跀嗝婢哂邢嗤臏囟确植家?guī)律,即芯部溫度基本保持不變,始終約為1 200 ℃,這是由于大棒材開(kāi)坯階段軋制速度相對(duì)較慢,應(yīng)變速率小,塑性變形生熱少[19],溫度基本保持不變;此外,從芯部到表面,軋件溫度逐漸降低,與軋輥接觸區(qū)域金屬表面溫度最低,其與輥縫區(qū)域的金屬表面溫差約47 ℃,這是軋制過(guò)程中高溫軋件與低溫軋輥發(fā)生熱交換所致[20-21]。
11個(gè)軋制道次中,軋件溫度模擬值與實(shí)測(cè)值對(duì)比如圖4所示,二者變化趨勢(shì)基本相同。有限元模擬結(jié)果顯示,軋件溫降約91.87 ℃,實(shí)測(cè)結(jié)果溫降約97 ℃,二者相差5.13 ℃,偏差5.29%。周維海等[22]研究表明,氧化鐵皮的存在對(duì)工件的接觸傳熱和摩擦產(chǎn)生較大影響,隨著氧化鐵皮厚度的增大,由于其對(duì)工件的保溫作用,工件溫度升高。本研究中溫度實(shí)測(cè)值為表面氧化鐵皮的溫度,因此,實(shí)測(cè)值低于軋件表面溫度。此外,模擬值和實(shí)測(cè)值均顯示:軋件最大溫降出現(xiàn)在第8和第9道次,這主要是由于第8、9道次孔型形狀突變,軋件與軋輥接觸面大,表面接觸傳熱程度高。這與胡韜等[23]研究的模擬結(jié)果是一致的,在孔型系統(tǒng)形狀交變階段,容易引起軋件溫度較大幅度的下降,對(duì)于溫度敏感材料的性能穩(wěn)定性具有不良影響。
圖3 軋件出口斷面溫度分布
圖4 溫度模擬值與實(shí)測(cè)值對(duì)比
軋件出口斷面寬度能直接驗(yàn)證有限元模擬精度。有限元模擬第1道次(箱形孔型)、第8道次(橢圓孔型)、第11道次(圓孔型)軋件出口斷面應(yīng)力分布如圖5所示,可以觀察到軋件在不同孔型中塑性變形均勻,軋后幾何輪廓良好;等效應(yīng)力表面較大,逐漸滲入中心,能夠顯著改善鑄坯疏松和縮孔等內(nèi)部缺陷[24]。
表3對(duì)比了11道次軋件出口寬度模擬值與實(shí)測(cè)值,可以看出,模擬寬度最大偏差值為7.46 mm,出現(xiàn)在第7道次,該孔型為箱形孔型與橢圓孔型的過(guò)渡孔型;整體模擬偏差均保持在5 mm之內(nèi),模擬精度較高。
表3對(duì)11道次軋件寬度實(shí)際測(cè)量值、模擬值及С.И.古布金(С.И.Губкин)模型計(jì)算值也進(jìn)行了對(duì)比,可以看出,С.И.古布金計(jì)算偏差普遍較高,尤其是第7—10道次,寬展預(yù)測(cè)偏差均高于10 mm,最大偏差出現(xiàn)在第8道次橢圓孔,其偏差為17.34 mm,說(shuō)明該模型對(duì)于“橢圓-圓”孔型中軋件寬展計(jì)算具有局限性,需要進(jìn)一步修正。
圖5 應(yīng)力分布
表3 軋件各道次寬度對(duì)比
Tab.3 Wide comparison of each pass of rolling piece mm
根據(jù)上述分析,且在實(shí)際軋制過(guò)程中考慮到“箱形”孔型的壓下是均勻的,依照現(xiàn)有的寬展計(jì)算公式,可獲得和實(shí)際偏差較小的結(jié)果。但是對(duì)于“橢圓-圓”孔型系統(tǒng),由于接觸面為圓弧,沿寬度方向壓下不均勻,計(jì)算寬展的現(xiàn)有模型沒(méi)有考慮橢圓圓弧曲率,即橢圓形狀對(duì)于軋制寬展的影響導(dǎo)致寬展計(jì)算精度不高,孔型設(shè)計(jì)不合理。同時(shí),不同形狀系數(shù)的橢圓孔型軋出的軋件斷面形狀亦不同,在下一道次圓孔型中金屬流動(dòng)不同,從而影響軋件質(zhì)量。
為了深入分析橢圓形狀系數(shù)對(duì)寬展的影響,基于上述第10、11道次孔型,設(shè)定橢圓孔型面積一定,為7 112 mm2,橢圓形狀系數(shù)分別為1.25、1.5、1.75、2.0、2.25、2.5,圓孔型直徑為86 mm,構(gòu)成雙道次軋制模型。入口軋件尺寸和軋制溫度均參照第9道次出口軋件的數(shù)據(jù),其余邊界條件設(shè)置均與1.2節(jié)相同,模擬出口軋件截面如圖6所示。各組寬展模擬值如表4所示。
如圖6a、b所示,橢圓形狀系數(shù)為1.25、1.5時(shí),軋后軋件寬度大于孔型寬度,出現(xiàn)“耳子”缺陷,因此,前兩組數(shù)據(jù)不作為參考。如圖6c—f所示,隨著橢圓形狀系數(shù)的增大,橢圓孔內(nèi)軋件的寬度增大,即寬展增加。這是由于壓下量增加,變形區(qū)長(zhǎng)度增加,因而使金屬縱向流動(dòng)阻力增大,根據(jù)金屬流動(dòng)最小阻力定律,金屬沿橫向運(yùn)動(dòng)的趨勢(shì)增大,因而寬展加大。其次,橢圓形狀系數(shù)增大,則等效軋輥直徑增大,同樣使變形區(qū)長(zhǎng)度增加,軋件寬展增大。此外,當(dāng)橢圓形狀系數(shù)為2時(shí),橢圓孔型充滿(mǎn)度為93.94%;經(jīng)下一道圓孔型軋后,棒材寬度為86.06 mm,孔型充滿(mǎn)度為98.92%,此時(shí)“橢圓-圓”孔型軋出的產(chǎn)品尺寸精度高。
С.И.古布金寬展公式廣泛應(yīng)用于型鋼孔型計(jì)算[25],參數(shù)進(jìn)行等效替代后如式(2)所示。
表4 雙道次孔型軋制模擬尺寸及充滿(mǎn)度
Tab.4 Simulating size and fullness of double-pass rolling
圖6 不同橢圓形狀系數(shù)下雙道次孔型出口軋件截面
在式(2)中,m與m都與孔型形狀系數(shù)直接相關(guān)。對(duì)有限元模擬寬度值進(jìn)行數(shù)據(jù)擬合,孔型充滿(mǎn)度與孔型形狀系數(shù)(1.75~2.5)關(guān)系如圖7所示。擬合后的模型如式(3)所示,擬合相關(guān)度高達(dá)99.79%。
式中:為孔型充滿(mǎn)度;為孔型形狀系數(shù)。
將式(3)、孔型面積、軋輥輥縫代入式(2),構(gòu)建新型軋制寬展模型,如式(4)所示。
基于某鋼廠(chǎng)2209雙相不銹鋼不同產(chǎn)線(xiàn),對(duì)“橢圓”孔型出口處軋件的截面進(jìn)行實(shí)測(cè),取寬展平均值與理論計(jì)算值進(jìn)行對(duì)比,如表5所示??梢钥闯?,修正的寬度預(yù)測(cè)精度均高于傳統(tǒng)計(jì)算模型,且計(jì)算偏差不超過(guò)5%,可用于雙相不銹鋼產(chǎn)線(xiàn)孔型調(diào)整。
表5 軋件寬度對(duì)比
Tab.5 Width comparison of rolling piece
1)構(gòu)建了2209雙相不銹鋼高溫、大塑性變形11道次開(kāi)坯軋制有限元模型。結(jié)果表明,軋件溫度模擬值與實(shí)測(cè)值二者變化趨勢(shì)基本相同,且受第8和第9道次孔型形狀突變的影響,此處被迫出現(xiàn)最大溫降。有限元模擬結(jié)果顯示,11道次后軋件溫降約為91.87 ℃,實(shí)測(cè)溫降約為97 ℃,二者相差5.13 ℃,偏差5.29%。
2)構(gòu)建了不同形狀系數(shù)的橢圓孔型,并與圓孔型構(gòu)成雙道次軋制。結(jié)果表明,隨著橢圓形狀系數(shù)的增大,寬展增大;且當(dāng)形狀系數(shù)為2時(shí),橢圓孔型充滿(mǎn)度為93.94%,在后一道次圓孔型中充滿(mǎn)度最好,達(dá)到98.92%。
3)基于С.И.古布金寬展模型,結(jié)合孔型形狀系數(shù)與充滿(mǎn)度擬合關(guān)系,構(gòu)建了新型軋制寬展模型,并與實(shí)測(cè)值進(jìn)行對(duì)比,計(jì)算精度高于95%,可用于指導(dǎo)2209雙相不銹鋼棒材開(kāi)坯孔型設(shè)計(jì)及工藝參數(shù)優(yōu)化。
[1] 王青海, 孫世平, 茍復(fù)鋼, 等.75mm GCr15圓棒材孔型工藝優(yōu)化及數(shù)值模擬[J]. 中國(guó)冶金, 2021, 31(8): 77-82.
WANG Qing-hai, SUN Shi-ping, GOU Fu-gang, et al. Process Improvement and Numerical Simulation of75mm round Bar Pass Design[J]. China Metallurgy, 2021, 31(8): 77-82.
[2] 李松松, 李偉, 岳恒全, 等. 合金鋼棒材軋制的平均軋輥半徑計(jì)算模型[J]. 鋼鐵, 2022, 57(7): 115-124.
LI Song-song, LI Wei, YUE Heng-quan, et al. Analytical Model of Mean Roll Radius in Alloy Steel Bar Rolling[J]. Iron & Steel, 2022, 57(7): 115-124.
[3] AKSENOV S A, CHUMACHENKO E N, LOGASHINA I V, et al. Numerical Simulation in Roll Pass Design for Bar Rolling[J]. Metalurgija, 2015, 54(1): 75-78.
[4] DONG H L, KYONG B L, JAE S L, et al. A New Model for the Prediction of Width Spread in Roughing Mills[J]. Journal of Manufacturing Science and Engineering, 2014, 136(5): 051014.
[5] 余偉, 熊家澤, 雷力齊, 等. 軋制同軸復(fù)合棒材的芯材變形規(guī)律[J]. 鋼鐵研究學(xué)報(bào), 2016, 28(8): 33-38.
YU Wei, XIONG Jia-ze, LEI Li-qi, et al. Core Rod Deformation Principle of Rolled Coaxial Composite Bar[J]. Journal of Iron and Steel Research, 2016, 28(8): 33-38.
[6] SAKHAEI A H, SALIMI M, KADKHODAEI M. New Multi-Pass Hot Channel Section Rolling Design by the Finite Element Method[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2013, 227(12): 2742-2750.
[7] 謝紅飆, 任忠凱, 許秀梅, 等. 棒線(xiàn)材三輥連續(xù)減定徑機(jī)組力能及工藝參數(shù)設(shè)計(jì)[J]. 塑性工程學(xué)報(bào), 2017, 24(4): 42-46.
XIE Hong-biao, REN Zhong-kai, XU Xiu-mei, et al. Mechanical and Process Parameters Design of 3-Roll Reducing and Sizing Block for Bar and Wire[J]. Journal of Plasticity Engineering, 2017, 24(4): 42-46.
[8] 常彬彬, 帥美榮, 劉鑫. 棒材三輥孔型自由寬展流動(dòng)模型[J]. 鍛壓技術(shù), 2021, 46(11): 207-214.
CHANG Bin-bin, SHUAI Mei-rong, LIU Xin. Flow Model of Free Spread in Three-Roll Passes of Rod[J]. Forging & Stamping Technology, 2021, 46(11): 207-214.
[9] 楊毅. 不銹鋼棒材軋制過(guò)程的寬展模型及實(shí)驗(yàn)研究[D]. 秦皇島: 燕山大學(xué), 2021: 55-60.
YANG Yi. Widening Model and Experimental Research in the Rolling Process of Stainless Steel Bars[D]. Qinhuangdao: Yanshan University, 2021: 55-60.
[10] 董永剛, 張文志, 宋劍鋒. 圓-橢圓-圓孔型中軋制合金鋼棒材時(shí)寬展迭代模型的建立[J]. 塑性工程學(xué)報(bào), 2009, 16(2): 90-95.
DONG Yong-gang, ZHANG Wen-zhi, SONG Jian-feng. Accurate Spread Prediction Model in Alloyed Rod Rolling by Round-Oval-round Pass Sequence[J]. Journal of Plasticity Engineering, 2009, 16(2): 90-95.
[11] ESTEBAN L, ELIZALDE M R, OCA?A I. Mechanical Characterization and Finite Element Modelling of Lateral Spread in Rolling of Low Carbon Steels[J]. Journal of Materials Processing Technology, 2007, 183(2/3): 390-398.
[12] LAMBIASE F, DI ILIO A. Numerical and Experimental Investigation of Process Parameters Effect of Low Carbon Steel Wire Produced with Roll Drawing Process[J]. Key Engineering Materials, 2011, 473: 113-120.
[13] 周存龍, 呂澤強(qiáng), 張鐳, 等. 棒材DROF工藝粗軋階段工藝參數(shù)對(duì)軋件頭尾溫差的影響[J]. 塑性工程學(xué)報(bào), 2021, 28(10): 91-98.
ZHOU Cun-long, LYU Ze-qiang, ZHANG Lei, et al. Effect of DROF Process Parameters of Bar on Temperature Difference between rolling piece Head and Tail during Rough Rolling Stage[J]. Journal of Plasticity Engineering, 2021, 28(10): 91-98.
[14] WANG Hui-hang, GAO Xu-jie, ZHU Guang-ming, et al. Process Analysis and Hole Type Optimization of Micro-Groove Multi-Pass Rolling[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(3): 2201-2212.
[15] QU Fei-jun, XU Jian-zhong, JIANG Zheng-yi. Finite Element Analysis of Forward Slip in Micro Flexible Rolling of Thin Aluminium Strips[J]. Metals, 2019, 9(10): 1062.
[16] CAI Yan-cheng, WANG Li-ping, ZHOU Feng. Lean Duplex Stainless Steel Tubular Sections Undergoing Web Crippling at Elevated Temperatures[J]. Journal of Constructional Steel Research, 2021, 182: 106681.
[17] GORNYAKOV V, SUN Yong-le, DING Jia-luo, et al. Computationally Efficient Models of High Pressure Rolling for Wire Arc Additively Manufactured Components[J]. Applied Sciences, 2021, 11(1): 402.
[18] 張繼祥, 王華, 文輝. 304不銹鋼線(xiàn)材橢圓孔型冷連軋過(guò)程有限元模擬[J]. 精密成形工程, 2010, 2(1): 15-18.
ZHANG Ji-xiang, WANG Hua, WEN Hui. FEM Simulation on the Two Pass Continuous Cold Rolling of Oval Profile 304 Stainless Steel Wire[J]. Journal of Netshape Forming Engineering, 2010, 2(1): 15-18.
[19] 李明雷, 冼紀(jì)元. 大棒材軋制過(guò)程溫度場(chǎng)的數(shù)值模擬分析[J]. 一重技術(shù), 2012(4): 54-56.
LI Ming-lei, XIAN Ji-yuan. Numerical Modeling Analysis of Temperature Field of Bar Rolling Process[J]. CFHI Technology, 2012(4): 54-56.
[20] 李洋, 馬立峰, 姜正義, 等. AZ31鎂合金中厚板軋制溫度場(chǎng)的數(shù)值模擬與實(shí)驗(yàn)驗(yàn)證[J]. 稀有金屬材料與工程, 2019, 48(7): 2185-2192.
LI Yang, MA Li-feng, JIANG Zheng-yi, et al. Numerical Simulation and Experimental Verification of Temperature Field in Medium Plate Rolling of AZ31 Magnesium Alloy[J]. Rare Metal Materials and Engineering, 2019, 48(7): 2185-2192.
[21] BIAN Shou-yuan, ZHANG Xin, LI Sheng-li, et al. Numerical Simulation, Microstructure, Properties of EH40 Ultra-Heavy Plate under Gradient Temperature Rolling[J]. Materials Science and Engineering: A, 2020, 791: 139778.
[22] 周維海, 杜鳳山. 熱變形過(guò)程中氧化鐵皮對(duì)接觸傳熱及摩擦的影響[C]//制造業(yè)與未來(lái)中國(guó)——2002年中國(guó)機(jī)械工程學(xué)會(huì)年會(huì)論文集. 北京:中國(guó)機(jī)械工程學(xué)會(huì), 2002: 2506-2510.
ZHOU Wei-hai, DU Feng-shan. Effect of Iron Oxide on Contact Heat Transfer and Friction during Thermal Deformation[C]// Manufacturing and Future China - Proceedings of 2002 Annual meeting of China Mechanical Engineering Society. Beijing: Chinese Society of Mechanical Engineering, 2002: 2506-2510.
[23] 胡韜, 岳曉麗, 陳慧敏. P110石油管用鋼坯熱軋工藝數(shù)值模擬[J]. 鍛壓技術(shù), 2016, 41(11): 153-157.
HU Tao, YUE Xiao-li, CHEN Hui-min. Numerical Simulation on Steel Billet of Oil Well Pipe P110 in Hot Rolling[J]. Forging & Stamping Technology, 2016, 41(11): 153-157.
[24] 宮美娜, 李海軍, 王斌, 等. Nb-Ti連鑄坯熱芯大壓下軋制動(dòng)態(tài)再結(jié)晶行為研究[J]. 軋鋼, 2020, 37(1): 12-17.
GONG Mei-na, LI Hai-jun, WANG Bin, et al. Study on Dynamic Recrystallization in Nb-Ti Microalloyed Slab during Hot-Core Heavy Reduction Rolling[J]. Steel Rolling, 2020, 37(1): 12-17.
[25] 武大鵬, 陳文琳, 張文超, 等. 矩形鋼絲成形有限元模擬及工藝參數(shù)優(yōu)化[J]. 金屬制品, 2010, 36(1): 36-41.
WU Da-peng, CHEN Wen-lin, ZHANG Wen-chao, et al. Finite-Element Simulation of Rectangular Wire Shape and Optimization of Process Parameters[J]. Metal Products, 2010, 36(1): 36-41
Spreading Model of Duplex Stainless Steel Bar Based on the Shape Coefficient of Pass
LI Liang1, SHUAI Mei-rong1, TIAN Heng-guang1, WANG Jian-mei1, WANG Hui-mian2
(1. Engineering Research Center of Ministry of Heavy Machinery, Taiyuan University of Science and Technology, Taiyuan 030024, China; 2. Shanxi Taigang Stainless Steel Co., Ltd., Baowu Group, Taiyuan 030003, China)
The work aims to establish an "elliptical" hole shape coefficient based spreading model to solve the problems 2209 duplex stainless steel bar in the blank rolling stage, such as low calculation accuracy, unreasonable hole design, easy to produce "folding", "ear" and other surface defects, to improve the dimensional accuracy of product. By means of the finite element model of 11-pass billet rolling process of 2209 duplex stainless steel, the effects of temperature distribution of rolling pieces and different shape coefficients of elliptic pass on the width of rolling pieces was studied. The traditional C.И.Губкин calculation model was modified and compared with the measured data to verify the reliability of the modified model. The results showed that in the simulated rolling process, the temperature change trend of the rolling piece was basically the same as the measured value, and the temperature dropped by 91.87 ℃ after 11 passes, along with the decrease was large in the hole mutation stage. By comparing the size data of each roll, it was concluded that the calculation deviation of the C.И.Губкин model was large, and the deviation of the elliptical hole was the largest in the 8th pass. After simulated rolling of elliptical pass with different shape coefficients, it was found that the fullness of elliptical hole was 93.94% and the fullness of next round hole was 98.92% when the shape coefficient was 2, and the product size precision was high. The corrected spreading model is compared with the measured values with a calculation accuracy of higher than 95%. The modified shape coefficient model improves the calculation accuracy of rolling width and can be used to guide the hole design and optimization of duplex stainless steel billet rolling.
duplex stainless steel; billet rolling; numerical simulation; shape coefficient; spreading model
10.3969/j.issn.1674-6457.2023.02.010
TG306
A
1674-6457(2023)02-0078-08
2022?04?29
2022-04-29
山西省重點(diǎn)研發(fā)計(jì)劃(201903D121043);山西省先進(jìn)鋼鐵材料重點(diǎn)科技創(chuàng)新平臺(tái)建設(shè)項(xiàng)目(20201041);常州市領(lǐng)軍型創(chuàng)新人才引進(jìn)培育項(xiàng)目(CQ20200042);山西省研究生教育改革研究課題(2020YJJG241);山西省研究生教育創(chuàng)新項(xiàng)目(2022Y709)
Shanxi Province Key Research and Development Plan Project (201903D121043); Advanced Steel Materials Key Science and Technology Innovation Platform Construction Project of Shanxi Province (2020201041); Changzhou Leading Innovative Talents Introduction and Cultivation Project (CQ20200042); Shanxi Graduate Education Reform Research Project (2020YJJG241); Shanxi Graduate Education Innovation Project (2022Y709)
李亮(1997—),男,碩士生,主要研究方向?yàn)殡p相不銹鋼熱變形機(jī)理及關(guān)鍵技術(shù)。
LI Liang (1997-), Male, Postgraduate, Research focus: thermal deformation mechanism and key technology of duplex stainless steel.
帥美榮(1978—),女,博士,教授,主要研究方向?yàn)榻饘偎苄宰冃卫碚撆c技術(shù)。
SHUAI Mei-rong (1978-), Female, Doctor, Professor, Research focus: metal plastic deformation theory and technology.
李亮, 帥美榮, 田恒光, 等. 基于孔型形狀系數(shù)的雙相不銹鋼棒材寬展模型研究[J]. 精密成形工程, 2023, 15(2): 78-85.
LI Liang, SHUAI Mei-rong, TIAN Heng-guang, et al. Spreading Model of Duplex Stainless Steel Bar Based on the Shape Coefficient of Pass[J]. Journal of Netshape Forming Engineering, 2023, 15(2): 78-85.