祁紅學(xué),吳麗華,李利紅*
基于轉(zhuǎn)錄組分析外源H2S對擬南芥芥子油苷生物合成的影響
祁紅學(xué)1,吳麗華2,李利紅1*
(1.晉中學(xué)院化學(xué)化工系,山西 榆次 030619;2.太原師范學(xué)院生物系,山西 榆次 030619)
外源硫化氫(H2S)噴施擬南芥幼苗后,利用高通量測序技術(shù)對植株地上組織進(jìn)行轉(zhuǎn)錄組測序,分析差異表達(dá)基因的生物學(xué)功能和代謝通路,探究H2S對芥子油苷生物合成的調(diào)控作用.結(jié)果表明,100μmol/L H2S處理3d后,擬南芥植株共有3160個基因差異表達(dá),涉及細(xì)胞代謝、結(jié)合、催化、轉(zhuǎn)錄調(diào)控、物質(zhì)轉(zhuǎn)運(yùn)、信號轉(zhuǎn)導(dǎo)等過程.通過KEGG富集分析發(fā)現(xiàn),差異表達(dá)基因在多個初生代謝和次生代謝通路顯著富集,其中芥子油苷生物合成途徑中9個基因差異表達(dá)(8個上調(diào)和1個下調(diào)),均為參與脂肪族芥子油苷合成的關(guān)鍵酶基因,而吲哚族芥子油苷合成相關(guān)基因表達(dá)無明顯改變.同時,硫代謝、半胱氨酸和甲硫氨酸代謝、谷胱甘肽代謝途徑中多個基因上調(diào)表達(dá),說明外源H2S可增強(qiáng)體內(nèi)硫相關(guān)代謝活動,進(jìn)而促進(jìn)植物體內(nèi)脂肪族芥子油苷的合成.轉(zhuǎn)錄因子差異表達(dá)分析顯示,正向調(diào)控脂肪族芥子油苷合成的基因表達(dá)上調(diào),而抑制其合成的基因表達(dá)水平降低,說明H2S可通過調(diào)控MYB轉(zhuǎn)錄因子的表達(dá)來調(diào)節(jié)植物體內(nèi)脂肪族芥子油苷的合成.對芥子油苷生物合成途徑中部分關(guān)鍵酶基因及相關(guān)MYB轉(zhuǎn)錄因子表達(dá)模式進(jìn)行實(shí)時熒光定量PCR(qRT-PCR)分析,發(fā)現(xiàn)其與測序結(jié)果一致,證實(shí)了轉(zhuǎn)錄組測序結(jié)果的可靠性,同時也進(jìn)一步證明了H2S對植物體內(nèi)芥子油苷生物合成的調(diào)控作用.
H2S;擬南芥;轉(zhuǎn)錄組;芥子油苷;差異基因
硫化氫(H2S)是繼一氧化氮(NO)和一氧化碳(CO)之后的第三種氣體信號分子,不僅參與調(diào)控植物生長發(fā)育[1-2],還在植物抵抗逆境脅迫過程中發(fā)揮重要作用[3].Müller等[4]研究表明,H2S熏蒸有效增加擬南芥植株體內(nèi)谷胱甘肽(GSH)和半胱氨酸(Cys)含量,說明外源H2S促進(jìn)植物體內(nèi)的硫代謝過程,從而影響細(xì)胞內(nèi)的氧化還原狀態(tài).Chen等[5]發(fā)現(xiàn)外源H2S參與調(diào)控菠菜體內(nèi)可溶性糖、多胺、脯氨酸和甜菜堿的生物合成,增加葉片滲透勢和相對含水量,提高菠菜幼苗的耐旱性. Shi等[6]研究發(fā)現(xiàn),低濃度H2S誘導(dǎo)擬南芥體內(nèi)氨基酸、有機(jī)酸、糖及一些次級代謝產(chǎn)物含量增加,病程相關(guān)基因表達(dá)水平提高,植株抵抗生物脅迫的能力增強(qiáng).可見,H2S參與調(diào)節(jié)植物體內(nèi)多個生理代謝過程,從而提高植物對環(huán)境的適應(yīng)性.
芥子油苷是十字花科植物中一類重要的含氮、含硫的植物次生代謝物質(zhì),通常由β-D葡萄糖連接磺酸鹽醛肟基團(tuán)和來源于氨基酸的側(cè)鏈組成[7-8].根據(jù)側(cè)鏈氨基酸來源的不同,芥子油苷通常分為脂肪族、芳香族和吲哚族三大類.擬南芥中的芥子油苷以脂肪族和吲哚族為主[9].芥子油苷及其降解產(chǎn)物具有多種不同的生物活性,參與植物的防衛(wèi)反應(yīng),還具有抗癌和抗氧化活性等[10-11].已有研究表明,施加硫肥誘導(dǎo)油菜營養(yǎng)器官和花中芥子油苷含量均顯著升高,而持續(xù)缺硫?qū)е聰M南芥幼苗芥子油苷含量明顯下降,說明環(huán)境中硫含量直接影響芥子油苷的合成[12-13].此外,當(dāng)溫度、光照、水分等環(huán)境因子發(fā)生改變,或者植物受到昆蟲取食、病原菌侵害、機(jī)械損傷、鹽脅迫等時,植物會通過調(diào)節(jié)體內(nèi)芥子油苷的合成來增強(qiáng)其抗逆性,但是有關(guān)這些生物和非生物因素對芥子油苷代謝的調(diào)控機(jī)制并不清楚[14-15]. H2S是植物體內(nèi)重要的信號分子,也是硫代謝途徑中非常重要的中間產(chǎn)物,環(huán)境中的H2S可能會影響植物體內(nèi)的硫代謝過程,并參與調(diào)節(jié)芥子油苷的合成,進(jìn)而在植物逆境脅迫應(yīng)答過程中發(fā)揮重要作用.
H2S參與調(diào)控植物生理活動是涉及許多基因的復(fù)雜過程,利用高通量轉(zhuǎn)錄組測序能夠全面、快速地分析H2S對植物的影響及其分子機(jī)理,還能進(jìn)一步挖掘H2S在植物體中的生理功能.本研究以擬南芥為試材,外源噴施H2S后,采用高通量測序技術(shù)對其地上組織進(jìn)行轉(zhuǎn)錄組測序分析,研究植物響應(yīng)H2S的相關(guān)代謝途徑,闡明H2S對植物芥子油苷合成的調(diào)控機(jī)理,從而為植物抗逆生產(chǎn)實(shí)踐提供理論依據(jù).
擬南芥(L.)Columbia生態(tài)型(Col-0).4℃春化2d后播種于營養(yǎng)土中,培養(yǎng)溫度(22±1)℃,光/暗周期為16h/8h,光照強(qiáng)度140μmol/ m2/s,相對濕度約70%.
試驗(yàn)以NaHS作為外源H2S供體.取4周齡擬南芥植株,根據(jù)文獻(xiàn)資料及前期預(yù)實(shí)驗(yàn)的結(jié)果[5],我們選用50, 100, 200μmol/L H2S噴施擬南芥葉片.每隔3h噴1次,每天8:00~20:00共噴施4次.設(shè)置噴施等量蒸餾水的擬南芥植株為對照.每處理3次重復(fù),每重復(fù)20株擬南芥.在H2S噴施3d后,分別取各處理組擬南芥植株地上部分用于生理指標(biāo)、轉(zhuǎn)錄組測序和qRT-PCR分析.
過氧化氫(H2O2)含量測定采用分光光度法,丙二醛(MDA)含量測定用硫代巴比妥酸(TBA)反應(yīng)法,過氧化氫酶(CAT)活性測定用紫外吸收法,谷胱甘肽硫轉(zhuǎn)移酶(GST)活性采用1-氯-2,4-二硝基苯(CDNB)比色法,谷胱甘肽過氧化物酶(GPX)活性測定采用5,5′-二硫代雙(2-硝基苯甲酸)(DTNB)直接法.
100μmol/L H2S處理3d后,取對照組和H2S處理組擬南芥植株地上組織,用Trizol法提取總RNA,利用磁珠富集mRNA,經(jīng)RT-PCR擴(kuò)增構(gòu)建cNDA文庫.庫檢合格后,用Illumina平臺進(jìn)行測序. RNA提取、建庫和轉(zhuǎn)錄組測序均委托北京百邁克生物科技有限公司完成.
計(jì)算H2S處理組與對照組信號比值(Fold Change, FC),并用log2FC>1為標(biāo)準(zhǔn)篩選差異表達(dá)基因.運(yùn)用ClusterProfiler軟件對差異表達(dá)基因進(jìn)行GO功能注釋分析,根據(jù)KEGG數(shù)據(jù)庫對差異表達(dá)基因進(jìn)行KEGG通路富集分析.
表1 qRT-PCR引物序列
利用轉(zhuǎn)錄組測序提取的總RNA,PrimeScriptTMRT Master Mix (Takara) 試劑盒合成 cDNA作為模板,使用ABI 7500Real-Time PCR System對目的基因進(jìn)行擴(kuò)增,反應(yīng)體系參照SYBR Premix Ex TaqTMII(Takara)試劑盒的方法,反應(yīng)程序:94℃,30s;94℃, 5s,60℃,30s,40個循環(huán).以作為內(nèi)參基因,用2-??CT方法計(jì)算相對表達(dá)量.引物序列使用見表1.
由圖1可見,50μmol/L H2S處理后,擬南芥植株H2O2和MDA含量無明顯改變,抗氧化酶CAT活性和抗氧化物GSH含量增加,而GST和GPX活性與對照組相比無顯著變化.100μmol/L H2S處理誘導(dǎo)擬南芥植株H2O2含量增加,同時CAT活性顯著升高,GSH含量及GST和GPX活性提高,MDA含量與對照組相比顯著降低. 200 μmol/L H2S處理后,擬南芥植株體內(nèi)H2O2含量、CAT和GST活性無明顯變化,GSH含量和GPX活性、MDA含量顯著增加.
H2S參與調(diào)節(jié)植物的生長、發(fā)育、成熟和衰老過程,還可從不同水平增強(qiáng)植物應(yīng)答各種非生物脅迫和生物脅迫的能力[16-17].本研究中,H2S處理后擬南芥植株抗氧化酶CAT活性升高,GSH含量、GST和GPX活性提高,有效清除活性氧H2O2,說明適宜濃度H2S可提高植株抗氧化能力,尤其是提高含硫抗氧化物及其相關(guān)防御酶水平,增強(qiáng)植物對環(huán)境脅迫的耐受性.
結(jié)果表明,100μmol/L H2S處理引發(fā)細(xì)胞的生理防御.因此,我們選用該處理進(jìn)行轉(zhuǎn)錄組測序分析,研究H2S對植物的影響及其分子機(jī)理.
圖1 H2S處理對擬南芥植株中抗氧化能力的影響
100μmol/L H2S處理3d后,在擬南芥地上組織中共發(fā)現(xiàn)差異表達(dá)基因(DEG)3160個,其中上調(diào)表達(dá)基因1500個,下調(diào)表達(dá)基因1660個.對差異表達(dá)基因進(jìn)行GO功能注釋,將這些基因分為36類,歸納為細(xì)胞組分(Cellular Component)、生物過程(Biological Process)與分子功能(Molecular Function)三大部分(圖2).在細(xì)胞組分中,細(xì)胞、細(xì)胞成分、細(xì)胞器、膜組分富集差異基因較多;在生物過程中,細(xì)胞進(jìn)程、代謝過程、應(yīng)激反應(yīng)、生物調(diào)節(jié)過程富集差異基因較多;在分子功能中,結(jié)合、催化、轉(zhuǎn)錄、轉(zhuǎn)運(yùn)功能組富集差異基因較多.由此可見,H2S處理誘導(dǎo)擬南芥多個基因差異表達(dá),涉及細(xì)胞代謝、結(jié)合、催化、轉(zhuǎn)錄調(diào)控、物質(zhì)轉(zhuǎn)運(yùn)、信號轉(zhuǎn)導(dǎo)等過程.
圖2 H2S處理后擬南芥差異表達(dá)基因GO功能注釋
對H2S誘導(dǎo)的差異表達(dá)基因進(jìn)行KEGG通路注釋,發(fā)現(xiàn)共有1134個差異基因注釋到123個通路,分布在細(xì)胞過程、環(huán)境信息處理、遺傳信息處理、代謝和有機(jī)系統(tǒng)5大生物過程中.
通過KEGG富集分析發(fā)現(xiàn),在差異表達(dá)基因顯著富集的前20個通路中(圖3),有18個為代謝通路,包括谷胱甘肽代謝、2-氧代羧酸代謝、氨基酸代謝(半胱氨酸和甲硫氨酸代謝、苯丙氨酸、酪氨酸和色氨酸生物合成、纈氨酸、亮氨酸和異亮氨酸降解、氨基酸的生物合成、纈氨酸、亮氨酸和異亮氨酸生物合成)、脂質(zhì)代謝(甘油磷脂代謝、脂肪酸代謝、α-亞麻酸代謝、類固醇生物合成、不飽和脂肪酸的生物合成、亞油酸代謝)、糖類代謝(淀粉和蔗糖代謝、糖酵解/糖異生、半乳糖代謝)、次級代謝產(chǎn)物合成(芥子油苷生物合成和異喹啉生物堿生物合成),說明H2S參與調(diào)控植物的多個初生代謝和次生代謝過程.
圖3 H2S處理后擬南芥差異表達(dá)基因KEGG富集通路
外源H2S處理后,擬南芥轉(zhuǎn)錄組差異表達(dá)基因顯著富集于氨基酸、糖類和脂質(zhì)代謝途徑的多個通路中.氨基酸可用于蛋白質(zhì)合成,還能作為一些次生代謝產(chǎn)物合成的前體,促進(jìn)細(xì)胞內(nèi)的次生代謝產(chǎn)物的積累[18].糖類不僅可為植物的生長發(fā)育提供能量,還可作為信號分子參與調(diào)節(jié)基因和蛋白的表達(dá)、細(xì)胞周期、初生和次生代謝及生長和發(fā)育進(jìn)程等[19-20].脂質(zhì)作為主要的生物分子,在植物中發(fā)揮著結(jié)構(gòu)成分、能量存儲、信號分子和表面覆蓋物等重要作用[21].因此,H2S信號分子參與植物體內(nèi)氨基酸、糖類和脂質(zhì)的代謝調(diào)控,進(jìn)而影響植物的生長發(fā)育及逆境脅迫應(yīng)答過程.
2.4.1 芥子油苷生物合成途徑基因表達(dá)分析 芥子油苷是一種廣泛存在于十字花科植物中的次生代謝產(chǎn)物. H2S處理后,擬南芥植株芥子油苷生物合成途徑中共9個基因顯著差異表達(dá),上調(diào)表達(dá)基因8個,下調(diào)表達(dá)基因1個.與氨基酸側(cè)鏈延長有關(guān)的氨基酸氨基轉(zhuǎn)移酶(branched-chain-amino-acid aminotransferase,和)、異丙基蘋果酸脫氫酶(isopropylmalate dehydrogenase,)、異丙基蘋果酸脫氫酶異構(gòu)酶(isopropylmalate isomerase,和)基因上調(diào)表達(dá),下調(diào)表達(dá).參與芥子油苷核心結(jié)構(gòu)形成的細(xì)胞色素P450單加氧酶(cytochrome P450,和)、磺基轉(zhuǎn)移酶(sulfotransferase 17,)基因表達(dá)上調(diào).
進(jìn)一步研究發(fā)現(xiàn),、、、、/和均為參與脂肪族芥子油苷合成途徑的關(guān)鍵基因,而吲哚族芥子油苷合成途徑基因無明顯改變,說明響應(yīng)外源H2S的主要是脂肪族芥子油苷.Kim等[22]報道增加硫水平能明顯增加油菜中脂肪族芥子油苷含量. Chen等[23]發(fā)現(xiàn)白菜中脂肪族芥子油苷的含量受供硫水平的影響很大,而吲哚族芥子油苷的含量主要受到供氮水平的影響.這可能是因?yàn)檫胚嶙褰孀佑蛙帐怯缮彼嵫苌鴣?而脂肪族芥子油苷側(cè)鏈來源于甲硫氨酸,受環(huán)境中供硫水平的影響更明顯[24-25].
2.4.2 硫代謝和谷胱甘肽代謝途徑基因表達(dá)分析 H2S處理后,擬南芥植株硫代謝途徑中共有9個基因顯著差異表達(dá),上調(diào)表達(dá)基因8個,下調(diào)表達(dá)基因1個.上調(diào)表達(dá)基因分別為腺苷酰硫酸還原酶1/2/3 ()、腺苷酰硫酸激酶1/2/3()、絲氨酸乙酰轉(zhuǎn)移酶4()和半胱氨酸合酶(),下調(diào)表達(dá)基因?yàn)镺-乙酰絲氨酸(硫醇)裂解酶().
在谷胱甘肽代謝途徑中,共有顯著差異表達(dá)基因22個,上調(diào)表達(dá)基因16個,下調(diào)表達(dá)基因6個.其中,多個谷胱甘肽硫轉(zhuǎn)移酶(glutathione S-transferase,和)、谷胱甘肽過氧化物酶(glutathione peroxidase,和)和脫氫抗壞血酸還原酶(dehydroascorbate reductase,和)基因表達(dá)水平顯著提高.
外源H2S處理后,擬南芥硫代謝途徑、谷胱甘肽代謝途徑中多個基因上調(diào)表達(dá),說明環(huán)境中的H2S可促進(jìn)體內(nèi)硫還原產(chǎn)物半胱氨酸的合成,進(jìn)而生成抗氧化物質(zhì)谷胱甘肽,同時其相關(guān)防御酶GST和GPX基因表達(dá)水平和活性提高,在植物逆境脅迫應(yīng)答過程中發(fā)揮重要作用[26-27].同時,外源H2S增強(qiáng)植物體內(nèi)硫相關(guān)代謝過程,為脂肪族芥子油苷合成提供硫供體,從而促進(jìn)脂肪族芥子油苷的合成代謝,介導(dǎo)植物對外界環(huán)境刺激的防御性反應(yīng).
轉(zhuǎn)錄因子通過激活或抑制基因的表達(dá),在植物的生長發(fā)育、形態(tài)建成及對外界環(huán)境的反應(yīng)中起著重要的調(diào)控作用[28-29]. H2S處理后,擬南芥植株共有307個轉(zhuǎn)錄因子差異表達(dá),其中上調(diào)表達(dá)131個,下調(diào)表達(dá)176個.其中,AP2/ERF差異表達(dá)共41個,占到13.36%;WRKY共22個,占到7.17%;MYB共20個,占到6.51%,bZIP共17個,占到5.54%;DREB和C2H2均為7個,分別占到2.28%;bHLH為5個,占到1.63%;TCP和HSF均為4個,分別占到1.30%;NAC為3個,所占比例為0.98%(表2).
表2 H2S處理后擬南芥差異表達(dá)的部分轉(zhuǎn)錄因子
研究表明,植物MYB轉(zhuǎn)錄因子如MYB28、MYB29、MYB76、MYB34和MYB51參與芥子油苷代謝網(wǎng)絡(luò)的調(diào)控[30-31].本研究中,H2S處理后,正向調(diào)控脂肪族芥子油苷合成的表達(dá)顯著上調(diào),而抑制脂肪族芥子油苷合成的表達(dá)水平降低,說明H2S可通過調(diào)控MYB轉(zhuǎn)錄因子表達(dá)促進(jìn)植物體內(nèi)脂肪族芥子油苷的合成.
為了證實(shí)測序結(jié)果的可靠性,對芥子油苷生物合成途徑中的關(guān)鍵差異表達(dá)基因及相關(guān)轉(zhuǎn)錄因子進(jìn)行qRT-PCR分析.結(jié)果表明(圖4),H2S處理后,、、和基因表達(dá)量分別為對照的3.26倍、2.21倍、3.71倍和1.97倍,基因表達(dá)量為對照的68.28%,與測序的結(jié)果一致,說明由測序篩選出的差異表達(dá)基因的信息是可靠的,同時也進(jìn)一步證明了H2S可通過調(diào)控擬南芥芥子油苷生物合成途徑關(guān)鍵酶基因和相關(guān)的轉(zhuǎn)錄因子,參與調(diào)節(jié)體內(nèi)芥子油苷的合成代謝.本研究將為深入挖掘H2S對植物次生代謝的調(diào)控機(jī)制提供理論參考,同時也提示可以利用外源H2S提高植物體內(nèi)次級代謝產(chǎn)物的含量,從而增強(qiáng)植物抵御生物和非生物脅迫的能力.
圖4 H2S處理后擬南芥差異表達(dá)基因的qRT-PCR分析
3.1 本文利用轉(zhuǎn)錄組測序技術(shù),研究發(fā)現(xiàn)外源H2S誘導(dǎo)擬南芥3160個基因差異表達(dá),參與調(diào)節(jié)植物體內(nèi)多個初生代謝和次生代謝過程,為深入探索H2S在植物中的生理功能提供大量分子水平的數(shù)據(jù)參考.
3.2 H2S通過提高擬南芥芥子油苷生物合成途徑關(guān)鍵酶和相關(guān)轉(zhuǎn)錄因子的基因表達(dá)水平,同時增強(qiáng)硫相關(guān)代謝活動,促進(jìn)體內(nèi)脂肪族芥子油苷的合成,從而抵御不良環(huán)境對植物的侵害.
[1] 尚玉婷,張妮娜,上官周平,等.硫化氫在植物中的生理功能及作用機(jī)制 [J]. 植物學(xué)報, 2018,53(4):565-574.
Shang Y T, Zhang N N, Shangguan Z P, et al. Physiological function and mechanism of hydrogen sulfide in plants [J]. Bulletin of Botany, 2018,53(4):565-574.
[2] Xuan L, Li J, Wang X, et al. Crosstalk between hydrogen sulfide and other signal molecules regulates plant growth and development [J]. Internaional Journal of Molecular Sciences, 2020,21:4593.
[3] Zhang J, Zhou M, Zhou H, et al. Hydrogen sulfide, a signaling molecule in plant stress responses [J]. Journal of Integrative Plant Biology, 2021,63(1):146-160.
[4] Müller M, De Kok L J, Weidner W, et al. Differential effects of H2S on cytoplasmic and nuclear thiol concentrations in different tissues ofroots [J]. Plant Physiology and Biochemistry, 2002,40:585- 589.
[5] Chen J, Shang Y T, Wang W H, et al. Hydrogen sulfide-mediated polyamines and sugar changes are involved in hydrogen sulfide- induced drought tolerance inseedlings [J]. Frontiers in Plant Science, 2016,7:1173.
[6] Shi H, Ye T, Han B, et al. Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in[J]. Journal of Integrative Plant Biology, 2015,l57:628-640.
[7] Thinh Nguyen V P, Stewart J, Lopez M, et al. Glucosinolates: natural occurrence, biosynthesis, accessibility, isolation, structures, and biological activities [J]. Molecules, 2020,25(19):4537.
[8] Mitreiter S, Gigolashvili T. Regulation of glucosinolate biosynthesis [J]. Journal of Experimental Botany, 2021,72(1):70-91.
[9] Harun S, Abdullah-Zawawi M R, Goh H H, et al. A comprehensive gene inventory for glucosinolate biosynthetic pathway in[J]. Journal of Agricultural and Food Chemistry, 2020,68(28): 7281-7297.
[10] Poveda J, Eugui D, Velasco P. Natural control of plant pathogens through glucosinolates: an effective strategy against fungi and oomycetes [J]. Phytochemistry Reviews, 2020,19(4):1045-1059.
[11] Liu Z C, Wang H P, Xie J M, et al. The roles of cruciferae glucosinolates in disease and pest resistance [J]. Plants, 2021,10(6): 1097.
[12] Mao P, Li Q, Li Y, et al. The beneficial functions of blue light supplementary on the biosynthesis of glucosinolates in pakchoi (L. ssp.) under greenhouse conditions [J]. Environmental and Experimental Botany, 2022,197:104834.
[13] Rangkadilok N, Nieolas M E, Bennett R N, et al. The effect of sulfur fertilizer on glucoraphanin levels in Broccoli (L. var.) at different growth stages [J]. Journal of Agricultural and Food Chemistry, 2004,52(9):2632-3639.
[14] 陳亞州,陳思學(xué),閻秀峰.環(huán)境對植物芥子油苷代謝的影響 [J]. 生態(tài)學(xué)報, 2008,28(6):2828-2833.
Chen Y Z, Chen S X, Yan X F. Effect of environment on glucosinolate metabolism in plant [J]. Acta Ecologica Sinica, 2008,28(6):2828- 2833.
[15] 龐秋穎,陳思學(xué),于 濤,等.鹽脅迫對擬南芥和鹽芥蓮座葉芥子油苷含量的影響 [J]. 生態(tài)學(xué)報, 2011,31(16):4534-4541.
Pang Q Y, Chen S X, Yu T, et al. Effects of salt stress onglucosinolate contents inandrosette leaves [J]. Acta Ecologica Sinica, 2011,31(16):4534-4541.
[16] Li G, Shah A A, Khan W U, et al. Hydrogen sulfide mitigates cadmium induced toxicity inby modulating physiochemical attributes, osmolyte metabolism and antioxidative machinery [J]. Chemosphere, 2021,263:127999.
[17] 裴雁曦.植物中的氣體信號分子硫化氫:無香而立,其臭如蘭 [J]. 中國生物化學(xué)與分子生物學(xué)報, 2016,32(7):721-733.
Pei Y X. Gasotransmitter hydrogen sulfide in plants: stinking to high heaven, but refreshing to fine life [J]. Chinese Journal of Biochemistry and Molecular Biology, 2016,32(7):721-733.
[18] Amir R, Galili G, Cohen H. The metabolic roles of free amino acids during seed development [J]. Plant Science, 2018,275:11-18.
[19] Miao H, Cai C, Wei J, et al. Glucose enhances indolic glucosinolate biosynthesis without reducing primary sulfur assimilation [J]. Scientific Reports, 2016,6:31854.
[20] 張 琳,范曉明,林 青,等.錐栗種仁轉(zhuǎn)錄組及淀粉和蔗糖代謝相關(guān)酶基因的表達(dá)分析 [J]. 植物遺傳資源學(xué)報, 2015,16(3):603-611.
Zhang L, Fan X M, Lin Q, et al. Transcriptome analysis for developing kernel and expression analysis of starch and sucrose metabolism- related genes in[J]. Journal of Plant Genetic Resources, 2015,16(3):603-611.
[21] Li-Beisson Y, Beisson F, Riekhof W. Metabolism of acyl-lipids in[J]. Plant Journal, 2015,82(3):504-522.
[22] Kim S J, Matsuo T, Watanabe M, et al. Effect of nitrogen and sulphur application on the glucosinolate content in vegetable turnip rape (L.) [J]. Soil Science and Plant Nutrition, 2002,48: 43-49.
[23] Chen X J, Zhu Z J, Ni X L, et al. Effect of nitrogen and sulfur supply on glucosinolates inssp.[J]. Agricultural Sciences in China, 2006,5(8):603-608.
[24] Li L, Zhang H, Chai X, et al. Transcriptome and proteome conjoint analysis revealed that exogenous sulfur regulates glucosinolate synthesis in Cabbage [J]. Plants, 2021,10(10):2104.
[25] Heikal Y M, El-Esawi M A, Galilah D A. Morpho-anatomical, biochemical and molecular genetic responses of canola (L.) to sulphur application [J]. Environmental and Experimental Botany, 2022,194:104739.
[26] Birke H, De Kok L J, Wirtz M, et al. The role of compartment-specific cysteine synthesis for sulfur homeostasis during H2S exposure in[J]. Plant and Cell Physiology, 2015,56:358-367.
[27] 李利紅,郭宇茹,侯俊鑫,等.H2S信號在擬南芥響應(yīng)SO2脅迫過程中的作用[J]. 中國環(huán)境科學(xué), 2022,42(6):2904-2910.
Li L H, Guo Y R, Hou J X, et al. Functions of H2S signal in response to SO2stress in[J]. China Environmental Science, 2022,42(6):2904-2910.
[28] Gigolashvili T, Berger B, Flügge U I. Specific and coordinated control of indolic and aliphatic glucosinolate biosynthesis by R2R3-MYB transcription factors in[J]. Phytochemistry Reviews, 2009,8:3–13.
[29] Pireyre M, Burow M. Regulation of MYB and bHLH transcription factors: A glance at the protein level [J]. Molecular Plant, 2015,8(3): 378-388.
[30] Zuluaga D L, Graham N S, Klinder A, et al. Overexpression of the MYB29 transcription factor affects aliphatic glucosinolate synthesis in[J]. Plant Molecular Biology, 2019,101:65–79.
[31] Frerigmann H, Gigolashvili T. MYB34, MYB51, and MYB122 distinctly regulate indolic glucosinolate biosynthesis in[J]. Molecular Plant, 2014,7(5):814-828.
Effect of H2S on glucosinolate biosynthesis inbased on transcriptomics.
QI Hong-xue1, WU Li-hua2, LI Li-hong1*
(1.Department of Chemistry and Chemical Engineering, Jinzhong University, Yuci 030619, China;2.Department of Biology, Taiyuan Normal University, Yuci 030619, China)., 2023,43(2):957~963
Glucosinolates are a group of nitrogen- and sulfur-containing secondary metabolites in cruciferous plants, which are closely related to environmental factors. In this study, transcriptome sequencing oftreated with hydrogen sulfide (H2S) was performed, and the biological functions and metabolic pathways of differentially expressed genes were analyzed to explore the regulatory effect of H2S on glucosinolate biosynthesis in plants. The results showed that a total of 3160 genes were differentially expressed inseedlingssprayed with 100μmol/L H2S for 3 days, including genes involved in metabolism, binding, catalysis, transcription regulation, transport and signal transduction. KEGG enrichment analysis showed that differentially expressed genes were significantly enriched in multiple primary and secondary metabolism. After exogenous H2S treatment, nine genes (8up-regulated and 1down-regulated) involved in aliphatic glucosinolates biosynthesis were identified to be differentially expressed, but genes associated with indole glucosinolates biosynthesis showed no obvious change. Meantime, several genes that participated in sulfur metabolism, cysteine and methionine metabolism, and glutathione metabolism were up-regulated, suggesting that exogenous H2S can enhance sulfur-related metabolic pathways, which would promote the aliphatic glucosinolates biosynthesis in plants. Transcription factor analysis showed thatwas up-regulated, which could positively regulate the aliphatic glucosinolates biosynthesis. And, which would inhibit the aliphatic glucosinolates biosynthesis, was down-regulated. These results suggested that H2S could regulate the aliphatic glucosinolates biosynthesis in plants through MYB transcription factors. The qRT-PCR analysis of several genes involved in the glucosinolate biosynthesis verified the accuracy of transcriptomic sequencing, which further proved that H2S participated in the regulation of glucosinolate biosynthesis in plants.
hydrogen sulfide;;transcriptome;glucosinolate;differentially expressed gene
X171.5
A
1000-6923(2023)02-0957-07
祁紅學(xué)(1981-),男,甘肅通渭人,副教授,博士,主要研究方向?yàn)樯鷳B(tài)毒理學(xué).發(fā)表論文10余篇.
2022-07-12
國家自然科學(xué)基金資助項(xiàng)目(21307087);山西省應(yīng)用基礎(chǔ)研究計(jì)劃項(xiàng)目(201901D111299,201901D111301)
* 責(zé)任作者,副教授,lihongli19821129@163.com