陳建珍 穆麒麟
摘要:干旱脅迫和高鹽脅迫是農(nóng)業(yè)生產(chǎn)上面臨的兩大主要非生物脅迫,嚴重危害作物的生長生產(chǎn),導致作物的產(chǎn)量和質(zhì)量顯著降低。因此,提高作物抵抗逆境脅迫的能力已成為當下亟待解決的問題。利用有益菌與作物建立互惠共生關(guān)系,提高作物的抗逆性,已成為幫助作物應對環(huán)境變化、增產(chǎn)增質(zhì)的一種經(jīng)濟有效且綠色環(huán)保的措施。印度梨形孢是一種可以體外培養(yǎng)的根內(nèi)生真菌,寄主范圍廣泛,能與多種作物互作共生。本文系統(tǒng)總結(jié)了干旱和鹽脅迫條件下,印度梨形孢定殖促進作物的營養(yǎng)生長和生殖生長,提高作物的抗氧化能力、維持光合系統(tǒng)的穩(wěn)定性和細胞溶質(zhì)的離子穩(wěn)態(tài),激活脅迫相關(guān)的基因和蛋白質(zhì),增強作物的抗逆性,緩解脅迫危害等的研究。該研究可為農(nóng)業(yè)的可持續(xù)發(fā)展和印度梨形孢潛在價值的深層次開發(fā)提供參考。
關(guān)鍵詞:印度梨形孢;干旱脅迫;鹽脅迫;內(nèi)生真菌;互惠共生
中圖分類號:S311;S182? 文獻標志碼:A
文章編號:1002-1302(2023)24-0011-10
印度梨形孢是擔子菌門(Basidiomycota)蠟殼耳目(Sebacinales)的一種根內(nèi)生真菌,可以在室內(nèi)進行純化培養(yǎng),最初從印度塔爾沙漠灌木的根際土壤中分離摩西球囊霉(Glomus mosseae)孢子時所得,寄主范圍廣泛,可定殖于單子葉植物和雙子葉植物的根部,促進植物生長,增強營養(yǎng)吸收,提高植物抵抗逆境脅迫的能力[1-3]。印度梨形孢采取雙相定殖策略——早期營養(yǎng)生長,之后在植物根部建立菌落,殺死并定殖于活的根細胞,與植物根系建立互惠共生關(guān)系[4]。接種印度梨形孢24~48 h,孢子幾乎遍及檢測根段的所有區(qū)域,主要集中在根毛附近;接種48 h后,孢子成功萌發(fā),穿透表皮細胞,定殖于根皮層的地上組織,在細胞間和細胞內(nèi)生長,在根皮層和根際區(qū)形成梨形厚垣孢子[5-7]。
1 印度梨形孢與干旱脅迫
氣候變化已成為限制作物生產(chǎn)的一個重要因素,目前已有10%以上的耕地受到不同程度的影響。預計到2050年,平均作物產(chǎn)量將下降50%以上[7]。干旱是制約農(nóng)業(yè)可持續(xù)發(fā)展的關(guān)鍵環(huán)境因素,干旱和半干旱地區(qū)40%以上的農(nóng)場都受到不同程度的影響[8]。干旱脅迫不僅影響作物的表觀性狀,抑制生長、降低產(chǎn)量,而且對作物的生理、生化特性和分子特性產(chǎn)生嚴重的負面影響[9-11]。目前,應對干旱脅迫的措施主要有3種:(1)作物通過形態(tài)變化、生理和生化反應來逃避或抵抗干旱;(2)培育節(jié)水抗旱品種;(3)利用有益菌(如印度梨形孢)與植物建立互惠共生關(guān)系。其中,利用真菌-作物的互惠共生提高作物的抗旱能力,既是植物適應環(huán)境脅迫的一種策略,也是幫助作物避旱或抗旱的一種經(jīng)濟、有效措施[12]。本研究從印度梨形孢接種方式、定殖測定時間、干旱處理和對作物的影響等方面系統(tǒng)地歸納和總結(jié)了印度梨形孢定殖于不同的作物,促進其生長、提高其抵抗干旱脅迫能力的研究(表1)。
1.1 印度梨形孢促進作物生長,降低干旱脅迫的負面影響
印度梨形孢能與水稻、小麥、大麥、水稻和指粟(穇子)等多種作物互作共生,促進作物的營養(yǎng)生長和生殖生長,使根長、根體積、根干(鮮)質(zhì)量、莖干(鮮)質(zhì)量、葉片數(shù)量、葉面積、株高和生物產(chǎn)量增加[6,10,13-19];使番茄的果實質(zhì)量、數(shù)量和總產(chǎn)量增加[3];使抽穗期提前,株高、穗長、灌漿籽粒的數(shù)量、單株粒質(zhì)量和穗數(shù)增加,產(chǎn)量和品質(zhì)提高[20-21]。
1.2 印度梨形孢調(diào)控干旱脅迫相關(guān)的代謝過程,提高作物的抗旱能力
1.2.1 提高抗氧化能力 干旱脅迫條件下,印度梨形孢能提高抗氧化物酶活性,激活活性氧清除系統(tǒng),提高對活性氧和其他破壞植物細胞的自由基的脅迫耐受性。印度梨形孢定殖能提高作物葉片的過氧化物酶、過氧化氫酶、超氧化物歧化酶、谷胱甘肽還原酶、抗壞血酸過氧化物酶和愈創(chuàng)木酚過氧化物酶等多種抗氧化物酶的活性,降低丙二醛積累,維持過氧化氫含量的穩(wěn)定,提高作物的解毒能力[3,13,15-16,23-24]。Saddique等研究發(fā)現(xiàn),印度梨形孢定殖使脯氨酸合成關(guān)鍵酶——吡咯啉-5-羧酸合成酶(P5CS)的活性上調(diào),脯氨酸含量增加,葉片總抗氧化能力提升[10]。Tsai等研究發(fā)現(xiàn),印度梨形孢定殖促進了過氧化氫酶和谷胱甘肽還原酶的活性升高,使還原型谷胱甘肽和氧化型谷胱甘肽的比值升高,脯氨酸含量增加,提高了稻株的抗氧化能力,減小了膜損傷,降低了丙二醛含量,對超氧化物歧化酶和抗壞血酸過氧化物酶的活性沒有顯著影響[21]。Hosseini等研究發(fā)現(xiàn),印度梨形孢定殖促進了小麥根長、根體積、葉片水勢、葉片相對含水量和葉綠素含量顯著升高,過氧化氫酶和抗壞血酸過氧化物酶活性顯著降低,脯氨酸含量無顯著變化;而且接種印度梨形孢改善了小麥的生長發(fā)育,促進了水分和營養(yǎng)物質(zhì)的吸收,降低了脅迫引起的氧化損傷[14]。這可能與印度梨形孢調(diào)節(jié)脅迫誘導的氧化應激,抑制植物細胞中活性氧(ROS)的形成和過度積累,增強作物抗脅迫能力有關(guān)[25-26]。有研究認為,印度梨形孢與作物共生能產(chǎn)生生長素,瞬時提高抗壞血酸過氧化物酶活性,同時降低過氧化氫酶活性[27-28]。
1.2.2 維持光合系統(tǒng)穩(wěn)定 光合作用是植物生長發(fā)育的關(guān)鍵生理過程。干旱脅迫使類囊體膜退化、光合色素降解加速,破壞電子傳遞反應,限制光合作用,導致作物的產(chǎn)量和質(zhì)量顯著降低[29]。印度梨形孢定殖促進了受干旱脅迫影響的小麥、藜麥、水稻、指粟等作物的營養(yǎng)生長,增加了葉綠素含量和光合參數(shù),延緩了脅迫誘導的光合效率下降以及葉綠素和類囊體蛋白降解,減小了光合損害[3,10,13,15,23]。Tsai等研究發(fā)現(xiàn),印度梨形孢接種提高了稻株的葉綠素含量,促進了氣孔關(guān)閉、葉溫升高,F(xiàn)v/Fm增加,葉片萎蔫程度和光合效率損害程度降低[21]。
1.2.3 調(diào)控受干旱脅迫作物的分子特性 干旱脅迫條件下,印度梨形孢定殖使葉片中干旱相關(guān)基因DREB2A、CBL1、ANAC072、RD29A及miR159、miR396的表達水平上調(diào),使類囊體膜Ca2+敏感調(diào)節(jié)因子(Ca2+-sensing regulator)的CAS mRNA水平和CAS蛋白量增加[22,25];增加了參與光合作用、抗氧化防御系統(tǒng)和能量運輸?shù)鹊牡鞍踪|(zhì)水平[6];改變了碳氮代謝,重新分配資源;重新編碼了參與應激反應、氧化還原和信號轉(zhuǎn)導的蛋白質(zhì)合成;增強或維持了干旱脅迫作物中膜相關(guān)蛋白的存在;改變了參與泛素——蛋白酶體途徑和自噬體形成中的蛋白質(zhì)變化,減輕了脅迫危害[19]。Zhang等研究發(fā)現(xiàn),印度梨形孢通過增強根部的氧化潛能,重新平衡碳、硫代謝,激活激素功能基因(對脫落酸、生長素、水楊酸和細胞分裂素有反應的基因),提高了作物的抗旱能力[17]。
綜上,干旱脅迫條件下,印度梨形孢定殖激活了抗氧化酶系統(tǒng),提高了抗氧化能力;減輕了光合器官的受損程度,維持了光合器官的穩(wěn)定性;提高了功能基因和蛋白質(zhì)的表達,協(xié)調(diào)代謝過程,促進作物生長,提高了作物抵抗干旱脅迫的能力(圖1)。
2 印度梨形孢與鹽脅迫
土壤和灌溉水中的高鹽含量是嚴重危害作物生長的全球性問題,根際過量的離子損害作物根系的生長發(fā)育,隨后向地上部分逐漸轉(zhuǎn)移并累積,破壞作物的新陳代謝,導致作物生長受阻、產(chǎn)量降低。預測到2050年,全球超過50%的耕地將鹽堿化[30-31]。高鹽含量對作物的主要危害包括:(1)抑制必需酶的活性,影響細胞分裂和細胞擴張,導致膜紊亂和滲透失衡,使生長受阻、產(chǎn)量下降;(2)引起細胞代謝毒性和離子穩(wěn)態(tài)失衡;(3)降低土壤孔隙度以及水和土壤間的氣體傳導率,改變土壤的完整結(jié)構(gòu),導致土壤水勢降低,阻礙礦物養(yǎng)分吸收;(4)造成光合作用的氣孔限制、光合速率降低和活性氧過量產(chǎn)生,導致氧化應激損傷[32-38]。研究發(fā)現(xiàn),大約4/5的農(nóng)作物可以與有益的土壤微生物形成互惠共生關(guān)系,為緩解鹽分脅迫提供一種更快、更具成本效益和環(huán)保效益的解決方案[39-45]。本研究從印度梨形孢接種方式、定殖測定時間、鹽脅迫處理和對作物的影響等方面系統(tǒng)地歸納和總結(jié)了印度梨形孢定殖不同的作物后促進作物生長、提高作物抵抗鹽脅迫的研究(表2)。
2.1 印度梨形孢促進作物生長,降低鹽脅迫的負面影響
鹽脅迫條件下,印度梨形孢定殖促進了大麥、水稻、番茄、苜蓿、胡盧巴等的生長,使根分支增多,根長度、側(cè)根密度、根體積、根冠比、根干質(zhì)量(鮮質(zhì)量)、莖長度、莖干質(zhì)量(鮮質(zhì)量)、葉片數(shù)量、葉面積、幼苗的生物量、單株果實的數(shù)量及質(zhì)量增加,降低脅迫危害[31,46-51]。
2.2 印度梨形孢調(diào)控鹽脅迫相關(guān)的代謝過程,提高作物的抗鹽能力
2.2.1 調(diào)節(jié)離子穩(wěn)態(tài) 鹽脅迫條件下,印度梨形孢通過成功定殖在擬南芥、水稻、大麥、番茄和白菜等多種作物的根部,調(diào)節(jié)Na+和K+的濃度以及 Na+/K+ 比值,降低高鹽毒害。印度梨形孢定殖降低了葉片和根系中Na+濃度,增加了根和葉中K+的濃度,降低了Na+/K+[37,41,47-48];減少了Na+向地上部分(莖和芽)的吸收和運輸,使枝條中的Na+和K+含量降低,保護光合組織免受離子毒害[52]。K+不僅是維持作物最佳生長生產(chǎn)的必需養(yǎng)分,還是作物應對環(huán)境變化的重要信號分子[53]。脅迫條件下,維持細胞溶質(zhì)K+穩(wěn)態(tài)和Na+/K+內(nèi)穩(wěn)態(tài)已成為作物耐受鹽脅迫的基本機制,對于植物的生長和發(fā)育非常重要[48,54]。印度梨形孢定植使玉米根部K+外流降低,枝條中K+含量升高,玉米的耐鹽性提高[55]。隨著NaCl濃度的增加,根部Na+和K+含量顯著增加,當NaCl濃度增加到200 mmol/L時,枝條中Na+含量顯著增加,印度梨形孢接種能顯著降低根和枝條中的Na+和K+含量,減輕離子毒害[43]。 過高的鹽濃度不僅造成離子穩(wěn)態(tài)失衡,還會減少植株對多種營養(yǎng)元素的吸收,印度梨形孢定殖促進了磷的吸收,使白菜根和枝條中的P含量升高,一定程度上緩解了鹽脅迫對作物代謝過程的抑制作用[52]。
2.2.2 提高抗氧化能力 植物在進化過程中在形態(tài)、生理生化和分子水平上形成了多種防御機制,以抵抗逆境脅迫。如產(chǎn)生脯氨酸、甘氨酸、甜菜堿等滲透調(diào)節(jié)物質(zhì),協(xié)調(diào)酶抗氧化劑和非酶抗氧化劑的作用[56-57]。
印度梨形孢成功定殖番茄、苜蓿、白菜和水稻等多種作物,激活活性氧清除系統(tǒng),增加了過氧化物酶、過氧化氫酶、超氧化物歧化酶等抗氧化物酶的活性,誘導了脯氨酸積累,減輕了活性氧和其他自由基對作物細胞的破壞作用,使脂質(zhì)過氧化程度降低,電解質(zhì)滲透率減小,使花青素含量、丙二醛含量和溶液相對電導率降低,脅迫耐受性提高[37,43,49-50,52]。鹽脅迫條件下,印度梨形孢定殖增加了番茄根中脯氨酸、甘氨酸、甜菜堿和可溶性糖含量,有助于保持有利的水勢梯度,便于作物從土壤中吸收水分,降低受害程度[41]。
2.2.3 誘導抗鹽相關(guān)基因 作物通過調(diào)節(jié)膜轉(zhuǎn)運基因的表達來對抗鹽脅迫中Na+過量積累和K+缺乏;定位于液泡膜的NHX蛋白不僅對K+的有效攝取、膨壓調(diào)節(jié)和氣孔運動起著至關(guān)重要的作用,而且還參與K+穩(wěn)態(tài)和作物耐鹽性調(diào)節(jié)[37,58]。Shabala等研究發(fā)現(xiàn),鹽脅迫的主要有害影響是通過去極化激活的外向整流K+(GORK)以及ROS激活的非選擇性K+可滲透陽離子通道(NSCC)來上調(diào)根細胞的K+流出[59]。鹽脅迫條件下,印度梨形孢定殖擬南芥、苜蓿、白菜等作物,增強了編碼高親和力鉀轉(zhuǎn)運蛋白(HKT1)和內(nèi)向整流K+通道KAT1和KAT2的基因轉(zhuǎn)錄水平,使脯氨酸合成關(guān)鍵酶——δ1-吡咯烷-5-羧酸合成酶基因(P5CS2)、防御相關(guān)基因PR1和PR10以及轉(zhuǎn)錄因子MtAlfin1-like和C2H2型鋅指蛋白MtZfp-C2H2、鹽超敏感(SOS)信號通路(SOS1和SOS2)以及NHX型Na+/H+逆向轉(zhuǎn)運蛋白(NHX1)的基因高表達,降低了Na+/K+,提高了作物的耐鹽性[48-49,52,60]。Jogawat等從根內(nèi)生真菌印度梨形孢中分離出酵母HOG1同源物(PiHOG1),通過RNA干擾技術(shù)在印度梨形孢中轉(zhuǎn)化得到PiHOG1基因沉默轉(zhuǎn)化子KD (knockdown),在200 mmol/L NaCl脅迫下,與對照相比,接種KD的水稻生物量、莖長、根長和根數(shù)、光合色素和脯氨酸含量顯著降低,說明PiHOG1參與了印度梨形孢對鹽害的反應,在水稻抵抗鹽脅迫中起重要作用[61]。Nivedita等研究發(fā)現(xiàn),鹽脅迫條件下,印度梨形孢定殖水稻,與細胞壁修飾酶、植物激素和受體樣激酶相關(guān)的基因被誘導。表明,激素串擾、信號傳導和細胞壁動態(tài)之間的協(xié)同作用有助于促進印度梨形孢定殖的水稻生長,提高耐鹽性[50]。
2.2.4 維持光合系統(tǒng)的穩(wěn)定性 鹽脅迫條件下,印度梨形孢定殖使水稻、擬南芥、番茄等作物的葉綠素和類胡蘿卜素含量增加[37,46,48],葉片相對含水量、葉片水勢、凈光合速率、胞間CO2濃度、氣孔導度、蒸騰速率、光系統(tǒng)Ⅱ的光化學效率升高,提高了作物抵抗鹽脅迫的能力[41,43,52,55]。Ghorbani等研究發(fā)現(xiàn),高鹽濃度抑制了番茄的生長和光合作用,印度梨形孢接種提高了葉綠素含量、類胡蘿卜素含量、氣孔導度和凈光合速率,降低了胞間CO2濃度,減輕了鹽脅迫對光器官的傷害,提高了光合效率,促進番茄生長[41]。
綜上,鹽脅迫條件下,印度梨形孢定殖降低了Na+/K+,維持了離子穩(wěn)態(tài);激活了抗氧化酶系統(tǒng),提高了抗氧化能力,誘導了抗鹽相關(guān)基因的表達,促進了多種代謝過程的協(xié)同作用,增加了光合色素含量,降低了光合器官的損害,提高了光合效率,促進作物生長,提高作物抵抗鹽脅迫的能力(圖2)。
3 結(jié)論與展望
干旱脅迫和高鹽脅迫導致作物的生長環(huán)境進一步惡化,抑制作物的生長生產(chǎn),導致產(chǎn)量和質(zhì)量顯著降低。利用有益菌與作物建立互惠共生關(guān)系,是應對環(huán)境變化、維持農(nóng)業(yè)可持續(xù)發(fā)展的一種友好健康方式。印度梨形孢是一種可以在多種培養(yǎng)基上培養(yǎng)的根內(nèi)生真菌,可以促進作物生長、提高作物抵抗逆境脅迫的能力??茖W家從形態(tài)、生理、生化、分子等方面開展了有關(guān)印度梨形孢促進作物生長、提高作物的抗逆能力的相關(guān)研究并對其機制做了深度解析,但是,脅迫條件下作物的他感作用、印度梨形孢成功定殖后調(diào)節(jié)脅迫過程的關(guān)鍵候選基因的功能、不同激素的調(diào)控路徑及其路徑間的相互作用等還需深入探討。印度梨形孢可用作促生劑、營養(yǎng)吸收增強劑、生物防治劑、免疫調(diào)節(jié)劑和生物肥料等,在現(xiàn)在和今后的農(nóng)業(yè)生產(chǎn)上應用前景都非常廣泛,今后需要進一步合理有效地開發(fā)其潛力,形成商業(yè)生產(chǎn)模式并成功推廣應用到農(nóng)業(yè)生產(chǎn),推進農(nóng)作物綠色栽培和農(nóng)業(yè)可持續(xù)發(fā)展。
參考文獻:
[1]Unnikumar K R,Sree K S,Varma A. Piriformospora indica:a versatile root endophytic symbiont[J]. Symbiosis,2013,60(3):107-113.
[2]Gill S S,Gill R,Trivedi D K,et al. Piriformospora indica:potential and significance in plant stress tolerance[J]. Frontiers in Microbiology,2016,7:332.
[3]Abdelaziz M E,Abdeldaym E A,Sabra M A. The root endophytic fungus Piriformospora indica improves growth performance,physiological parameters and yield of tomato under water stress condition[J]. Middle East Journal of Agriculture Research,2018,7(3):1090-1101.
[4]Zuccaro A,Lahrmann U,Güldener U,et al. Endophytic life strategies decoded by genome and transcriptone analyses of the mutualistic root symbiont Piritormospora indica[J]. PLoS Pathogens,2011,7(10):e1002290.
[5]Varma A,Bakshi M,Lou B G,et al. Piriformospora indica:a novel plant growth-promoting mycorrhizal fungus[J]. Agricultural Research,2012,1(2):117-131.
[6]Ghabooli M,Khatabi B,Ahmadi F S,et al. Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley[J]. Journal of Proteomics,2013,94:289-301.
[7]Hussin S,Khalifa W,Geissler N,et al. Influence of the root endophyte Piriformospora indica on the plant water relations,gas exchange and growth of Chenopodium quinoa at limited water availability[J]. Journal of Agronomy and Crop Science,2017,203(5):373-384.
[8]Gohari A,Eslamian S,Abedi-Koupaei J,et al. Climate change impacts on crop production in Irans Zayandeh-Rud River Basin[J]. Science of the Total Environment,2013,442:405-419.
[9]Takahashi S,Badger M R .Photoprotection in plants:a new light on photosystem Ⅱ damage[J]. Trends in Plant Science,2011,16(1):53-60.
[10]Saddique M A B,Ali Z,Khan A S,et al. Inoculation with the endophyte Piriformospora indica significantly affects mechanisms involved in osmotic stress in rice[J]. Rice,2018,11(1):1-12.
[11]Boorboori M R,Zhang H Y. The role of Serendipita indica (Piriformospora indica) in improving plant resistance to drought and salinity stresses[J]. Biology,2022,11(7):952.
[12]Rajput S,Sengupta P,Kohli I,et al. Role of Piriformospora indica in inducing soil microbial communities and drought stress tolerance in plants[M]//New and future developments in microbial biotechnology and bioengineering. Amsterdam:Elsevier,2022:93-110.
[13]Yaghoubian Y,Goltapeh E M,Pirdashti H,et al. Effect of Glomus mosseae and Piriformospora indica on growth and antioxidant defense responses of wheat plants under drought stress[J]. Agricultural Research,2014,3(3):239-245.
[14]Hosseini F,Mosaddeghi M R,Dexter A R. Effect of the fungus Piriformospora indica on physiological characteristics and root morphology of wheat under combined drought and mechanical stresses[J]. Plant Physiology and Biochemistry,2017,118:107-120.
[15]Tyagi J,Varma A,Pudake R N. Evaluation of comparative effects of arbuscular mycorrhiza (Rhizophagus intraradices) and endophyte (Piriformospora indica) association with finger millet (Eleusine coracana) under drought stress[J]. European Journal of Soil Biology,2017,81:1-10.
[16]Xu L,Wang A A,Wang J,et al. Piriformospora indica confers drought tolerance on Zea mays L. through enhancement of antioxidant activity and expression of drought-related genes[J]. The Crop Journal,2017,5(3):251-258.
[17]Zhang W Y,Wang J,Xu L,et al. Drought stress responses in maize are diminished by Piriformospora indica[J]. Plant Signaling & Behavior,2018,13(1):e1414121.
[18]Hosseini F,Mosaddeghi M R,Dexter A R,et al. Maize water status and physiological traits as affected by root endophytic fungus Piriformospora indica under combined drought and mechanical stresses[J]. Planta,2018,247(5):1229-1245.
[19]Ghaffari M R,Mirzaei M,Ghabooli M,et al. Root endophytic fungus Piriformospora indica improves drought stress adaptation in barley by metabolic and proteomic reprogramming[J]. Environmental and Experimental Botany,2019,157:197-210.
[20]Ahmadvand G,Hajinia S. Effect of endophytic fungus Piriformospora indica on yield and some physiological traits of millet (Panicum miliaceum) under water stress[J]. Crop and Pasture Science,2018,69(6):594.
[21]Tsai H J,Shao K H,Chan M T,et al. Piriformospora indica symbiosis improves water stress tolerance of rice through regulating stomata behavior and ROS scavenging systems[J]. Plant Signaling & Behavior,2020,15(2):1722447.
[22]Mohsenifard E,Ghabooli M,Mehri N,et al. Regulation of miR159 and miR396 mediated by Piriformospora indica confer drought tolerance in rice[J]. Journal of Plant Molecular Breeding,2017,5(1):10-18.
[23]Sun C,Johnson J M,Cai D G,et al. Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes,the expression of drought-related genes and the plastid-localized CAS protein[J]. Journal of Plant Physiology,2010,167(12):1009-1017.
[24]Swetha S,Padmavathi T. Mitigation of drought stress by Piriformospora indica in Solanum melongena L. cultivars[J]. Proceedings of the National Academy of Sciences,India Section B:Biological Sciences,2020,90(3):585-593.
[25]Marulanda A,Porcel R,Barea J M,et al. Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus species[J]. Microbial Ecology,2007,54(3):543-552.
[26]Kumar M,Yadav V,Tuteja N,et al. Antioxidant enzyme activities in maize plants colonized with Piriformospora indica[J]. Microbiology,2009,155(3):780-790.
[27]Sirrenberg A,Gbel C,Grond S,et al. Piriformospora indica affects plant growth by auxin production[J]. Physiologia Plantarum,2007,131(4):581-589.
[28]Pasternak T P,tvs K,Domoki M,et al. Linked activation of cell division and oxidative stress defense in alfalfa leaf protoplast-derived cells is dependent on exogenous auxin[J]. Plant Growth Regulation,2007,51(2):109-117.
[29]Liu X,Li L M,Li M J,et al. AhGLK1 affects chlorophyll biosynthesis and photosynthesis in peanut leaves during recovery from drought[J]. Scientific Reports,2018,8:2250.
[30]Jamil A,Riaz S,Ashraf M,et al. Gene expression profiling of plants under salt stress[J]. Critical Reviews in Plant Sciences,2011,30(5):435-458.
[31]Reshna O P,Beena R,Joy M,et al. Elucidating the effect of growth promoting endophytic fungus Piriformospora indica for seedling stage salinity tolerance in contrasting rice genotypes[J]. Journal of Crop Science and Biotechnology,2022,25(5):583-598.
[32]Requena N,Perez-Solis E,Azcón-Aguilar C,et al. Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems[J]. Applied and Environmental Microbiology,2001,67(2):495-498.
[33]Tuteja N. Mechanisms of high salinity tolerance in plants[J]. Methods in Enzymology,2007,428:419-438.
[34]Chaves M M,F(xiàn)lexas J,Pinheiro C. Photosynthesis under drought and salt stress:regulation mechanisms from whole plant to cell[J]. Annals of Botany,2009,103(4):551-560.
[35]Jouyban Z. The effects of salt stress on plant growth[J]. Technical Journal Engineering and Applied Sciences,2012,2(1):7-10.
[36]Porcel R,Aroca R,Ruiz-Lozano J M.Salinity stress alleviation using arbuscular mycorrhizal fungi.A review[J]. Agronomy for Sustainable Development,2012,32(1):181-200.
[37]Abdelaziz M E,Abdelsattar M,Abdeldaym E A,et al. Piriformospora indica alters Na+/K+ homeostasis,antioxidant enzymes and LeNHX1 expression of greenhouse tomato grown under salt stress[J]. Scientia Horticulturae,2019,256:108532.
[38]Alif Ali B S,Beena R,Stephen K. Combined effect of high temperature and salinity on growth and physiology of rice (Oryza sativa L.)[J]. Agricultural Research Journal,2021,58(5):783-788.
[39]Andrés-Barrao C,Lafi F F,Alam I,et al. Complete genome sequence analysis of Enterobacter sp. SA187,a plant multi-stress tolerance promoting endophytic bacterium[J]. Frontiers in Microbiology,2017,8:2023.
[40]de Zélicourt A,Synek L,Saad M M,et al. Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2-keto-4-methylthiobutyric acid production[J]. PLoS Genetics,2018,14(3):e1007273.
[41]Ghorbani A,Razavi S M,Ghasemi Omran V O,et al. Piriformospora indica inoculation alleviates the adverse effect of NaCl stress on growth,gas exchange and chlorophyll fluorescence in tomato (Solanum lycopersicum L.)[J]. Plant Biology,2018,20(4):729-736.
[42]Ghorbani A,Razavi S M,Omran V O G,et al. Piriformospora indica alleviates salinity by boosting redox poise and antioxidative potential of tomato[J]. Russian Journal of Plant Physiology,2018,65(6):898-907.
[43]Hassani D,Khalid M,Huang D F,et al. Morphophysiological and molecular evidence supporting the augmentative role of Piriformospora indica in mitigation of salinity in Cucumis melo L.[J]. Acta Biochimica et Biophysica Sinica,2019,51(3):301-312.
[44]de Vries F T,Griffiths R I,Knight C G,et al. Harnessing rhizosphere microbiomes for drought-resilient crop production[J]. Science,2020,368(6488):270-274.
[45]Manikanta C L N,Beena R,Rejeth R. Root anatomical traits influence water stress tolerance in rice (Oryza sativa L.)[J]. Journal of Crop Science and Biotechnology,2022,25(4):421-436.
[46]Jogawat A,Saha S,Bakshi M,et al. Piriformospora indica rescues growth diminution of rice seedlings during high salt stress[J]. Plant Signaling & Behavior,2013,8(10):e26891.
[47]Alikhani M,Khatabi B,Sepehri M,et al. A proteomics approach to study the molecular basis of enhanced salt tolerance in barley (Hordeum vulgare L.) conferred by the root mutualistic fungus Piriformospora indica[J]. Molecular BioSystems,2013,9(6):1498-1510.
[48]Abdelaziz M E,Kim D,Ali S,et al. The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na+/K+ homeostasis under salt stress conditions[J]. Plant Science,2017,263:107-115.
[49]Li L,Li L,Wang X Y,et al. Plant growth-promoting endophyte Piriformospora indica alleviates salinity stress in Medicago truncatula[J]. Plant Physiology and Biochemistry,2017,119:211-223.
[50]Nivedita,Gazara R K,Khan S,et al. Comparative transcriptome profiling of rice colonized with beneficial endophyte,Piriformospora indica,under high salinity environment[J]. Molecular Biology Reports,2020,47(10):7655-7673.
[51]Sanskriti B,Shatrupa S,Madhulika S,et al. Augmentative role of Piriformospora indica fungus and plant growth promoting bacteria in mitigating salinity stress in Trigonella foenum-graecum[J]. Journal of Applied Biology & Biotechnology,2022,10(1):85-94.
[52]Khalid M,Hassani D,Liao J L,et al. An endosymbiont Piriformospora indica reduces adverse effects of salinity by regulating cation transporter genes,phytohormones,and antioxidants in Brassica campestris ssp. chinensis[J]. Environmental and Experimental Botany,2018,153:89-99.
[53]Anschütz U,Becker D,Shabala S.Going beyond nutrition:regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment[J]. Journal of Plant Physiology,2014,171(9):670-687.
[54]Shabala S.Signalling by potassium:another second messenger to add to the list?[J]. Journal of Experimental Botany,2017,68(15):4003-4007.
[55]Yun P,Xu L,Wang S S,et al. Piriformospora indica improves salinity stress tolerance in Zea mays L. plants by regulating Na+ and K+ loading in root and allocating K+ in shoot[J]. Plant Growth Regulation,2018,86(2):323-331.
[56]Ahmad P,Jaleel C A,Sharma S.Antioxidant defense system,lipid peroxidation,proline-metabolizing enzymes,and biochemical activities in two Morus alba genotypes subjected to NaCl stress[J]. Russian Journal of Plant Physiology,2010,57(4):509-517.
[57]Ahmad P,Ashraf M,Hakeem K R,et al. Potassium starvation-induced oxidative stress and antioxidant defense responses in Brassica juncea[J]. Journal of Plant Interactions,2014,9(1):1-9.
[58]Barragán V,Leidi E O,Andrés Z,et al. Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis[J]. The Plant Cell,2012,24(3):1127-1142.
[59]Shabala S,Pottosin I.Regulation of potassium transport in plants under hostile conditions:implications for abiotic and biotic stress tolerance[J]. Physiologia Plantarum,2014,151(3):257-279.
[60]Ghazanfar B,Cheng Z,Wu C,et al. Glomus etunicatum root inoculation and foliar application of acetyl salicylic acid induced NaCl tolerance by regulation of NAC1 & LeNHX1 gene expression and improved photosynthetic performance in tomato seedlings[J]. Pakistan Journal of Botany,2016,48(3):1209-1217.
[61]Jogawat A,Vadassery J,Verma N,et al. PiHOG1,a stress regulator MAP kinase from the root endophyte fungus Piriformospora indica,confers salinity stress tolerance in rice plants[J]. Scientific Reports,2016,6:36765.