劉昕萌 程 乙 劉玉文 龐尚水 葉秀芹 卜艷霞 張吉旺 趙 斌 任佰朝 任 昊,* 劉 鵬,*
黃淮海區(qū)域現(xiàn)代夏玉米品種產(chǎn)量與資源利用效率的差異分析
劉昕萌1程 乙1劉玉文2龐尚水3葉秀芹3卜艷霞3張吉旺1趙 斌1任佰朝1任 昊1,*劉 鵬1,*
1山東農(nóng)業(yè)大學農(nóng)學院/ 作物生物學國家重點實驗室, 山東泰安 271018;2商河縣農(nóng)業(yè)局, 山東濟南 251600;3濟南新綠洲農(nóng)業(yè)發(fā)展有限公司, 山東濟南 251619
品種改良對夏玉米單產(chǎn)的提升有重要貢獻, 但目前對現(xiàn)代夏玉米品種間產(chǎn)量形成差異的原因尚不明確。本研究在商河國家農(nóng)作物品種展示示范中心設置大田試驗, 選用我國黃淮海區(qū)域近年來審定或將要審定的390個玉米品種, 于玉米完熟期進行植株取樣, 測定不同品種產(chǎn)量及其構成因素、完熟期干物質積累與分配、氮素的積累、分配與利用以及光溫利用效率, 探究不同夏玉米品種的產(chǎn)量及資源利用效率的差異及其形成原因。不同品種的夏玉米產(chǎn)量存在顯著差異, 收獲穗數(shù)、穗粒數(shù)和千粒重對產(chǎn)量的直接通徑系數(shù)分別為0.57、1.00和0.88, 表明品種間產(chǎn)量差異主要由穗粒數(shù)的變化影響。植株的干物質和氮素的積累與分配均對夏玉米產(chǎn)量有極顯著影響, 與籽粒產(chǎn)量<7 t hm–2的品種相比, 7.0~8.0、8.0~9.0、9.0~10.0、10.0~11.0和>11.0 t hm–2產(chǎn)量范圍內的品種植株群體總干物質積累量分別提高了12.25%、20.52%、29.61%、40.11%和54.04%; 籽粒氮素積累量分別提高了16.62%、24.85%、38.45%、48.42%和68.41%; 籽粒干物質分配比例分別增加了5.11%、9.93%、13.32%、15.51%和17.94%, 籽粒氮素分配比例分別增加了4.09%、7.24%、7.37%、7.31%和10.91%; 籽粒光能利用效率分別提高了12.50%、21.25%、30.00%、41.25%和55.00%; 籽粒溫度利用效率分別提高了11.36%、20.45%、29.55%、39.77%和53.41%。高產(chǎn)玉米品種通過提高玉米群體干物質和氮素積累量, 增加籽粒干物質及氮素分配比例, 提高植株氮素和光溫利用效率, 促進產(chǎn)量構成三因素的協(xié)同提升, 特別是穗粒數(shù)的提升, 從而實現(xiàn)夏玉米高產(chǎn)高效生產(chǎn)。
夏玉米品種; 產(chǎn)量構成; 干物質積累; 氮素分配; 光溫利用效率
玉米(L.)是我國第一大糧食作物, 具有單株生產(chǎn)力高、作物生長迅速等特點, 其作為主要糧食、經(jīng)濟和飼料作物, 對支撐我國糧食戰(zhàn)略安全具有重要作用[1]。隨著我國人口持續(xù)增長, 人民生活水平逐步提高, 預計2030年我國糧食需求量要提高40%[2]。然而, 隨著耕地面積的剛性減少, 依靠增加糧食種植面積提高總產(chǎn)量已經(jīng)非常困難, 提高單位面積的糧食生產(chǎn)能力成為保障我國糧食安全的重要途徑[2]。品種的改良對提高作物生產(chǎn)潛力和作物單產(chǎn)具有重要作用, 當前作物單產(chǎn)的提升有35%~40%的比例來源于品種的改良[3]。
玉米產(chǎn)量的高低取決于合理的產(chǎn)量構成因素, 受控于諸多內外影響因素[4]。其中干物質的積累是作物產(chǎn)量形成的基礎, 在一定范圍內, 產(chǎn)量隨干物質積累量的增加而增加[5]。干物質的積累量取決于玉米群體對光溫資源和氮肥資源的吸收利用, 當前縮減玉米產(chǎn)量差的限制因素并不是光、溫和氮肥資源不足, 而是對其利用效率較低, 因此選用光、溫、肥料利用效率較高的玉米品種, 對夏玉米高產(chǎn)高效生產(chǎn)具有重要意義[6-8]。前人雖已對新老玉米品種的產(chǎn)量性狀[9-12]、生育特性[12-13]、光合性能[14-15]等方面進行對比分析, 但隨著黃淮海區(qū)域夏玉米新育成品種數(shù)量不斷增加, 了解新品種產(chǎn)量形成的規(guī)律, 對種植品種的選擇和新品種的選育均具有重要意義。本試驗以黃淮海地區(qū)近年來審定的或將要審定的390個玉米品種為試驗材料, 分析不同產(chǎn)量層次品種產(chǎn)量構成因素、干物質和氮素的積累與分配以及氮素、光溫的資源利用效率, 旨在探明不同產(chǎn)量層次品種氮素和光溫資源利用差異, 以期為玉米高產(chǎn)高效品種選育提供理論依據(jù)。
于2016年在商河國家新品種展示示范中心(37°19′N, 117°12′E)進行, 選用我國黃淮海夏玉米區(qū)新育成的390個玉米品種為試驗材料(附表1)。于6月10日播種, 種植密度為各品種的適宜密度, 行距60 cm, 株距按照適宜密度進行調整。各品種隨機排列, 3次重復, 小區(qū)面積6 m × 10 m。播種前0~20 cm土層含有機質15.76 g kg–1、全氮1.52g kg–1、堿解氮95.26mg kg–1、速效磷22.30mg kg–1、速效鉀115.26mg kg–1。播種前統(tǒng)一撒施300 kg hm–2(N∶P2O5∶K2O=15∶15∶15)的復合肥。小喇叭口和大喇叭口期各追施尿素150 kg hm–2。玉米生長期間, 保證水分供應, 采用統(tǒng)一的植保方案防控病蟲害。
1.2.1 氣象數(shù)據(jù) 采用安裝在試驗場內的小型農(nóng)業(yè)氣象站(2900E, Spectrum, 美國)實時監(jiān)測各項氣象要素。
1.2.2 植株干物質積累量 于籽粒成熟期, 每個重復取植株3株, 按照莖稈、葉片、籽粒等部分分解后, 105℃殺青30 min, 然后80℃烘干至恒重, 稱重。
1.2.3 籽粒產(chǎn)量及產(chǎn)量構成因素 在籽粒成熟期,每個小區(qū)收獲9 m2的全部果穗, 測定產(chǎn)量及產(chǎn)量構成因素, 用谷物水分測定儀測定籽粒含水量, 折算為14%含水量時的籽粒產(chǎn)量。
1.2.4 植株全N含量 植株干樣粉碎過篩后, 用濃H2SO4-H2O2聯(lián)合消煮, 采用SEAL AA3型(德國)連續(xù)流動分析儀測定。
莖稈干物質分配(%) = 莖稈干物質積累量(t hm–2)/植物干物質積累量(t hm–2)×100;
葉片干物質分配(%) = 葉片干物質積累量(t hm–2)/植物干物質積累量(t hm–2)×100;
籽粒干物質分配(%) = 籽粒干物質積累量(t hm–2)/植物干物質積累量(t hm–2)×100;
莖稈氮素分配(%) = 莖稈氮素積累(kg hm–2)/植株氮素積累量(kg hm–2)×100;
葉片氮素分配(%) = 葉片氮素積累(kg hm–2)/植株氮素積累量(kg hm–2)×100;
籽粒氮素分配(%) = 籽粒氮素積累(kg hm–2)/植株氮素積累量(kg hm–2)×100;
氮素偏生產(chǎn)力(kg kg–1) = 籽粒產(chǎn)量(kg hm–2)/總施氮量(kg hm–2);
干物質光能利用效率(g MJ–1) = 單位面積地上部干物質積累量(g m–2)/單位面積的太陽輻射截獲總量(MJ m–2);
干物質溫度利用效率(kg hm–2℃–1) = 單位面積地上部干物質積累量(kg hm–2) /生育期間有效積溫(℃);
籽粒光能利用效率(g MJ–1) = 單位面積地上部籽粒產(chǎn)量(g m–2)/單位面積的太陽輻射截獲總量(MJ m–2);
籽粒溫度利用效率(kg hm–2℃–1) = 單位面積地上部籽粒產(chǎn)量(kg hm–2) /生育期間有效積溫(℃)。
采用Microsoft Excel 2016和SPSS 18.0進行試驗數(shù)據(jù)計算和相關分析; 采用SigmaPlot 10.0作圖。
由表1可知, 將390個品種根據(jù)籽粒產(chǎn)量水平劃分為<7.0、7.0~8.0、8.0~9.0、9.0~10.0、10.0~11.0和>11.0 t hm–2六個層次。其中產(chǎn)量<7 t hm–2的平均產(chǎn)量為6.42 t hm–2, 7.0~8.0 t hm–2的平均產(chǎn)量為7.56 t hm–2, 8.0~9.0 t hm–2的平均產(chǎn)量為8.54 t hm–2, 9.0~10.0 t hm–2的平均產(chǎn)量為9.47 t hm–2, 10.0~11.0 t hm–2的平均產(chǎn)量為10.41 t hm–2, >11.0 t hm–2的平均產(chǎn)量為11.47 t hm–2。
收獲穗數(shù)、穗粒數(shù)和千粒重均與籽粒產(chǎn)量呈顯著線性正相關(圖1), 390個品種的收獲穗數(shù)平均為6.55×104hm–2, >11.0 t hm–2產(chǎn)量水平分別比<7.0、7.0~8.0、8.0~9.0、9.0~10.0和10.0~11.0 t hm–2產(chǎn)量水平的收獲穗數(shù)提高13.08%、13.99%、9.92%、5.82%和3.35%。390個品種的穗粒數(shù)平均為531.75, >11.0 t hm–2產(chǎn)量水平分別比<7.0、7.0~8.0、8.0~9.0、9.0~10.0和10.0~11.0 t hm–2產(chǎn)量水平的穗粒數(shù)提高30.51%、20.53%、10.92%、6.18%和3.04%。390個品種的千粒重平均為316.99 g, >11.0 t hm–2產(chǎn)量水平分別比<7.0、7.0~8.0、8.0~9.0、9.0~10.0和10.0~11.0 t hm–2產(chǎn)量水平的千粒重提高19.54%、10.25%、9.83%、7.31%和3.36% (表1)。
收獲穗數(shù)、穗粒數(shù)、千粒重對夏玉米產(chǎn)量的直接通徑系數(shù)分別為0.57、1.00和0.88 (表2), 決定系數(shù)2=0.96。各性狀的直接通徑系數(shù)從大到小依次為穗粒數(shù)、千粒重、收獲穗數(shù)。收獲穗數(shù)、穗粒數(shù)和千粒重的間接系數(shù)均為負值, 說明三因素之間互相拮抗; 由圖2可以看出, 分析不同產(chǎn)量層次三因素的影響系數(shù)從<7 t hm–2到7.0~8.0 t hm–2產(chǎn)量層次千粒重直接影響系數(shù)較高, 而從7.0~8.0 t hm–2水平繼續(xù)增產(chǎn), 則為穗粒數(shù)的直接影響系數(shù)更高。
群體干物質積累與籽粒產(chǎn)量呈顯著正相關(< 0.01, 圖3)。7.0~8.0、8.0~9.0、9.0~10.0、10.0~11.0和>11.0 t hm–2產(chǎn)量水平的莖稈干物質積累量較<7 t hm–2產(chǎn)量水平的分別提高了8.09%、10.97%、15.83%、22.48%和31.47%; 葉片干物質積累量分別提高6.27%、9.80%、13.73%、20.78%和29.02%; 籽粒干物質積累量分別提高17.78%、32.44%、47.11%、61.93%和82.07%; 植株群體總干物質積累量分別提高12.25%、20.52%、29.61%、40.11%和54.04%; 莖稈干物質分配比例分別降低4.05%、8.82%、12.00%、14.65%和17.18%; 葉片干物質分配比例分別降低5.14%、8.77%、12.22%、13.56%和16.01%; 籽粒干物質分配比例分別提高5.11%、9.93%、13.32%、15.51%和17.94%。高產(chǎn)量水平的夏玉米品種, 群體干物質積累與籽粒的干物質分配均增加, 而莖稈、葉片的干物質分配比例均下降(表3)。
圖1 不同品種籽粒產(chǎn)量與收獲穗數(shù)、穗粒數(shù)和千粒重的擬合分析
***表示線性回歸結果在< 0.001水平差異顯著。
***indicates that the linear regression results were significant difference at the 0.001 probability level.
表1 不同產(chǎn)量層次夏玉米的產(chǎn)量構成因素
同列數(shù)據(jù)后不同小寫字母表示處理間差異達顯著水平(< 0.05)
Values followed by different letters in the same column meant significant difference among treatments at the 0.05 probability level.
表2 夏玉米產(chǎn)量與產(chǎn)量構成因素的通徑分析
圖2 不同產(chǎn)量水平夏玉米產(chǎn)量與產(chǎn)量構成因素的通徑分析
VA表示變量, DC表示直接系數(shù), AE表示收獲穗數(shù), GN表示穗粒數(shù), KW表示千粒重,2表示決定系數(shù)。表格中數(shù)據(jù)分別代表鄰近2個產(chǎn)量水平的通徑直接系數(shù)。
VA: variables; DC: direct coefficient; AE: actual ears; GN: grain number per ear; KW: 1000-kernel weight;2: determination coefficient. The data in the table represent the direct path coefficients for the two adjacent production levels.
表3 不同產(chǎn)量層次品種干物質積累與分配的差異
同列數(shù)據(jù)后不同小寫字母表示處理間差異達顯著水平(< 0.05)。
Values followed by different letters in the same column meant significant difference among treatments at the 0.05 probability level.
圖3 不同品種籽粒產(chǎn)量與群體干物質的相關分析
7.0~8.0、8.0~9.0、9.0~10.0、10.0~11.0和>11.0 t hm–2產(chǎn)量水平的品種莖稈氮素積累量較<7 t hm–2產(chǎn)量水平的分別提高了12.04%、13.16%、20.52%、31.38%和31.97%; 葉片氮素積累量分別提高了0.53%、2.89%、9.32%、16.85%和21.09%; 籽粒氮素積累量分別提高了16.89%、26.89%、36.19%、46.84%和63.11%; 植株群體總氮素積累量分別提高了12.09%、18.34%、26.55%、36.54%和46.52%。產(chǎn)量在7.0~8.0、8.0~9.0、9.0~10.0、10.0~11.0和>11.0 t hm–2范圍內的品種莖稈氮素分配比例較產(chǎn)量范圍<7 t hm–2的分別降低了?0.36%、4.18%、4.13%、3.33%和9.11%; 葉片氮素分配比例分別降低了10.24%、12.93%、13.72%、14.38%和17.34%; 籽粒氮素分配比例分別提高了4.09%、7.24%、7.37%、7.31%和10.91% (表4); 氮肥偏生產(chǎn)力分別提高了17.86%、32.49%、47.14%、62.08%和82.24% (圖4)。
品種平均籽粒光能利用效率為0.48 g MJ–1, 平均籽粒溫度利用效率為5.25 kg hm–2℃–1, 產(chǎn)量在7.0~8.0、8.0~9.0、9.0~10.0、10.0~11.0和>11.0 t hm–2范圍內的品種籽粒光能利用效率較產(chǎn)量范圍<7 t hm–2的分別提高了17.14%、31.43%、45.71%、60.00%和77.14%, 籽粒溫度利用效率分別提高了17.68%、32.98%、47.49%、62.01%和78.63% (表5)。
表4 不同產(chǎn)量層次夏玉米氮素積累與分配
同列數(shù)據(jù)后不同小寫字母表示處理間差異達顯著水平(< 0.05)。
Values followed by different letters in the same column meant significant difference among treatments at the 0.05 probability level.
圖4 不同產(chǎn)量層次夏玉米氮肥偏生產(chǎn)力
所有品種平均干物質光能利用效率為1.00 g MJ–1, 平均干物質溫度利用效率為10.94 kg hm–2℃–1, 產(chǎn)量在7.0~8.0、8.0~9.0、9.0~10.0、10.0~11.0和>11.0 t hm–2范圍內的品種干物質光能利用效率較產(chǎn)量范圍<7 t hm–2的分別提高了9.88%、19.75%、29.63%、39.51%和49.38%, 干物質溫度利用效率分別提高了11.05%、20.73%、30.30%、40.66%和50.68% (表5)。
由于當前眾多不合理因素, 黃淮海夏玉米區(qū)存在較大產(chǎn)量差的同時, 資源利用效率差距也較大, 分析不同產(chǎn)量層次夏玉米品種的物質生產(chǎn)及資源利用能力, 對提高玉米單產(chǎn)具有重要意義[8]。籽粒產(chǎn)量與單位面積穗數(shù)、穗粒數(shù)和千粒重均呈顯著的正相關關系[16], 但產(chǎn)量構成三因素之間存在負相關性[16],本研究與前人研究結果相似, 產(chǎn)量構成三因素之間間接通徑系數(shù)均成負數(shù)。在穩(wěn)定穗粒數(shù)和千粒重的同時, 提高單位面積穗數(shù)是當前農(nóng)藝管理提高產(chǎn)量的主要措施[17-18]??赂淼萚17]研究表明, 協(xié)調發(fā)展群體粒數(shù)和千粒重是玉米獲得更高產(chǎn)量的基礎。王利青等[18]通過對我國1970s—2010s五個生產(chǎn)中大面積種植的玉米品種的研究表明, 品種增密增產(chǎn)的優(yōu)勢主要是由于其增密后保證較高的有效穗數(shù)和相對穩(wěn)定的千粒重, 彌補了穗粒數(shù)降低的損失。本研究發(fā)現(xiàn)高產(chǎn)品種的單位面積穗數(shù)、穗粒數(shù)、千粒重與籽粒產(chǎn)量均呈正相關, 而對產(chǎn)量提升貢獻最大的是品種穗粒數(shù)的增加、其次是千粒重和單位面積穗數(shù), 高產(chǎn)品種產(chǎn)量三因素協(xié)同提高, 造成差異的原因可能是新育成品種中高產(chǎn)量水平品種耐密性增強, 從而在增加千粒重的同時突出穗粒數(shù)的貢獻系數(shù)[1]。
玉米群體干物質積累與分配特征決定著玉米的產(chǎn)量水平, 提高群體收獲指數(shù), 促進干物質向籽粒轉移, 提高籽粒干物質的積累量和干物質分配比例是產(chǎn)量提高的根本途徑[19-20]。但不同品種玉米干物質積累、分配和轉運對籽粒貢獻率存在較大差異, 從而造成產(chǎn)量差異[21-23]。本試驗研究表明不同產(chǎn)量水平夏玉米品種干物質積累量和干物質向籽粒的分配存在巨大的差異, 產(chǎn)量在7.0~8.0、8.0~9.0、9.0~10.0、10.0~11.0和>11.0 t hm–2范圍內的籽粒干物質分配比例較產(chǎn)量<7 t hm–2的分別提高了5.11%、9.93%、13.32%、15.51%和17.94%, 這可能是籽粒產(chǎn)量提升的主要原因。
表5 不同產(chǎn)量層次夏玉米干物質及籽粒層面光溫資源利用效率
同列數(shù)據(jù)后不同小寫字母表示處理間差異達顯著水平(< 0.05)
Values followed by different letters in the same column meant significant difference among treatments at the 0.05 probability level.
養(yǎng)分吸收是生物量積累的基礎, 也是作物產(chǎn)量形成的基礎。玉米品種的生物學特性決定了其養(yǎng)分吸收規(guī)律[1]。而不同品種玉米在氮素吸收利用上存在差異, 花后促進更多的氮素向籽粒中分配, 有利于促進籽粒充實, 增加產(chǎn)量[24-25]。劉梅等[26]研究表明, 隨品種更替, 玉米新品種植株氮素積累量呈逐漸增加的趨勢, 近代玉米品種吸收的氮素向籽粒轉運和分配的比例也顯著增加, 有助于產(chǎn)量的提升。徐翔玉等[27]研究表明, 不同玉米品種各個器官的養(yǎng)分轉移差異很大, 高產(chǎn)品種灌漿期開始除籽粒外的器官都轉為源器官, 同時植株還有較高的吸收氮素能力, 促進植株氮素利用效率的提升。本研究表明, 高產(chǎn)量水平品種在生育后期籽粒氮素積累量和分配占比較其他產(chǎn)量水平品種顯著增加, 從而促進了產(chǎn)量和氮肥偏生產(chǎn)力的協(xié)同提升。
光溫利用效率反映作物高效利用光溫來提高籽粒產(chǎn)量的性能。玉米品種因其自身基因型的不同, 所以其對光溫資源的利用有顯著差異[28-32], 王勇等[28]研究表明, 品種更替在提高玉米產(chǎn)量的同時, 熱量和輻射利用率均得到提高。王洪章等[8]研究表明, 當前山東省農(nóng)戶種植玉米與高產(chǎn)種植之間存在2.72 t hm–2、0.43 g MJ–1和0.27 kg hm–2℃–1的產(chǎn)量差、光能、溫度利用效率差, 而種植更高光溫效率的品種是解決這一差異的重要途徑。本試驗研究表明, 高產(chǎn)玉米品種的籽粒和干物質對光能、溫度利用效率顯著高于其他產(chǎn)量水平, 這表明提高作物光溫利用效率依舊是獲得高產(chǎn)的前提。
當前黃淮海區(qū)域現(xiàn)代玉米品種籽粒平均產(chǎn)量為8.91 t hm–2, 其中單位面積穗數(shù)、穗粒數(shù)和千粒重的直接通徑系數(shù)分別為0.57、1.00和0.88, 穗粒數(shù)對品種間產(chǎn)量的提升貢獻率更高。高產(chǎn)水平品種光溫資源利用率提高, 氮素和干物質的積累量及向籽粒的分配比例增加, 從而獲得更高的產(chǎn)量和氮素利用效率。
附表 請見網(wǎng)絡版: 1) 本刊網(wǎng)站http://zwxb. chinacrops.org/; 2) 中國知網(wǎng)http://www.cnki.net/; 3) 萬方數(shù)據(jù)http://c.wanfangdata.com.cn/Periodi-calzuowxb.aspx。
[1] 王空軍, 張吉旺, 郭玉秋, 胡昌浩, 董樹亭, 蔣高明. 我國北方玉米品種個體產(chǎn)量潛力與氮利用效率研究. 應用生態(tài)學報, 2005, 16: 879–894.
Wang K J, Zhang J W, Guo Y Q, Hu C H, Dong S T, Jiang G M. Individual grain yield potential and nitrogen utilization efficiency ofcultivars widely planted in north China., 2005, 16: 879–894 (in Chinese with English abstract).
[2] 周寶元. 黃淮海兩熟制資源季節(jié)間優(yōu)化配置及季節(jié)內高效利用技術體系研究. 中國農(nóng)業(yè)大學博士學位論文, 北京, 2015.
Zhou B Y. Study on the Distribution and High Efficient Utilization of Resources for Double Cropping System in the Huang- Huai-Hai Plain. PhD Dissertation of China Agricultural University, Beijing, China, 2015 (in Chinese with English abstract).
[3] 戴景瑞, 鄂立柱. 我國玉米育種科技創(chuàng)新問題的幾點思考. 玉米科學, 2010, 18(1): 1–5.
Dai J R, E L Z. Scientific and technological innovation of maize breeding in China., 2010, 18(1): 1–5 (in Chinese with English abstract).
[4] 張吉旺. 光溫脅迫對玉米產(chǎn)量和品質及其生理特性的影響. 山東農(nóng)業(yè)大學博士學位論文, 山東泰安, 2005.
Zhang J W. Effects of Light and Temperature Stress on Physiological Characteristics of Yield and Quality in Maize. PhD Dissertation of Shandong Agricultural University, Shandong, Tai’an, China, 2005 (in Chinese with English abstract).
[5] 張旭, 熊又升, 賀正華, 張國忠, 謝媛圓, 劉威, 徐祥玉. 鮮食玉米干物質和養(yǎng)分動態(tài)累積與分配特征. 安徽農(nóng)業(yè)科學, 2021, 49(20): 181–184.
Zhang X, Xiong Y S, He Z H, Zhang G Z, Xie Y Y, Liu W, Xu X Y. Dynamic accumulation and distribution of dry matter and nutrients in fresh maize., 2021, 49(20): 181–184 (in Chinese with English abstract).
[6] 劉鵬, 董樹亭, 李少昆, 張吉旺. 高產(chǎn)玉米氮素高效利用. 中國農(nóng)業(yè)科學, 2017, 50: 2232–2237.
Liu P, Dong S T, Li S K, Zhang J W. High nitrogen use efficiency of high-yielding maize., 2017, 50: 2232–2237 (in Chinese with English abstract).
[7] 郭萍, 王子豪, 劉斌祥, 孔凡磊, 袁繼超. 不同覆蓋方式下減氮對玉米生長與氮素吸收、運轉和分配的影響. 中國土壤與肥料, 2021, (1): 229–239.
Guo P, Wang Z H, Liu B X, Kong F L, Yuan J C. Effects of different decreased-nitrogen and mulching patterns on growth of maize and nitrogen uptake, translocation and distribution., 2021, (1): 229–239 (in Chinese with English abstract).
[8] 王洪章, 劉鵬, 董樹亭, 張吉旺, 趙斌, 任佰朝. 夏玉米產(chǎn)量與光溫生產(chǎn)效率差異分析——以山東省為例. 中國農(nóng)業(yè)科學, 2019, 52: 1355–1367.
Wang H Z, Liu P, Dong S T, Zhang J W, Zhao B, Ren B Z. Analysis of gap between yield and radiation production efficiency and temperature production efficiency in summer maize: taking Shandong province as an example., 2019, 52: 1355–1367 (in Chinese with English abstract).
[9] 鄭洪建, 董樹亭, 郭玉秋, 王空軍, 胡昌浩, 張吉旺. 生態(tài)因素對不同類型玉米品種生長特性的影響. 華北農(nóng)學報, 2002, 17(1): 25–29.
Zheng H J, Dong S T, Guo Y Q, Wang K J, Hu C H, Zhang J W. Effects of ecological factors on growth of different varieties maize (L.)., 2002, 17(1): 25–29 (in Chinese with English abstract).
[10] 鄭洪建, 董樹亭, 王空軍, 郭玉秋, 胡昌浩, 張吉旺. 生態(tài)因素對玉米品種產(chǎn)量影響及調控的研究. 作物學報, 2001, 27: 862–868.
Zheng H J, Dong S T, Wang K J, Guo Y Q, Hu C H, Zhang J W. Study on the effect and regulation of ecological factors on maize yield., 2001, 27: 862–868 (in Chinese with English abstract).
[11] 鄭洪建, 董樹亭, 王空軍, 郭玉秋, 胡昌浩, 張吉旺. 生態(tài)因素對玉米品種產(chǎn)量影響的試驗研究. 作物雜志, 2001, 8(5): 16–18.
Zheng H J, Dong S T, Wang K J, Guo Y Q, Hu C H, Zhang J W. Experimental study on the effect of ecological factors on maize yield., 2001, 8(5): 16–18 (in Chinese with English abstract).
[12] 胡昌浩, 董樹亭, 王空軍, 孫慶泉. 我國不同年代玉米品種生育特性演進規(guī)律研究: II. 物質生產(chǎn)特性的演進. 玉米科學, 1998, 5(3): 50–54.
Hu C H, Dong S T, Wang K J, Sun Q Q. Evolution of growth characteristics of maize varieties in different ages in China: II. Evolution of material production characteristics., 1998, 5(3): 50–54 (in Chinese with English abstract).
[13] 胡昌浩, 董樹亭, 王空軍, 孫慶泉. 我國不同年代玉米品種生育特性演進規(guī)律研究: I. 產(chǎn)量性狀的演進. 玉米科學, 1998, 6(2): 44–48.
Hu C H, Dong S T, Wang K J, Sun Q Q. Evolution of growth characteristics of maize varieties in different ages in China: I. Evolution of yield traits., 1998, 6(2): 44–48 (in Chinese with English abstract).
[14] 王空軍, 董樹亭, 胡昌浩, 劉開昌, 孫慶泉. 我國1950s–1990s推廣的玉米品種葉片光合特性演進規(guī)律研究. 植物生態(tài)學報, 2001, 25: 247–251.
Wang K J, Dong S T, Hu C H, Liu K C, Sun Q Q. Improvement in photosynthetic characteristics among maize varieties in China from the 1950s to the1990s., 2001, 25: 247–251 (in Chinese with English abstract).
[15] 董樹亭, 王空軍, 胡昌浩. 玉米品種更替過程中群體光合特性的演變. 作物學報, 2000, 26: 200–204.
Dong S T, Wang K J, Hu C H. Development of canopy apparent photosynthesis among maize varieties from different eras., 2000, 26: 200–204 (in Chinese with English abstract).
[16] 郝茹雪, 王健, 武寶悅, 王文頗. 不同春玉米品種產(chǎn)量及其構成因素通徑分析. 黑龍江農(nóng)業(yè)科學, 2020, (1): 9–11.
Hao R X, Wang J, Wu B Y, Wang W P. Path analysis of yield and its component traits of different spring maize varieties., 2020, (1): 9–11 (in Chinese with English abstract)
[17] 柯福來, 馬興林, 黃瑞冬, 王傳海, 徐安波. 高產(chǎn)玉米品種的產(chǎn)量結構特點及形成機制. 玉米科學, 2010, 18(2): 65–69.
Ke F L, Ma X L, Huang R D, Wang C H, Xu A B. Characteristics of yield components and formation mechanism of high-yield maize hybrids., 2010, 18(2): 65–69 (in Chinese with English abstract).
[18] 王利青, 于曉芳, 高聚林, 馬達靈, 胡樹平, 郭懷懷, 劉愛業(yè). 不同年代玉米品種籽粒產(chǎn)量形成對種植密度的響應. 作物學報, 2022, 48: 2625–2637.
Wang L Q, Yu X F, Gao J L, Ma D L, Hu S P, Guo H H, Liu A Y. Response of grain yield formation to planting density of maize varieties in different eras., 2022, 48: 2625–2637 (in Chinese with English abstract).
[19] 錢春榮, 王榮煥, 于洋, 徐田軍, 宮秀杰, 郝玉波, 姜宇博, 李梁, 呂國依, 楊忠良, 趙久然. 不同熟期玉米品種在不同生態(tài)區(qū)的干物質積累、轉運與分配特征. 玉米科學, 2021, 29(2): 60–68.
Qian C R, Wang R H, Yu Y, Xu T J, Gong X J, Hao Y B, Jiang Y B, Li L, Lyu G Y, Yang Z L, Zhao J R. Characteristics of dry matter accumulation, transportation and distribution of maize varieties differing in maturities in different ecological zones., 2021, 29(2): 60–68 (in Chinese with English abstract).
[20] 孫雪芳, 丁在松, 侯海鵬, 葛均筑, 唐麗媛, 趙明. 不同春玉米品種花后光合物質生產(chǎn)特點及碳氮含量變化. 作物學報, 2013, 39: 1284–1292.
Sun X F, Ding Z S, Hou H P, Ge J Z, Tang L Y, Zhao M. Post- Anthesis photosynthetic assimilation and the changes of carbon and nitrogen in different varieties of spring maize., 2013, 39: 1284–1292 (in Chinese with English abstract).
[21] 馬國勝, 薛吉全, 路海東, 張仁和. 陜單8806高產(chǎn)高效施肥技術模式研究. 玉米科學, 2006, 14(4): 134–137.
Ma G S, Xue J Q, Lu H D, Zhang R H. Study on high yield and benefit fertilization application technique of Shandan 8806., 2006, 14(4): 134–137 (in Chinese with English abstract).
[22] 黃智鴻, 王思遠, 包巖, 梁煊赫, 孫剛, 申林, 曹洋, 吳春勝. 超高產(chǎn)玉米品種干物質積累與分配特點的研究. 玉米科學, 2007, 15(3): 95–98.
Huang Z H, Wang S Y, Bao Y, Liang X H, Sun G, Shen L, Cao Y, Wu C S. Studies on dry matter accumulation and distributive characteristic in super high-yield maize., 2007, 15(3): 95–98 (in Chinese with English abstract).
[23] 于澤濤, 王存凱, 夏雨晴, 陶洪斌, 孟祥盟, 劉慧濤, 劉武仁, 王璞, 廖樹華. 玉米產(chǎn)量與干物質積累過程模型中品種參數(shù)的建立方法與分析. 玉米科學, 2016, 24(4): 130–136.
Yu Z T, Wang C K, Xia Y Q, Tao H B, Meng X M, Liu H T, Liu W R, Wang P, Liao S H. Methods of varieties parameters on yield and maize dry matter accumulation model., 2016, 24(4): 130–136 (in Chinese with English abstract).
[24] 程乙, 劉鵬, 劉玉文, 龐尚水, 董樹亭, 張吉旺, 趙斌, 任佰朝. 黃淮海區(qū)域現(xiàn)代夏玉米品種產(chǎn)量與養(yǎng)分吸收規(guī)律. 作物學報, 2019, 45: 1699–1714.
Cheng Y, Liu P, Liu Y W, Pang S S, Dong S T, Zhang J W, Zhao B, Ren B Z. Regulation of grain yield and nutrient absorption of modern summer maize varieties in the Yellow-Huaihe-Haihe Rivers region., 2019, 45: 1699–1714 (in Chinese with English abstract).
[25] 楊豫龍, 趙霞, 王帥麗, 徐佳敏, 穆心愿, 邢冉冉, 劉天學. 黃淮海中南部玉米氮高效品種篩選及產(chǎn)量性狀分析. 玉米科學, 2022, 30(1): 23–32.
Yang Y L, Zhao X, Wang S L, Xu J M, Mu X Y, Xing R R, Liu T X. Screening and yield character analysis of maize nitrogen efficient varieties in south and central Huang-Huai-Hai area., 2022, 30(1): 23–32 (in Chinese with English abstract).
[26] 劉梅, 吳廣俊, 路篤旭, 徐振和, 董樹亭, 張吉旺, 趙斌, 李耕,劉鵬. 不同年代玉米品種氮素利用效率與其根系特征的關系. 植物營養(yǎng)與肥料學報, 2017, 23: 71–82.
Liu M, Wu G J, Lu D X, Xu Z H, Dong S T, Zhang J W, Zhao B, Li G, Liu P. Improvement of nitrogen use efficiency and the relationship with root system characters of maize cultivars in different years., 2017, 23: 71–82 (in Chinese with English abstract).
[27] 楊夢雅, 劉志鵬, 陳曦, 肖凱. 施氮水平對高產(chǎn)夏玉米氮磷鉀積累和產(chǎn)量形成特性的影響. 河北農(nóng)業(yè)大學學報, 2017, 40(6): 1–8.
Yang M Y, Liu Z P, Chen X, Xiao K. Effects of the N level on accumulation of N, P, and K and yield formation in the high yield plants summer maize., 2017, 40(6): 1–8 (in Chinese with English abstract).
[28] 王勇, 張鎮(zhèn)濤, 張方亮, 郭世博, 楊曉光. 氣候變化背景下玉米品種更替對新疆光熱資源利用效率的影響. 中國農(nóng)業(yè)氣象, 2020, 41(6): 331–344.
Wang Y, Zhang Z T, Zhang F L, Guo S B, Yang X G. Impact of climate change and varieties replacement on maize yield and resource use efficiency in Xinjiang., 2020, 41(6): 331–344 (in Chinese with English abstract).
[29] 張永江, 李少昆, 胡昌浩, 張旭, 董樹亭, 高世菊. 玉米不同基因型葉片PSII光能轉換效率的比較研究. 中國農(nóng)業(yè)科學, 2002, 35: 621–625.
Zhang Y J, Li S K, Hu C H, Zhang X, Dong S T, Gao S J. Studies on the conversion efficiency of light energy of photosystem II among genotypes in maize (L.). Sci Agric Sin, 2002, 35: 621–625 (in Chinese with English abstract).
[30] 董桂芳, 鄧崇輝. 不同熟期玉米品種產(chǎn)量與氣象因素的統(tǒng)計學分析. 吉林農(nóng)業(yè)科學, 1993, 19(3): 73–77.
Dong G F, Deng C H. Analyses of correlation between yield and meteorological factors for different maturity hybrids of maize., 1993, 19(3): 73–77 (in Chinese with English abstract).
[31] 周寶元, 葛均筑, 孫雪芳, 韓玉玲, 馬瑋, 丁在松, 李從鋒, 趙明. 黃淮海麥玉兩熟區(qū)周年光溫資源優(yōu)化配置研究進展. 作物學報, 2021, 47: 1843–1853.
Zhou B Y, Ge J Z, Sun X F, Han Y L, Ma W, Ding Z S, Li C F, Zhao M. Research advance on optimizing annual distribution of solar and heat resources for double cropping system in the Yellow-Huaihe-Haihe Rivers plain., 2021, 47: 1843–1853 (in Chinese with English abstract).
[32] 周寶元, 王志敏, 岳陽, 馬瑋, 趙明. 冬小麥–夏玉米與雙季玉米種植模式產(chǎn)量及光溫資源利用特征比較. 作物學報, 2015, 41: 1393–1405.
Zhou B Y, Wang Z M, Yue Y, Ma W, Zhao M. Comparison of yield and light-temperature resource use efficiency between wheat–maize and maize–maize cropping systems., 2015, 41: 1393–1405 (in Chinese with English abstract).
Difference analysis of yield and resource use efficiency of modern summer maize varieties in Huang-Huai-Hai region
LIU Xin-Meng1, CHENG Yi1, LIU Yu-Wen2, PANG Shang-Shui3, YE Xiu-Qin3, BU Yan-Xia3, ZHANG Ji-Wang1, ZHAO Bin1, REN Bai-Zhao1, REN Hao1,*,and LIU Peng1,*
1College of Agronomy, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China;2Shanghe Agriculture Bureau, Jinan 251600, Shandong, China;3Jinan New Oasis Agricultural Development Co., LTD., Jinan 251619, Shandong, China
Variety improvement plays an important role in improving the yield per unit area of summer maize, but the reasons for the yield difference between modern summer maize varieties are not clear at present. The experiment was conducted at the National Demonstration Center for Crop Varieties in Shanghe. 390 maize varieties approved or to be approved in Huang-Huai-Hai rivers region of China were selected. To explore the yield and resource use efficiency differences of different summer maize varieties and their causes, plant samples were taken at maize maturity stage to determine yield and its components, dry matter accumulation and distribution, nitrogen accumulation, distribution and utilization, and radiation and thermal utilization efficiency of different varieties at maturity stage. There were significant differences in yield among different varieties of summer maize. The direct path coefficients of number of harvested ear, grain number per ear, and 1000-grain weight on yield were 0.57, 1.00, and 0.88, respectively, indicating that the yield difference among varieties were mainly affected by the change of grain number per ear. The accumulation and distribution of dry matter and nitrogen had significant effects on summer maize yield. Compared with that in the yield range of <7 t hm–2, the total dry matter of the plant population in the yield range of 7.0–8.0, 8.0–9.0, 9.0–10.0, 10.0–11.0, and >11.0 t hm–2was increased by 12.25%, 20.52%, 29.61%, 40.11%, and 54.04%, respectively. Grain nitrogen accumulation was increased by 16.62%, 24.85%, 38.45%, 48.42%, and 68.41%, respectively. Grain dry matter allocation was increased by 5.11%, 9.93%, 13.32%, 15.51%, and 17.94%, and grain nitrogen allocation was increased by 4.09%, 7.24%, 7.37%, 7.31%, and 10.91%, respectively. The radiation use efficiency of grain was increased by 12.50%, 21.25%, 30.00%, 41.25%, and 55.00%, respectively. The thermal utilization efficiency of grain was increased by 11.36%, 20.45%, 29.55%, 39.77%, and 53.41%, respectively. To achieve high-yielding and high-efficient production of summer maize, high-yielding maize varieties were improved dry matter and nitrogen accumulation in maize population, increased the proportion of dry matter and nitrogen distribution in grain, improved the utilization efficiency of nitrogen, radiation and thermal in plant, and promoted the synergistic improvement of yield components, especially the increase of grain number per ear.
summer maize varieties; yield composition; dry matter accumulation; nitrogen distribution; utilization efficiency of radiation and thermal
10.3724/SP.J.1006.2023.23050
本研究由山東省重點研發(fā)計劃項目(LJNY202103)和山東省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術體系建設項目(SDAIT-02-08)資助。
This study was supported by the Shandong Provincial Key Research and development program (LJNY202103) and the Shandong Province Key Agricultural Project for Application Technology Innovation (SDAIT-02-08).
任昊, E-mail: renhao93@sdau.edu.cn; 劉鵬, E-mail: liupengsdau@126.com
E-mail: Lxm1364959789@163.com
2022-06-21;
2022-09-05;
2022-09-19.
URL: https://kns.cnki.net/kcms/detail/11.1809.S.20220916.1807.006.html
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).