国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

肌因子介導(dǎo)肌肉與器官相互作用的研究進(jìn)展

2023-04-08 18:09:39劉洋張玉超劉元濤
青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版) 2023年6期
關(guān)鍵詞:代謝骨骼綜述

劉洋 張玉超 劉元濤

[摘要]

骨骼肌是一個(gè)活躍的內(nèi)分泌器官,可以產(chǎn)生和分泌數(shù)百種肌因子。肌因子在血液中參與介導(dǎo)了代謝調(diào)節(jié)、炎癥發(fā)生等過(guò)程,使得肌肉與其他器官之間可以相互作用。本文主要對(duì)肌因子介導(dǎo)肌肉與其他器官相互作用的相關(guān)研究進(jìn)展進(jìn)行綜述。

[關(guān)鍵詞] 細(xì)胞因子類;肌,骨骼;代謝;炎癥;綜述

[中圖分類號(hào)] R336;R322.74

[文獻(xiàn)標(biāo)志碼] A

[文章編號(hào)] 2096-5532(2023)06-0945-04

doi:10.11712/jms.2096-5532.2023.59.201

[網(wǎng)絡(luò)出版] https://link.cnki.net/urlid/37.1517.R.20240104.1606.002;2024-01-05 20:04:09

ESEARCH PROGRESS OF MUSCLE-ORGAN INTERACTION MEDIATED BY MYOKINES

LIU Yang, ZHANG Yuchao, LIU Yuantao

(Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao 266011, China)

; [ABSTRACT]Skeletal muscle is an active endocrine organ that can produce and secrete hundreds of myokines. Myokines are involved in the mediation of metabolic regulation, inflammation, and other processes in the blood, so that muscles can interact with other organs. This paper aims to review the relevant progress of myokines in the interaction of muscle with other organs.

[KEY WORDS]cytokines; muscle, skeletal; metabolism; inflammation; review

運(yùn)動(dòng)可以降低一系列疾病的發(fā)生風(fēng)險(xiǎn),是各種慢性疾病的一線治療方法[1-2]。既往研究發(fā)現(xiàn),骨骼肌可以產(chǎn)生并釋放白細(xì)胞介素-6(IL-6),從此確立了骨骼肌是一種內(nèi)分泌器官[3]。由肌肉纖維產(chǎn)生、表達(dá)和釋放并以自分泌、旁分泌或內(nèi)分泌方式發(fā)揮作用的細(xì)胞因子和其他多肽類物質(zhì),稱為肌因子[4]。后續(xù)實(shí)驗(yàn)證明骨骼肌是一個(gè)活躍的內(nèi)分泌器官,能產(chǎn)生和分泌數(shù)百種肌因子。骨骼肌分泌的肌因子以自分泌、旁分泌或內(nèi)分泌的方式發(fā)揮作用。肌因子被釋放到血液中,除在肌肉內(nèi)部發(fā)揮作用外,還使得肌肉與大腦、脂肪組織、骨骼、肝臟、腸道、胰腺、血管床和皮膚等器官之間可以相互作用[5-7],介導(dǎo)代謝調(diào)節(jié)、炎癥、血管和肌肉生成等過(guò)程[8-11]。本文主要對(duì)肌因子介導(dǎo)肌肉與其他器官相互作用的相關(guān)研究進(jìn)展進(jìn)行綜述。

1 肌肉內(nèi)部的肌因子

研究發(fā)現(xiàn),一些肌因子在骨骼肌內(nèi)部發(fā)揮作用,參與肌肉生成的調(diào)節(jié)[12]。肌肉生長(zhǎng)抑制素是第一個(gè)被發(fā)現(xiàn)符合上述肌因子定義的細(xì)胞因子[13]。肌生長(zhǎng)抑制素是轉(zhuǎn)化生長(zhǎng)因子-β(TGF-β)超家族的成員,并以自分泌方式負(fù)調(diào)控肌肉生成[13]。核心蛋白聚糖作為肌生長(zhǎng)抑制素的拮抗劑,是一種受運(yùn)動(dòng)調(diào)節(jié)的肌因子[14]。運(yùn)動(dòng)使得血液中的核心蛋白聚糖水平增加[14],但卻使肌肉和循環(huán)中的肌肉生長(zhǎng)抑制素水平降低[15-16]。肌肉細(xì)胞及相關(guān)衛(wèi)星細(xì)胞產(chǎn)生的IL-6以旁分泌的形式刺激肌肉增殖,相反,IL-6的遺傳缺失會(huì)抑制肌肉的生長(zhǎng)[17]。

人體循環(huán)中的IL-6低水平與身體活動(dòng)不足有關(guān)[18]。在經(jīng)過(guò)訓(xùn)練的人類肌肉中,IL-6受體表達(dá)升高[19],提示可通過(guò)訓(xùn)練增加肌肉對(duì)IL-6的敏感性。肌肉中的IL-6可以影響葡萄糖攝取和脂肪氧化。研究表明,IL-6可增加基礎(chǔ)葡萄糖攝取和葡萄糖轉(zhuǎn)運(yùn)蛋白(GLUT-4)的轉(zhuǎn)位[20]。同時(shí),在體外和健康人體中IL-6還可增加胰島素刺激的葡萄糖攝取。

2 肌因子對(duì)大腦的作用

近年來(lái)的研究表明,肌肉與大腦之間確實(shí)存在內(nèi)分泌循環(huán),其中部分是由肌因子信號(hào)介導(dǎo)的。其他介質(zhì)可能包括各種代謝物[21]、非編碼RNA[22]等。運(yùn)動(dòng)對(duì)海馬體的影響比大腦其他部位更大。對(duì)嚙齒動(dòng)物和人類的研究證實(shí),運(yùn)動(dòng)可以增加海馬體的體積和大腦血供[23]。腦源性神經(jīng)營(yíng)養(yǎng)因子(BDNF)是海馬體的生長(zhǎng)因子,參與細(xì)胞生長(zhǎng)和學(xué)習(xí)[24],在調(diào)節(jié)運(yùn)動(dòng)對(duì)海馬體的影響方面起主導(dǎo)作用[25]。此前,BDNF已被證明與運(yùn)動(dòng)誘導(dǎo)的認(rèn)知功能改善有關(guān)聯(lián)[26-27]。人有氧運(yùn)動(dòng)訓(xùn)練3個(gè)月后,健康者的海馬體體積增加12%,精神分裂癥病人增加16%[28]。

在運(yùn)動(dòng)過(guò)程中,人類骨骼肌中也可以產(chǎn)生BDNF,但目前并未發(fā)現(xiàn)肌肉來(lái)源的BDNF釋放到血液中,即并未發(fā)現(xiàn)BDNF可以直接進(jìn)入循環(huán)介導(dǎo)肌肉與大腦的相互作用[29]。然而,有研究表明,組織蛋白酶-B和鳶尾素可以通過(guò)血腦屏障,提高BDNF水平。組織蛋白酶-B是一種新發(fā)現(xiàn)的肌因子,MOON等[30]研究發(fā)現(xiàn),運(yùn)動(dòng)導(dǎo)致循環(huán)中組織蛋白酶-B水平升高,從而促進(jìn)海馬體中BDNF表達(dá)。跑步導(dǎo)致小鼠

肌肉中組織蛋白酶-B基因的表達(dá)增加,運(yùn)動(dòng)4個(gè)月后小鼠血漿中組織蛋白酶基因的表達(dá)增加。但組織蛋白酶-B是否參與人類運(yùn)動(dòng)后的認(rèn)知功能的增強(qiáng)尚不明確。鳶尾素也是一種新近發(fā)現(xiàn)的肌因子,WRANN等[24]研究報(bào)道,鳶尾素參與身體活動(dòng)對(duì)大腦的中介作用。當(dāng)鳶尾素過(guò)表達(dá)時(shí)會(huì)導(dǎo)致BDNF增加,而Ⅲ型纖連蛋白域蛋白5(FNDC5)的下調(diào)則會(huì)導(dǎo)致BDNF減少。但鳶尾素是否參與肌肉與大腦的內(nèi)分泌循環(huán)有一定爭(zhēng)議[31-32]。

IL-6通常與代謝綜合征有關(guān),IL-6水平升高常伴隨肥胖和2型糖尿病的發(fā)生[33]。然而,IL-6對(duì)代謝活動(dòng)也有有益影響,缺乏IL-6的小鼠體質(zhì)量增加,并出現(xiàn)全身胰島素抵抗[34]。ELLIINGSGAARD等[35]研究顯示,在肥胖狀態(tài)下IL-6觸發(fā)胰腺α細(xì)胞增殖,并刺激胰高血糖素樣肽-1(GLP-1)產(chǎn)生,進(jìn)而產(chǎn)生胰島素分泌。IL-6的積極作用還包括增強(qiáng)胰島素刺激的葡萄糖攝取和脂肪氧化,也可通過(guò)延遲胃排空從而影響餐后血糖。TIMPER等[36]研究發(fā)現(xiàn),給小鼠中樞應(yīng)用IL-6,可以抑制小鼠食欲并改善葡萄糖耐量。然而,外周應(yīng)用更高濃度的IL-6顯著減少了食物攝入量。這一發(fā)現(xiàn)表明,全身高濃度的IL-6可以通過(guò)血腦屏障對(duì)食欲產(chǎn)生影響。因此,通過(guò)運(yùn)動(dòng)誘導(dǎo)產(chǎn)生IL-6可能抑制食欲。

3 肌因子對(duì)脂肪的作用

運(yùn)動(dòng)誘導(dǎo)骨骼肌產(chǎn)生的IL-6可參與調(diào)節(jié)脂質(zhì)代謝。另外,IL-6作用于脂肪組織還可以增加瘦素分泌和增加飽腹感[37]。最近的研究表明,一些肌因子可能同時(shí)具有誘導(dǎo)白色脂肪組織棕色化的能力。PEDERSEN等[38]研究發(fā)現(xiàn),IL-6可以通過(guò)調(diào)控AMP激活蛋白激酶(AMPK)信號(hào)通路增強(qiáng)脂肪分解和脂肪氧化。

白色脂肪棕色化能明顯促進(jìn)機(jī)體能量的消耗,同時(shí)改善機(jī)體糖脂代謝[39]。因此,這可能成為針對(duì)肥胖癥及其相關(guān)代謝異常疾病治療的新靶點(diǎn)。肌肉表達(dá)過(guò)氧化物酶體增殖物激活受體γ共激活因子-1(PGC-1)刺激FNDC5的表達(dá)增加,F(xiàn)NDC5是一種膜蛋白,它可被裂解為鳶尾素[40]。鳶尾素作用于白色脂肪細(xì)胞,進(jìn)而刺激解偶聯(lián)蛋白(UCP1)表達(dá)和白色脂肪棕色化[41]。在小鼠和人類的運(yùn)動(dòng)中,血液中鳶尾素水平的輕度增加會(huì)導(dǎo)致小鼠的能量消耗增加,而運(yùn)動(dòng)或食物攝入量沒有變化[41]。盡管肌肉釋放鳶尾素可誘導(dǎo)白色脂肪棕色化,但運(yùn)動(dòng)是否可以導(dǎo)致鳶尾素水平增加還存在爭(zhēng)議。IL-6同樣可誘導(dǎo)白色脂肪組織棕色化,例如,給小鼠腹腔注射1周IL-6,小鼠腹股溝白色脂肪組織中UCP1 mRNA水平明顯增加[42]。

4 肌因子對(duì)骨骼的作用

肌肉和骨骼在生長(zhǎng)發(fā)育過(guò)程中密切相關(guān),肌肉減少癥會(huì)導(dǎo)致骨質(zhì)疏松癥[43]。骨骼肌通過(guò)分泌肌因子調(diào)節(jié)骨代謝,這些肌因子分別包括IL-6、肌肉生長(zhǎng)抑制素、胰島素樣生長(zhǎng)因子-1(IGF-1)等。IL-6從促進(jìn)成骨細(xì)胞分化[44]和破骨細(xì)胞生成[45]兩方面影響骨代謝。在轉(zhuǎn)基因小鼠實(shí)驗(yàn)中,肌肉生長(zhǎng)抑制素可以干擾破骨細(xì)胞形成,抑制肌肉生長(zhǎng)抑制素通

路可導(dǎo)致骨量增加[46]。肌肉來(lái)源的IGF-1可以作用于表達(dá)相應(yīng)受體的成骨細(xì)胞,從而促進(jìn)骨形成[47]。

5 肌因子對(duì)肝臟的作用

運(yùn)動(dòng)中常伴隨肝糖原分解,內(nèi)源性葡萄糖產(chǎn)生的介質(zhì)包括胰高血糖素與胰島素、腎上腺素和去甲腎上腺素。此外,肌肉同樣產(chǎn)生肌因子以促進(jìn)體內(nèi)葡萄糖快速增加,肌肉來(lái)源的IL-6在人類運(yùn)動(dòng)中刺激肝臟葡萄糖輸出[48]。PEPPLER等[49]發(fā)現(xiàn),IL-6可增強(qiáng)蛋白激酶B(AKT)信號(hào)通路,從而降低小鼠肝臟中糖異生基因表達(dá),表明肥胖狀態(tài)下IL-6對(duì)維持葡萄糖和胰島素的穩(wěn)態(tài)有積極作用。運(yùn)動(dòng)是非乙醇性脂肪性肝病的一線治療方法,有氧運(yùn)動(dòng)和抗阻力運(yùn)動(dòng)都能減輕非乙醇性脂肪性肝病的肝臟脂肪變性。研究發(fā)現(xiàn),非乙醇性脂肪性肝病病人血清鳶尾素水平低于健康個(gè)體[50],而抗阻力運(yùn)動(dòng)可升高循環(huán)中鳶尾素水平[51]。

6 肌因子對(duì)腫瘤的作用

流行病學(xué)研究表明,體育活動(dòng)可以降低至少13種不同類型癌癥的發(fā)生風(fēng)險(xiǎn)[52]。在前列腺癌、結(jié)直腸癌和乳癌病人中,進(jìn)行體育鍛煉的人相對(duì)于不鍛煉者生存率更高[53]。許多癌癥伴有慢性低度系統(tǒng)性炎癥,這種炎癥可能會(huì)加速腫瘤進(jìn)展。因此,體育鍛煉可能是通過(guò)抗炎作用而發(fā)揮抗腫瘤作用。自然殺傷細(xì)胞(NK細(xì)胞)可被腎上腺素動(dòng)員,阻斷β腎上腺素能信號(hào)減弱了訓(xùn)練依賴性腫瘤抑制。PEDERSEN等[54]發(fā)現(xiàn),運(yùn)動(dòng)的小鼠腫瘤體積和發(fā)病率都顯著降低。運(yùn)動(dòng)可引起腎上腺素分泌增多,而腎上腺素特異性向腫瘤招募IL-6敏感性NK細(xì)胞,從而影響腫瘤生長(zhǎng),而阻斷IL-6信號(hào)通路使訓(xùn)練誘導(dǎo)的腫瘤內(nèi)NK細(xì)胞浸潤(rùn)和活化減少,從而促進(jìn)腫瘤生長(zhǎng)。因此,IL-6可能在介導(dǎo)抗癌過(guò)程中發(fā)揮作用。有證據(jù)表明,富含半胱氨酸的酸性分泌蛋白(SPARC)、鳶尾素等肌因子在抑制乳癌和結(jié)腸癌中發(fā)揮作用,其具體機(jī)制尚未明確。

7 結(jié)語(yǔ)

缺乏體育運(yùn)動(dòng)與大量的慢性疾病發(fā)生相關(guān),包括2型糖尿病、心血管疾病、癌癥、癡呆癥和骨質(zhì)疏松癥等[53]。其機(jī)制可能與缺乏某種肌因子有關(guān)。但目前運(yùn)動(dòng)改善慢性疾病癥狀的具體機(jī)制還尚未明確,有待進(jìn)一步的研究和探討。對(duì)運(yùn)動(dòng)相關(guān)肌因子的研究可能為慢性病病人的生活方式提供指導(dǎo),為慢性疾病的防治提供新的思路。

[參考文獻(xiàn)]

[1]CURFMAN G D. The health benefits of exercise. A critical reappraisal[J].? The New England Journal of Medicine, 1993,328(8):574-576.

[2]PEDERSEN B K, SALTIN B. Exercise as medicine-evidence for prescribing exercise as therapy in 26 different chronic diseases[J].? Scandinavian Journal of Medicine & Science in Sports,

2015,25:1-72.

[3]STEENSBERG A, VAN HALL G, OSADA T, et al. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6[J].? The Journal of Physiology, 2000,529(Pt 1):237-242.

[4]WHITSETT M, VANWAGNER L B. Physical activity as a treatment of non-alcoholic fatty liver disease: a systematic review[J].? World Journal of Hepatology, 2015,7(16):2041-2052.

[5]KELLEY G A, KELLEY K S. Efficacy of aerobic exercise on coronary heart disease risk factors[J].? Preventive Cardiology, 2008,11(2):71-75.

[6]HALLSWORTH K, THOMA C, HOLLINGSWORTH K G, et al. Modified high-intensity interval training reduces liver fat and improves cardiac function in non-alcoholic fatty liver di-

sease: a randomized controlled trial[J].? Clinical Science (London, England:1979), 2015,129(12):1097-1105.

[7]FEALY C E, HAUS J M, SOLOMON T P, et al. Short-term exercise reduces markers of hepatocyte apoptosis in nonalcoholic fatty liver disease[J].? Journal of Applied Physiology (Bethesda, Md:1985), 2012,113(1):1-6.

[8]HARTWIG S, RASCHKE S, KNEBEL B, et al. Secretome profiling of primary human skeletal muscle cells[J].? Biochimica et Biophysica Acta, 2014,1844(5):1011-1017.

[9]ECKARDT K, GRGENS S W, RASCHKE S, et al. Myo-

kines in insulin resistance and type 2 diabetes[J].? Diabetologia, 2014,57(6):1087-1099.

[10]EVERS-VAN GOGH I J, ALEX S, STIENSTRA R, et al. Electric pulse stimulation of myotubes as an in vitro exercise model: cell-mediated and non-cell-mediated effects[J].? Scientific Reports, 2015,5:10944.

[11]YOON J H, KIM J, SONG P, et al. Secretomics for skeletal muscle cells: a discovery of novel regulators[J]? Advances in Biological Regulation, 2012,52(2):340-350.

[12]LEE J H, JUN H S. Role of myokines in regulating skeletal muscle mass and function[J].? Frontiers in Physiology, 2019,10:42.

[13]MCPHERRON A C, LAWLER A M, LEE S J. Regulation of skeletal muscle mass in mice by a new TGF-p superfamily member[J].? Nature, 1997,387(6628):83-90.

[14]KANZLEITER T, RATH M, GRGENS S W, et al. The myokine decorin is regulated by contraction and involved in muscle hypertrophy[J].? Biochemical and Biophysical Research Communications, 2014,450(2):1089-1094.

[15]SAREMI A, GHARAKHANLOO R, SHARGHI S, et al. Effects of oral creatine and resistance training on serum myostatin and GASP-1[J].? Molecular and Cellular Endocrinology, 2010,317(1-2):25-30.

[16]HITTEL D S, AXELSON M, SARNA N, et al. Myostatin decreases with aerobic exercise and associates with insulin resistance[J].? Medicine and Science in Sports and Exercise, 2010,42(11):2023-2029.

[17]SERRANO A L, BAEZA-RAJA B, PERDIGUERO E, et al. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy[J].? Cell Metabolism, 2008,7(1):33-44.

[18]FISCHER C P. Interleukin-6 in acute exercise and training: what is the biological relevance?[J].? Exercise Immunology Review, 2006,12:6-33.

[19]KELLER C, STEENSBERG A, HANSEN A K, et al. Effect of exercise, training, and glycogen availability on IL-6 receptor expression in human skeletal muscle[J].? Journal of Applied Physiology (Bethesda, Md:1985), 2005,99(6):2075-2079.

[20]CAREY A L, STEINBERG G R, MACAULAY S L, et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase[J].? Diabetes, 2006,55(10):2688-2697.

[21]RAI M, DEMONTIS F. Systemic nutrient and stress signaling via myokines and myometabolites[J].? Annual Review of Phy-

siology, 2016,78:85-107.

[22]MAKAROVA J A, MALTSEVA D V, GALATENKO V V, et al. Exercise immunology meets MiRNAs[J].? Exercise Immunology Review, 2014,20:135-164.

[23]ERICKSON K I, VOSS M W, PRAKASH R S, et al. Exercise training increases size of hippocampus and improves me-

mory[J].? Proceedings of the National Academy of Sciences of the United States of America, 2011,108(7):3017-3022.

[24]WRANN C, WHITE J, SALOGIANNNIS J, et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway[J].? Cell Metabolism, 2013,18(5):649-659.

[25]LOPRINZI P D, FRITH E. A brief primer on the mediational role of BDNF in the exercise-memory link[J].? Clinical Physio-

logy and Functional Imaging, 2019,39(1):9-14.

[26]VAYNMAN S, YING Z, GOMEZ-PINILLA F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition[J].? The European Journal of Neuroscience, 2004,20(10):2580-2590.

[27]VAYNMAN S, YING Z, GMEZ-PINILLA F. Exercise induces BDNF and synapsin Ⅰ to specific hippocampal subfields[J].? Journal of Neuroscience Research, 2004,76(3):356-362.

[28]PAJONK F G, WOBROCK T, GRUBER O, et al. Hip-

pocampal plasticity in response to exercise in schizophrenia[J].? Archives of General Psychiatry, 2010,67(2):133-143.

[29]MATTHEWS V B, ASTRM M B, CHAN M H, et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase[J].? Diabetologia, 2009,52(7):1409-1418.

[30]MOON H Y, BECKE A, BERRON D, et al. Running-induced systemic cathepsin B secretion is associated with memory function[J].? Cell Metabolism, 2016,24(2):332-340.

[31]ALBRECHT E, NORHEIM F, THIEDE B, et al. Irisin-a myth rather than an exercise-inducible myokine[J].? Scientific Reports, 2015,5:8889.

[32]WRANN C D. FNDC5/irisin-their role in the nervous system and as a mediator for beneficial effects of exercise on the brain[J].? Brain Plasticity, 2015,1(1):55-61.

[33]PEDERSEN B K, FEBBRAIO M A. Muscles, exercise and obesity: skeletal muscle as a secretory organ[J].? Nature Reviews Endocrinology, 2012,8(8):457-465.

[34]MATTHEWS V B, ALLEN T L, RISIS S, et al. Interleukin-6-deficient mice develop hepatic inflammation and systemic insulin resistance[J].? Diabetologia, 2010,53(11):2431-2441.

[35]ELLINGSGAARD H, HAUSELMANN I, SCHULER B, et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells[J].? Nature Medicine, 2011,17(11):1481-1489.

[36]TIMPER K, DENSON J L, STECULORUM S M, et al. IL-6 improves energy and glucose homeostasis in obesity via enhanced central IL-6 trans-signaling[J].? Cell Reports, 2017,19(2):267-280.

[37]WUEEST S, KONRAD D. The role of adipocyte-specific IL-6-type cytokine signaling in FFA and leptin release[J].? Adipocyte, 2018,7(3):226-228.

[38]PEDERSEN B K, FEBBRAIO M A. Muscle as an endocrine organ: focus on muscle-derived interleukin-6[J].? Physiological Reviews, 2008,88(4):1379-1406

[39]王相清,朱慧娟,龔鳳英.白色脂肪細(xì)胞棕色化:肥胖癥及其相關(guān)代謝性疾病治療的新靶點(diǎn)[J]. 醫(yī)學(xué)綜述, 2013,19(10):1729-1732.

[40]SUNDARRAJAN L, UNNIAPPAN S. Small interfering RNA mediated knockdown of irisin suppresses food intake and mo-

dulates appetite regulatory peptides in zebrafish[J]. General and Comparative Endocrinology, 2017,252:200-208.

[41]BOSTRM P, WU J, JEDRYCHOWSKI M P, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis[J].? Nature, 2012,481(7382):463-468.

.

[42]KNUDSEN J G, MURHOLM M, CAREY A L, et al. Role of IL-6 in exercise training-and cold-induced UCP1 expression in subcutaneous white adipose tissue[J].? PLoS One, 2014,9(1): e84910.

[43]VERSCHUEREN S, GIELEN E, ONEILL T W, et al. Sarcopenia and its relationship with bone mineral density in middle-aged and elderly European men[J].? Osteoporosis International, 2013,24(1):87-98.

[44]YANG X, RICCIARDI B F, HERNANDEZ-SORIA A, et al. Callus mineralization and maturation are delayed during fracture healing in interleukin-6 knockout mice[J].? Bone, 2007,41(6):928-936.

[45]BENEDETTI F D, RUCCI N, DEL FATTORE A, et al. Impaired skeletal development in interleukin-6-transgenic mice: a model for the impact of chronic inflammation on the growing skeletal system[J].? Arthritis and Rheumatism, 2006,54(11):3551-3563.

[46]DANKBAR B, FENNEN M, BRUNERT D, et al. Myostatin is a direct regulator of osteoclast differentiation and its inhibition reduces inflammatory joint destruction in mice[J].? Nature Medicine, 2015,21(9):1085-1090.

[47]PERRINI S, LAVIOLA L, CARREIRA M C, et al. The GH/IGF1 axis and signaling pathways in the muscle and bone: mechanisms underlying age-related skeletal muscle wasting and osteoporosis[J].? The Journal of Endocrinology, 2010,205(3):201-210.

[48]FEBBRAIO M A, HISCOCK N, SACCHETTI M, et al. Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction[J].? Diabetes, 2004,53(7):1643-1648.

[49]PEPPLER W T, TOWNSEND L K, MEERS G M, et al. Acute administration of IL-6 improves indices of hepatic glucose and insulin homeostasis in lean and obese mice[J].? American Journal of Physiology Gastrointestinal and Liver Physiology, 2019,316(1): G166-G178.

[50]POLYZOS S A, KOUNTOURAS J, ANASTASILAKIS A D, et al. Irisin in patients with nonalcoholic fatty liver disease[J].? Metabolism: Clinical and Experimental, 2014,63(2):207-217.

[51]KIM H J, LEE H J, SO B, et al. Effect of aerobic training and resistance training on circulating irisin level and their association with change of body composition in overweight/obese adults: a pilot study[J].? Physiological Research, 2016,65(2):271-279.

[52]HOJMAN P, GEHL J, CHRISTENSEN J F, et al. Molecular mechanisms linking exercise to cancer prevention and treatment[J].? Cell Metabolism, 2018,27(1):10-21.

[53]PEDERSEN B K. The physiology of optimizing health with a focus on exercise as medicine[J].? Annual Review of Physiology, 2019,81:607-627.

[54]PEDERSEN L, IDORN M, OLOFSSON G H, et al. Voluntary running suppresses tumor growth through epinephrine- and IL-6-dependent NK cell mobilization and redistribution[J].? Cell Metabolism, 2016,23(3):554-562.

(本文編輯 牛兆山)

猜你喜歡
代謝骨骼綜述
做家務(wù)的女性骨骼更強(qiáng)壯
中老年保健(2021年5期)2021-12-02 15:48:21
三減三健全民行動(dòng)——健康骨骼
中老年保健(2021年5期)2021-08-24 07:06:28
SEBS改性瀝青綜述
石油瀝青(2018年6期)2018-12-29 12:07:04
NBA新賽季綜述
NBA特刊(2018年21期)2018-11-24 02:47:52
骨骼和肌肉
小布老虎(2017年1期)2017-07-18 10:57:27
色素上皮衍生因子與胰島素抵抗的相關(guān)性
玉女煎治療消渴胃熱熾盛證的研究進(jìn)展
護(hù)理干預(yù)對(duì)多囊卵巢綜合征患者體重和代謝的影響
JOURNAL OF FUNCTIONAL POLYMERS
JOURNAL OF FUNCTIONAL POLYMERS
廊坊市| 平乐县| 景洪市| 米易县| 湘潭市| 杭锦后旗| 子洲县| 德化县| 阜康市| 黄山市| 剑阁县| 巴马| 庄河市| 长汀县| 清涧县| 察雅县| 皋兰县| 沧州市| 察哈| 肃北| 油尖旺区| 香河县| 乐都县| 榕江县| 仪陇县| 舞钢市| 东阳市| 房产| 师宗县| 汝阳县| 肃南| 明光市| 蒙自县| 奉新县| 麦盖提县| 县级市| 红桥区| 翼城县| 林西县| 达日县| 稻城县|