王鵬飛,于愛忠,王玉瓏,蘇向向,李悅,呂漢強,柴健,楊宏偉
綠肥還田結(jié)合減量施氮對玉米干物質(zhì)積累分配及產(chǎn)量的影響
王鵬飛,于愛忠,王玉瓏,蘇向向,李悅,呂漢強,柴健,楊宏偉
甘肅農(nóng)業(yè)大學農(nóng)學院/甘肅省干旱生境作物學重點實驗室,蘭州 730070
【】分析綠洲灌區(qū)玉米干物質(zhì)積累分配特征及籽粒產(chǎn)量對綠肥還田結(jié)合減量施氮的響應,以期為該區(qū)域發(fā)展高產(chǎn)、高效玉米生產(chǎn)技術(shù)提供理論依據(jù)。【】田間試驗于2020―2021年在甘肅河西綠洲灌區(qū)進行,研究綠肥還田結(jié)合不同的減氮比例(綠肥還田結(jié)合減量施氮0%,N100;綠肥還田結(jié)合減量施氮10%,N90;綠肥還田結(jié)合減量施氮20%,N80;綠肥還田結(jié)合減量施氮30%,N70;綠肥還田結(jié)合減量施氮40%,N60)對玉米干物質(zhì)積累分配及產(chǎn)量的影響?!尽堪喂?jié)期后N80和N90處理地上干物質(zhì)積累量顯著高于N70和N60處理,至成熟期N80處理較N70和N60處理提高了13.3%—23.2%,N90處理較N70和N60處理提高了13.9%—23.7%,N100、N90、N80處理間無顯著差異;N80處理較N70和N60處理玉米地上干物質(zhì)最大增長速率和平均增長速率顯著提高了9.5%—21.2%、13.0%—23.2%,N90處理較N70和N60處理顯著提高了10.2%—21.8%、13.9%—23.7%,二者均有效延緩了吐絲期至灌漿期玉米地上干物質(zhì)積累速率的降低,而且N80處理較N70和N60處理干物質(zhì)最大增長速率出現(xiàn)的天數(shù)提前了2.44和2.77 d,N90處理較N70和N60處理提前了1.92和2.3 d;在成熟期,N80和N90處理較N70和N60處理促進了玉米穗部干物質(zhì)分配,有效提高了花前干物質(zhì)轉(zhuǎn)運對籽粒干物質(zhì)積累貢獻率,同時N80處理花后干物質(zhì)積累量較N70和N60處理分別提高12.2%和20.4%,N90處理較N70和N60處理分別提高12.4%和20.5%,差異顯著。N100、N90、N80處理間玉米籽粒產(chǎn)量無顯著差異,但N80處理玉米籽粒產(chǎn)量較N70和N60處理分別增加16.8%和27.4%,N90處理較N70和N60處理分別提高17.4%和27.9%,差異顯著。【】豆科綠肥還田結(jié)合減量施氮10%和20%處理增加了玉米地上干物質(zhì)積累量和積累速率,促進了成熟期穗部干物質(zhì)的分配,提高了花前干物質(zhì)轉(zhuǎn)運對籽粒干物質(zhì)積累貢獻率,可作為綠洲灌區(qū)獲得玉米高產(chǎn)的推薦施氮方式。
綠肥;氮肥;干物質(zhì)積累;干物質(zhì)分配;產(chǎn)量
【研究意義】氮素是作物生長的必需營養(yǎng)元素[1],合理的施用氮肥可有效促進玉米的生長發(fā)育和產(chǎn)量形成[2-3],然而過度依賴化學氮肥,不僅使作物增產(chǎn)效果降低,同時造成了溫室氣體排放、養(yǎng)分流失等一系列問題[4-5]。因此,探討減少化學氮肥投入的同時保證玉米穩(wěn)增產(chǎn)是玉米生產(chǎn)中亟待解決的科學問題?!厩叭搜芯窟M展】綠肥作為一種優(yōu)質(zhì)生物肥源[6],具有固氮活磷、改土培肥的功效[7],對促進后茬作物生長發(fā)育、提高產(chǎn)量、改善品質(zhì)具有重要作用[8-10]。研究發(fā)現(xiàn),植株干物質(zhì)積累分配與轉(zhuǎn)移特性是決定作物產(chǎn)量高低的關(guān)鍵,作物高產(chǎn)是源庫關(guān)系協(xié)調(diào)平衡發(fā)展的結(jié)果[11-12],紫云英還田結(jié)合減量施氮20%顯著提高了拔節(jié)期后的水稻地上部干物質(zhì)積累量,最終稻谷產(chǎn)量增加5.3%—7.5%[13-14];針對小麥的研究亦有相同規(guī)律,綠肥還田配施氮肥可促進小麥生育后期干物質(zhì)向籽粒轉(zhuǎn)移,最終增產(chǎn)7.9%—11.27%[15-16]。由此可見,綠肥還田結(jié)合減量施氮具有提高作物干物質(zhì)積累分配及產(chǎn)量的潛力。【本研究切入點】在干旱綠洲灌區(qū),對于玉米干物質(zhì)積累、籽粒產(chǎn)量對綠肥還田結(jié)合減量施氮響應方面的研究不足,這在一定程度上致使區(qū)域玉米生產(chǎn)施氮制度優(yōu)化缺乏必要的理論指導依據(jù)。西北綠洲灌區(qū)光熱充足,雨熱同期,為玉米的種植提供了天然的優(yōu)越條件,但由于長期連作而導致的病蟲害等問題不利于玉米產(chǎn)業(yè)的發(fā)展,利用夏休閑期復種豆科綠肥,在充分利用自然資源的同時還可打破同科作物連作障礙。因此,在麥玉輪作系統(tǒng)中,探討綠肥還田結(jié)合減量施氮對玉米干物質(zhì)積累特征及籽粒產(chǎn)量的影響,對實現(xiàn)玉米高產(chǎn)高效發(fā)展具有重要意義?!緮M解決的關(guān)鍵問題】本研究在綠洲灌區(qū)傳統(tǒng)小麥-玉米輪作模式下,重點探討麥后復種豆科綠肥并還田結(jié)合減量施氮對后茬玉米產(chǎn)量及干物質(zhì)積累與分配特征的影響,以期為該區(qū)域發(fā)展高產(chǎn)、高效玉米生產(chǎn)技術(shù)提供理論依據(jù)。
田間試驗于2019—2021年在甘肅農(nóng)業(yè)大學綠洲農(nóng)業(yè)綜合試驗站(103°5′E,37°30′N)進行,該區(qū)位于河西走廊東端,屬寒溫帶大陸性干旱氣候區(qū),平均海拔1 776 m,多年平均降雨量為156 mm,年蒸發(fā)量2 400 mm,年平均氣溫7.3℃,年日照時數(shù)2 945 h。土壤類型屬于灌漠土,試區(qū)平均土層厚度為110 cm。田間試驗布設前,0—30 cm平均土壤容重為1.44 g?cm-3,平均pH為8.2,有機碳含量為11.3 g?kg-1,全氮、速效磷、速效鉀含量分別為0.94 g?kg-1、29.2 mg?kg-1和152 mg?kg-1,主栽作物為小麥和玉米,耕作以傳統(tǒng)深翻耕為主。
試驗始于2019年3月,種植模式為小麥-箭筈豌豆→玉米復種輪作,每年7月份春小麥收獲后翻耕復種箭筈豌豆(),于10月份箭筈豌豆盛花期,采用秸稈還田機粉碎并均勻覆蓋于每個小區(qū)之上,翌年,玉米播前旋耕后覆膜平作玉米,2019年綠肥氮素含量為 4.28%,還田量為34 600 kg·hm-2,2020年綠肥氮素含量為4.84%,還田量為39 400 kg·hm-2。試驗采用完全隨機區(qū)組設計,設置5個處理,每個處理5次重復,小區(qū)面積78 m2(13 m×6 m)。具體處理及施肥制度如表1所示。
表1 不同試驗處理的施肥制度
為了消除年際氣候因子變異對試驗結(jié)果造成的影響,采用雙輪作序列。玉米播種日期分別為2020年4月25日與2021年4月23日,收獲日期分別為2020年9月28日與2021年9月23日。玉米播種密度為82 500株/hm2,行距40 cm;箭筈豌豆播量為75 kg?hm-2,條播,行距15 cm。
試驗選用玉米品種為先玉335,春小麥品種為寧春4號,綠肥為蘭箭2號。玉米采用膜下滴灌水肥一體化技術(shù),水表計量灌溉,總灌水定額405 mm,按照6﹕5﹕6﹕5﹕5比例在玉米拔節(jié)期、大喇叭口期、抽雄吐絲期、灌漿初期、灌漿中期進行灌溉;春小麥生育期內(nèi)總灌水量為240 mm,在小麥苗期、孕穗期、灌漿期分別灌水75、90和75 mm;箭筈豌豆生育期內(nèi)總灌水量為160 mm,在苗期、現(xiàn)蕾期分別灌水70和90 mm;肥料種類:氮肥為尿素,磷肥為磷酸二銨,復種綠肥不施肥。
1.3.1 干物質(zhì)積累量 玉米出苗后15 d開始取樣,每隔15—20 d取樣一次。每小區(qū)在同一地膜覆蓋帶內(nèi)用S形法選取10株玉米,在105℃烘箱中殺青0.5 h,然后調(diào)至80℃恒溫連續(xù)烘干至恒重,測其干重。
1.3.2 群體生長率 玉米某一生育時期的干物質(zhì)積累量與上一生育時期的干物質(zhì)積累量的差值除以間隔天數(shù),表示為CGR=(D2-D1)/(T2-T1)。式中,CGR表示玉米的群體生長率(kg?hm-2?d-1);D1和D2分別為T1和T2時期玉米的干物質(zhì)積累量。
采用Logistic方程通過回歸分析擬合玉米地上干物質(zhì)積累動態(tài),并計算其最大干物質(zhì)積累速率及最大積累速率出現(xiàn)的時間[17]。
1.3.3 干物質(zhì)轉(zhuǎn)運 參照Cox等[18]的方法,計算以下指標:
花前干物質(zhì)轉(zhuǎn)運量(kg?hm-2)=開花期營養(yǎng)器官干物質(zhì)積累量-成熟期營養(yǎng)器官干物質(zhì)積累量;
花前干物質(zhì)轉(zhuǎn)運率(%)=(開花期營養(yǎng)器官干物質(zhì)積累量-成熟期營養(yǎng)器官干物質(zhì)積累量)/開花期營養(yǎng)器官干物質(zhì)積累量×100%;
花前營養(yǎng)器官干物質(zhì)轉(zhuǎn)運對籽粒干物質(zhì)積累貢獻率(%)=(開花期營養(yǎng)器官干物質(zhì)積累量-成熟期營養(yǎng)器官干物質(zhì)積累量)/籽粒干物質(zhì)積累量×100%;
花后干物質(zhì)積累量(kg?hm-2)=成熟期干物質(zhì)積累量-開花期干物質(zhì)積累量;
花后干物質(zhì)積累對籽粒干物質(zhì)積累貢獻率(%)=1-花前干物質(zhì)轉(zhuǎn)運對籽粒干物質(zhì)積累貢獻率。
1.3.4 產(chǎn)量 將每小區(qū)單獨收獲測定籽粒產(chǎn)量。
數(shù)據(jù)采用Microsoft Excel 2021整理匯總、SigmaPlot 14.0作圖,使用SPSS 23.0統(tǒng)計分析軟件進行方差分析并通過回歸分析擬合Logistic方程,運用Duncan法進行顯著性檢驗。
2.1.1 干物質(zhì)積累量動態(tài) 2年試驗結(jié)果表明,綠肥還田結(jié)合減量施氮對玉米地上干物質(zhì)積累動態(tài)影響顯著(圖1)。玉米主要生育時期有拔節(jié)期(出苗后30—60 d)、大喇叭口期(出苗后60—75 d)、抽雄期(出苗后75—90 d)、吐絲期(出苗后90—115 d)、灌漿期(出苗后115—130 d)、成熟期(出苗后130—150 d)。在玉米苗期至拔節(jié)期(出苗后0—30 d),各處理玉米平均干物質(zhì)積累量無顯著差異(>0.05)。在拔節(jié)期至灌漿期(30—115 d),N70和N60處理較N100處理玉米平均干物質(zhì)積累量分別降低11.8%和22.8%,N100、N90、N80處理間無顯著差異,N90處理較N70和N60處理分別提高13.5%和24.3%,N80處理較N70和N60處理分別提高12.5%和23.4%(<0.05)。蠟熟期至完熟期(130—150 d),N70和N60處理較N100處理玉米平均干物質(zhì)積累量分別降低13.6%和23.5%,N100、N90、N80處理間無顯著差異,N90處理較N70和N60處理分別提高13.9%和23.7%,N80處理較N70和N60處理分別提高13.3%和23.2%(<0.05)。從玉米整個生育期來看,綠肥還田結(jié)合減量施氮10%和20%處理(N90、N80)玉米干物質(zhì)積累量與正常施肥處理(N100)無顯著差異,而較其他減量施氮處理(N70、N60)則顯著提高,為綠肥還田結(jié)合減量施氮后產(chǎn)量形成提供了干物質(zhì)積累保障。
2.1.2 干物質(zhì)積累速率動態(tài) 2年試驗結(jié)果表明,綠肥還田結(jié)合減量施氮對玉米地上干物質(zhì)積累速率動態(tài)影響顯著(圖2)。苗期至拔節(jié)期(出苗后0—30 d),不同處理間玉米地上干物質(zhì)積累速率無顯著差異(>0.05)。隨著玉米生育時期的逐步推進,各處理地上部干物質(zhì)積累速率逐步增加,大喇叭口期至吐絲期(60—90 d),各處理玉米地上干物質(zhì)積累速率均達到了最高值,其中N70和N60處理較N100處理分別降低9.0%和19.7%,N100、N90、N80處理間無顯著差異,N90處理較N70和N60處理分別提高13.3%和23.5%,N80處理較N70和N60處理分別提高10.7%和21.3%(<0.05)。吐絲期過后,各處理玉米地上部干物質(zhì)積累速率明顯降低,吐絲期至灌漿期(90—115 d),N70和N60處理較N100處理干物質(zhì)積累速率分別降低了9.5%和19.3%,N100、N90、N80處理間無顯著差異,N90處理較N70和N60處理分別提高10.5%和19.9%,N80處理較N70和N60處理分別提高9.6%和19.5%(<0.05)。當玉米生長至完熟期,各處理間玉米地上部干物質(zhì)積累速率均無顯著差異??v觀玉米全生育期,綠肥還田結(jié)合減量施氮10%和20%處理(N90、N80)與正常施肥處理(N100)干物質(zhì)積累速率無顯著差異,而較其他處理(N70、N60)不僅提高了拔節(jié)期后的玉米地上部干物質(zhì)積累速率,而且減緩了吐絲期至灌漿期玉米地上部干物質(zhì)積累速率的降低,為玉米獲得高產(chǎn)奠定了基礎。
N100、N90、N80、N70、N60處理依次為減少常規(guī)施氮量(360 kg?hm-2)的0%、10%、20%、30%、40%;誤差線表示標準差(n=5)。下同
圖2 不同處理下玉米地上干物質(zhì)積累速率動態(tài)
2.1.3 干物質(zhì)最大增長速率及其出現(xiàn)的天數(shù) 2個試驗年份各處理玉米地上部干物質(zhì)積累量()依據(jù)出苗后天數(shù)()的動態(tài)過程均可用Logistic方程加以回歸描述(2>0.99,表2)。2個試驗年度內(nèi),綠肥還田結(jié)合減量施氮對玉米地上部最大干物質(zhì)增長速率(max)、平均增長速率(mean)以及最大增長速率出現(xiàn)的天數(shù)(50)影響顯著。N70和N60處理干物質(zhì)平均增長速率較N100處理分別降低13.6%和23.5%,N100、N90與N80處理間無顯著差異,N90處理較N70和N60處理分別提高13.9%和23.7%,N80處理較N70和N60處理分別提高13.3%和23.2%(<0.01)。玉米地上干物質(zhì)最大增長速率及其出現(xiàn)的天數(shù)也呈現(xiàn)與干物質(zhì)平均增長速率相同的趨勢,其中N70和N60處理干物質(zhì)最大增長速率較N100處理分別降低8.8%和20.5%,N100、N90和N80處理間無顯著差異,N90處理較N70和N60分別提高10.2%和21.8%,N80處理較N70和N60處理分別提高9.5%和21.2%(<0.01)。N70和N60處理干物質(zhì)最大增長速率出現(xiàn)的天數(shù)較N100處理推遲2.35和2.68 d,N100、N90和N80處理間無顯著差異,N90處理較N70和N60處理提前1.92和2.3 d,N80處理較N70和N60處理提前2.44和2.77 d(<0.01)。由上述分析可知,與N70、N60處理相比,綠肥還田結(jié)合減量施氮10%和20%處理(N90、N80)增大了玉米干物質(zhì)最大增長速率,維持了較長時期的干物質(zhì)積累天數(shù),增加了干物質(zhì)積累量。
2.2.1 不同處理下玉米成熟期干物質(zhì)分配 綠肥還田結(jié)合減量施氮對玉米成熟期干物質(zhì)分配影響顯著(圖3)。干物質(zhì)在成熟期的各器官中的分配比例為穗>莖>葉。2020年,N70和N60處理較N100處理穗部干物質(zhì)降低17.4%和26.2%,N100、N90、N80處理間無顯著差異,N90處理較N70和N60提高15.4%和25.7%,N80處理較N70和N60提高15.6%和24.5%(<0.05);N60處理的莖稈干物質(zhì)顯著低于其他處理。2021年,N70和N60處理較N100處理穗部干物質(zhì)降低16.2%和26.4%,N100、N90、N80處理間無顯著差異,N90處理較N70和N60提高15.5%和24.5%,N80處理較N70和N60提高14.1%和24.6%(<0.05);葉片和莖稈干物質(zhì)呈現(xiàn)與穗部相同趨勢。說明綠肥還田結(jié)合減量施氮10%和20%處理(N90、N80)能有效提高玉米成熟期干物質(zhì)在穗部的分配。
表2 不同處理下玉米地上干物質(zhì)積累的Logistic方程回歸分析
N100、N90、N80、N70、N60處理依次為減少常規(guī)施氮量(360 kg?hm-2)的0%、10%、20%、30%、40%。不同小寫字母表示處理間在<0.01水平上差異顯著。下同
The N reduction rates in treatments N100, N90, N80, N70 and N60 were 0%, 10%, 20%, 30% and 40% of the conventional N rate 360 kg?hm-2. Different lowercase letters indicate significant differences among different treatments at 0.01 probability level. The same as below
不同小寫字母表示處理間在P<0.05水平上差異顯著。下同
2.2.2 不同處理下玉米營養(yǎng)器官干物質(zhì)轉(zhuǎn)運 綠肥還田結(jié)合減量施氮對玉米營養(yǎng)器官干物質(zhì)轉(zhuǎn)運影響顯著(表3)。2個試驗年度內(nèi),N70和N60處理的花前干物質(zhì)轉(zhuǎn)運量(DMR)、花前干物質(zhì)轉(zhuǎn)運率(DMRE)、花前干物質(zhì)轉(zhuǎn)運對籽粒干物質(zhì)積累貢獻率(DMRCG)均顯著低于其他處理,N100、N90和N80處理間均無顯著差異。在開花后,N70和N60處理的花后干物質(zhì)積累量(DMA)較N100處理分別降低14.3%和22.3%,N100、N90和N80處理間無顯著差異,N90處理較N70和N60分別提高12.4%和20.5%,N80處理較N70和N60處理分別提高12.2%和20.4%(<0.05)。說明綠肥還田結(jié)合減量施氮10%和20%處理(N90、N80)能有效提高花前營養(yǎng)器官干物質(zhì)轉(zhuǎn)運對籽粒的貢獻率及花后干物質(zhì)積累量,為玉米獲得高產(chǎn)奠定基礎。
表3 不同處理下玉米開花前后營養(yǎng)器官干物質(zhì)轉(zhuǎn)運及對籽粒干物質(zhì)積累的影響
DMR:干物質(zhì)轉(zhuǎn)運量;DMRE:干物質(zhì)轉(zhuǎn)運率;DMRGG:干物質(zhì)轉(zhuǎn)運對籽粒干物質(zhì)積累貢獻率;DMA:干物質(zhì)積累量;DMAC:干物質(zhì)積累對籽粒干物質(zhì)積累貢獻率
DMR: Dry matter remobilization; DMRE: Dry matter remobilization efficiency; DMRCG: Contribution of dry matter remobilization to grain; DMA: Dry matter accumulation; DMAC: Contribution of dry matter accumulation to grain
2年試驗結(jié)果表明,綠肥還田結(jié)合減量施氮對玉米籽粒產(chǎn)量影響顯著(圖4)。N70和N60處理較N100處理籽粒產(chǎn)量降低17.9%和28.4%,N100、N90、N80處理間無顯著差異,N90處理較N70和N60處理分別提高17.4%和27.9%,N80處理較N70和N60處理分別提高16.8%和27.4%(<0.05)。由上述分析可知,綠肥還田結(jié)合減量施氮10%和20%處理(N90、N80)玉米籽粒產(chǎn)量與正常施肥處理(N100)無顯著差異,但高于其他減量施氮處理(N70、N60),差異顯著(<0.05),說明綠肥還田結(jié)合減量施氮10%—20%能夠保證玉米穩(wěn)產(chǎn)。
圖4 不同處理下玉米籽粒產(chǎn)量
干物質(zhì)作為作物光合作用產(chǎn)物的最高形式,其積累和分配與作物產(chǎn)量形成密切相關(guān),一直是高產(chǎn)栽培研究的重點,也是揭示高產(chǎn)機制的重要方面[19]。作物產(chǎn)量實質(zhì)上是通過光合作用直接或間接形成的,在農(nóng)業(yè)生產(chǎn)中通過改進農(nóng)藝措施來提高作物干物質(zhì)積累量并優(yōu)化其分配比例是作物獲得高產(chǎn)的重要途徑[20-21]。本研究表明,綠肥還田結(jié)合減量施氮10%—20%時能顯著增加玉米拔節(jié)期后的干物質(zhì)積累量和積累速率,主要是由于單施化學氮肥只能在短期內(nèi)維持土壤氮素的供應,而豆科綠肥還田能補充土壤氮庫,提高土壤氮素有效性,同時綠肥緩慢釋放養(yǎng)分的特性可以避免作物生育后期養(yǎng)分供應不足的問題,有利于作物干物質(zhì)積累量的增加[22-23],而且適量的氮肥投入對植株地上部生長起到一定的促進作用,有效延長作物莖、葉等營養(yǎng)器官的功能期,增強光合作用持續(xù)時間,提高光合同化產(chǎn)物[24-25]。本研究還發(fā)現(xiàn),綠肥還田結(jié)合減量施氮30%—40%時,作物的地上干物質(zhì)積累量和積累速率顯著下降,這與徐兆廷等[26]的研究結(jié)果相一致,主要由于化學氮肥施用比例過少,導致作物生育前期養(yǎng)分供應不足,地上部干物質(zhì)積累動態(tài)受到影響。說明在農(nóng)業(yè)生產(chǎn)中需要尋求合適的氮肥減量比例,否則會對作物生長發(fā)育造成不良影響,影響產(chǎn)量。
本研究結(jié)果表明,綠肥還田結(jié)合減量施氮對玉米地上干物質(zhì)積累Logistic擬合方程產(chǎn)生顯著影響(<0.01),造成這種差異的主要原因是豆科綠肥結(jié)合不同比例的化學氮肥對玉米特定生育時期地上干物質(zhì)積累速率的影響不同,綠肥還田結(jié)合減量施氮10%和20%處理不僅增大了玉米地上部干物質(zhì)最大增長速率,而且延長了后茬玉米干物質(zhì)積累高峰期,增加了地上部干物質(zhì)積累量,這主要是因為有機肥結(jié)合適量化學氮肥在提高土壤有機質(zhì)含量的同時促進了土壤對氮肥的固持能力,在作物生育前期保證了作物生長,在生育后期補償了氮的虧缺,緩解了氮素吸收不足對作物生長發(fā)育的限制,提高了作物葉綠素含量,延緩了葉片衰老,改善了作物光合特性,從而增加了作物地上干物質(zhì)積累速率,使干物質(zhì)高峰期提前,為增產(chǎn)奠定基礎[27]。
從玉米干物質(zhì)分配與轉(zhuǎn)運的角度看,籽粒干物質(zhì)主要來源于花后干物質(zhì)積累和花前營養(yǎng)器官干物質(zhì)向籽粒的轉(zhuǎn)移與分配,因此,在生產(chǎn)中保證花后干物質(zhì)積累的同時提升花前干物質(zhì)對產(chǎn)量的貢獻對于實現(xiàn)玉米增產(chǎn)具有重要意義[28]。本研究發(fā)現(xiàn)綠肥還田結(jié)合減量施氮10%—20%時玉米干物質(zhì)的分配與轉(zhuǎn)運表現(xiàn)最好。劉斌祥等[29]研究表明減氮20%配施有機肥有利于玉米光合產(chǎn)物向穗部積累與轉(zhuǎn)運。劉曉明等[30]研究表明有機肥配施化肥氮可在提高玉米花前干物質(zhì)轉(zhuǎn)運對籽粒干物質(zhì)積累貢獻率的同時增加花后干物質(zhì)積累量。這與本研究結(jié)果一致,主要是由于綠肥還田可改良作物的生長環(huán)境[31],改善土壤理化性質(zhì),提高土壤氮素有效性,促進植物根系對養(yǎng)分的吸收和利用[32],化學氮肥配施有機肥能延緩作物莖、葉等營養(yǎng)器官的衰老,促進花前干物質(zhì)向籽粒的轉(zhuǎn)運,提高生育后期光合產(chǎn)物的積累[33],進而提高作物產(chǎn)量。
本研究發(fā)現(xiàn),綠肥還田結(jié)合減量施氮10%和20%處理玉米籽粒產(chǎn)量較常規(guī)施肥處理無顯著差異,但較其他減量施氮處理提高16.8%—27.9%(<0.05)。陳倩等[34]研究表明,有機肥結(jié)合化學氮肥減量12.5%—37.5%時會表現(xiàn)出較佳的籽粒產(chǎn)量,謝志堅等[35]研究表明綠肥還田結(jié)合減量施氮20%可使水稻籽粒產(chǎn)量增加25.2%,主要原因是:一方面,豆科綠肥可利用自身的生物固氮作用固定大氣中的N2,翻壓還田后可釋放出供作物吸收利用的氮素,而且化學氮肥與豆科綠肥配合施用,前者滿足了作物生育前期對速效養(yǎng)分的需求,而后者可在生育期持續(xù)不斷地釋放作物所需養(yǎng)分,為作物的生長發(fā)育提供了充分的養(yǎng)分支持[36-37];另一方面,豆科綠肥具有較低的碳氮比[38],能夠促進土壤微生物的繁殖和有機質(zhì)分解過程中的養(yǎng)分釋放[39],進而提高土壤養(yǎng)分含量,促進作物的生長發(fā)育??梢姡G肥還田結(jié)合適量的化學氮肥可為后茬玉米的生長發(fā)育提供充足的養(yǎng)分,當綠肥還田結(jié)合化學氮肥減量施用時,綠肥和無機氮對玉米養(yǎng)分供給時間上的差異協(xié)調(diào)了玉米氮肥供需同步性,有利于玉米產(chǎn)量的提高。張璐[40]、劉思超等[36]研究發(fā)現(xiàn),豆科綠肥結(jié)合減量施氮40%時,仍能保證作物實現(xiàn)高產(chǎn),甚至呂鳳蓮等[41]研究發(fā)現(xiàn),在有機肥投入的情況下,化肥氮減少75%時仍舊可以實現(xiàn)小麥產(chǎn)量的提高,只有當全部施用有機肥時才會出現(xiàn)減產(chǎn)情況,這有異于本研究結(jié)論,造成這一差異的主要原因:一方面可能是由于這些試驗地塊以前化學氮肥投入過量,導致作物一直在消耗土壤中過多的氮素殘留,因而造成大幅減氮卻不減產(chǎn)的“表象”;另一方面與作物種類、環(huán)境條件、土壤類型及有機肥的種類等因素有關(guān)[40]。本研究探明在河西綠洲灌區(qū)麥-玉輪作體系中,綠肥還田結(jié)合減量施氮10%和20%能夠在減少化學氮肥投入的條件下保障作物實現(xiàn)較高的產(chǎn)量。在西北綠洲灌區(qū),豐富的光熱資源為麥后復種綠肥創(chuàng)造了優(yōu)越的條件,麥后復種箭筈豌豆的種植模式應用已較為廣泛,綠肥地上部分刈割鮮草可作飼草,根茬還田或全量還田可培肥土壤,從而減少化學氮肥施用量,為農(nóng)戶節(jié)省了部分肥料支出,提高經(jīng)濟效益,因此,目前這種種植模式及配套施氮制度已被農(nóng)戶所接受,且表現(xiàn)出良好的應用前景。本研究結(jié)果僅基于2年田間試驗研究結(jié)果,關(guān)于綠肥還田結(jié)合減量施氮對于玉米產(chǎn)量的長期影響以及氮素在“土壤-作物”系統(tǒng)中的轉(zhuǎn)化利用機制仍需進一步深入研究。
豆科綠肥還田結(jié)合減量施氮10%和20%處理較減量施氮30%和40%處理顯著增加了拔節(jié)期后玉米地上部干物質(zhì)積累量和成熟期穗部干物質(zhì)分配,有效促進了花前干物質(zhì)轉(zhuǎn)運量、轉(zhuǎn)運效率、轉(zhuǎn)運對籽粒的貢獻率以及花后干物質(zhì)積累量,提升了玉米地上干物質(zhì)最大積累速率和平均積累速率,且該條件下,玉米籽粒產(chǎn)量相對于綠肥還田不減量施氮未下降。因此,豆科綠肥還田結(jié)合減量施氮10%和20%是西北綠洲灌區(qū)優(yōu)化玉米干物質(zhì)積累分配特性及獲得高產(chǎn)的合理減氮方式。
[1] 蓋霞普, 劉宏斌, 翟麗梅, 楊波, 任天志, 王洪媛, 武淑霞, 雷秋良.長期增施有機肥/秸稈還田對土壤氮素淋失風險的影響. 中國農(nóng)業(yè)科學, 2018, 51(12): 2336-2347.
GAI X P, LIU H B, ZHAI L M, YANG B, REN T Z, WANG H Y, WU S X, LEI Q L. Effects of long-term additional application of organic manure or straw incorporation on soil nitrogen leaching risk.Scientia Agricultura Sinica, 2018, 51(12): 2336-2347. (in Chinese)
[2] PAOLO E D, RINALDI M. Yield response of corn to irrigation and nitrogen fertilization in a Mediterranean environment. Field Crops Research, 2008, 105(3): 202-210.
[3] 梁元振, 仝利朋, 吳德亮, 郭乾坤, 徐鳳花, 趙京考. 有機無機肥配施對土壤硝態(tài)氮、玉米產(chǎn)量和氮素利用率的影響. 玉米科學, 2017, 25(4): 111-116.
LIANG Y Z, HANG L P, WU D L, GUO Q K, XU F H, ZHAO J K. Effects of organic manure combined with inorganic fertilizer on soil nitrate, maize yield and N use efficiency. Journal of Maize Sciences,2017, 25(4): 111-116. (in Chinese)
[4] 雒文鶴, 師祖姣, 王旭敏, 李軍, 王瑞. 節(jié)水減氮對土壤硝態(tài)氮分布和冬小麥水氮利用效率的影響. 作物學報, 2020, 46(6): 924-936.
LUO W H, SHI Z J, WANG X M, LI J, WANG R. Effects of water saving and nitrogen reduction on soil nitrate nitrogen distribution, water and nitrogen use efficiencies of winter wheat. Acta Agronomica Sinica,2020, 46(6): 924-936. (in Chinese)
[5] 陳磊, 宋書會, 云鵬, 周磊, 高翔, 盧昌艾, 劉榮樂, 汪洪. 連續(xù)三年減施氮肥對潮土玉米生長及根際土壤氮素供應的影響. 植物營養(yǎng)與肥料學報, 2019, 25(9): 1482-1494.
CHEN L, SONG S H, YUN P, ZHOU L, GAO X, LU C A, LIU R L, WANG H. Effects of reduced nitrogen fertilizer for three consecutive years on maize growth and rhizosphere nitrogen supply in fluvo-aquic soil. Plant Nutrition and Fertilizer Science, 2019, 25(9): 1482-1494. (in Chinese)
[6] 楊曾平, 高菊生, 鄭圣先, 聶軍, 徐明崗, 謝堅, 廖育林. 長期冬種綠肥對紅壤性水稻土微生物特性及酶活性的影響. 土壤, 2011, 43(4): 576-583.
YANG Z P, GAO J S, ZHENG S X, NIE J, XU M G, XIE J, LIAO Y L. Effects of long-term winter planting-green manure on microbial properties and enzyme activities in reddish paddy soil. Soils, 2011, 43(4): 576-583. (in Chinese)
[7] MACRAE R J, MEHUYS G R. The effect of green manuring on the physical properties of temperate-area soils. Advances in Soil Science, 1985, 3: 71-94.
[8] CHALISE K S, SINGH S, WEGNER B R, KUMAR S, PEREZ- GUTIERREZ J D, OSBORNE S L, NLEYA T, GUZMAN J, ROHILA J S. Cover crops and returning residue impact on soil organic carbon, bulk density, penetration resistance, water retention, infiltration, and soybean yield. Agronomy Journal, 2018, 111(1): 99-108.
[9] SALAZAR O, BALBOA L, PERALTA K, ROSSI M, CASANOVA M, TAPIA Y, SINGH R, QUEMADA M. Effect of cover crops on leaching of dissolved organic nitrogen and carbon in a maize-cover crop rotation in Mediterranean Central Chile. Agricultural Water Management, 2018, 212: 399-406.
[10] NOVARA A, MINACAPILLI M, SANTORO A, RODRIGO- COMINO J, CARRUBBA A, SARNO M, VENEZIA G, GRISTINA L. Real cover crops contribution to soil organic carbon sequestration in sloping vineyard. Science Total Environment, 2019, 652: 300-306.
[11] DORDAS C. Variation in dry matter and nitrogen accumulation and remobilization in barley as affected by fertilization, cultivar, and source–sink relations. European Journal of Agronomy, 2012, 37(1): 31-42.
[12] 姜麗娜, 馬靜麗, 方保停, 馬建輝, 李春喜, 王志敏, 蒿寶珍. 限水減氮對豫北冬小麥產(chǎn)量和植株不同層次器官干物質(zhì)運轉(zhuǎn)的影響. 作物學報, 2019, 45(6): 957-966.
JIANG L N, MA J L, FANG B T, MA J H, LI C X, WANG Z M, HAO B Z. Effect of lower water and nitrogen supply on grain yield and dry matter remobilization of organs in different layers of winter wheat plant in northern Henan province. Acta Agronomica Sinica, 2019, 45(6): 957-966. (in Chinese)
[13] 廖育林, 魯艷紅, 謝堅, 周興, 聶軍, 湯文光, 楊曾平. 紫云英配施控釋氮肥對早稻產(chǎn)量及氮素吸收利用的影響. 水土保持學報, 2015, 29(3): 190-195, 201.
LIAO Y L, LU Y H, XIE J, ZHOU X, NIE J, TANG W G, YANG Z P. Effects of combined application of controlled release nitrogen fertilizer and chinese milk vetch on yield and nitrogen nutrient uptake of early rice. Journal of Soil and Water Conservation, 2015, 29(3): 190-195, 201. (in Chinese)
[14] 錢晨晨, 王淑彬, 楊濱娟, 黃國勤. 紫云英與氮肥配施對早稻干物質(zhì)生產(chǎn)及氮素吸收利用的影響. 中國生態(tài)農(nóng)業(yè)學報, 2017, 25(4): 563-571.
QIAN C C, WANG S B, YANG B J, HUANG G Q. Effect of combined application of Chinese milk vetch and nitrogen fertilizer on nitrogen uptake, utilization and dry matter accumulation in early rice. Chinese Journal of Eco-Agriculture, 2017, 25(4): 563-571. (in Chinese)
[15] 茍志文, 殷文, 徐龍龍, 何小七, 王琦明, 柴強. 綠洲灌區(qū)復種豆科綠肥條件下小麥穩(wěn)產(chǎn)的減氮潛力. 植物營養(yǎng)與肥料學報, 2020, 26(12): 2195-2203.
GOU Z W, YIN W, XU L L, HE X Q, WANG Q M, CHAI Q. Potential of nitrogen reduction for maintaining wheat grain yield under multiple cropping with leguminous green manure in irrigated oasis. Plant Nutrition and Fertilizer Science, 2020, 26(12): 2195-2203. (in Chinese)
[16] 毛平平, 王麗, 張永清, 黨建友, 裴雪霞, 武雪萍. 施用有機肥條件下氮肥不同底追比對冬小麥干物質(zhì)運轉(zhuǎn)和籽粒產(chǎn)量的影響. 中國土壤與肥料, 2016, 5: 50-54.
MAO P P, WANG L, ZHANG Y Q, DANG J Y, PEI X X, WU X P. Effect of nitrogen fertilization ratio of base and topdressing with biological-organic fertilizers on the growth, yield and its constituent elements of winter wheat. Soils and Fertilizers Sciences in China, 2016, 5: 50-54. (in Chinese)
[17] ANDERSEN M K, HAUGGAARD-NIELSEN H, WEINER J, JENSEN E S. Competitive dynamics in two and three-component intercrops. Journal of Applied Ecology, 2007, 44(3): 545-551.
[18] COX M C, QUALSET C O, WILLIAM RAINS D. Genetic variation for nitrogen assimilation and translocation in wheat: III. Nitrogen translocation in relation to grain yield and protein. Crop Science, 1986, 26(4): 737-740.
[19] 殷文, 馮福學, 趙財, 于愛忠, 柴強, 胡發(fā)龍, 郭瑤. 小麥秸稈還田方式對輪作玉米干物質(zhì)累積分配及產(chǎn)量的影響. 作物學報, 2016, 42(5): 751-757.
YIN W, FENG F X, ZHAO C, YU A Z, CHAI Q, HU F L, GUO Y. Effects of wheat straw returning patterns on characteristics of dry matter accumulation, distribution and yield of rotation maize. Acta Agronomica Sinica, 2016, 42(5): 751-757. (in Chinese)
[20] 農(nóng)夢玲, 魏貴玉, 李伏生. 不同時期根區(qū)局部灌溉對玉米干物質(zhì)積累和水氮利用的影響. 玉米科學, 2012, 20(5): 115-120.
NONG M L, WEI G Y, LI F S. Effect of partial root-zone irrigation at different growth stages on dry mass accumulation and water and nitrogen use of maize. Journal of Maize Sciences, 2012, 20(5): 115-120. (in Chinese)
[21] 李青軍, 張炎, 胡偉, 孟鳳軒, 馮廣平, 胡國智, 劉新蘭. 氮素運籌對玉米干物質(zhì)積累、氮素吸收分配及產(chǎn)量的影響. 植物營養(yǎng)與肥料學報, 2011, 17: 755-760.
LI Q J, Zhang Y, HU W, MENG F X, FENG G P, HU G Z, LIU X L. Effects of nitrogen management on maize dry matter accumulation, nitrogen uptake and distribution and maize yield. Plant Nutrition and Fertilizer Science, 2011, 17: 755-760. (in Chinese)
[22] MANNA M C, SWARUP A, WANJARI R H, MISHRA B, SHAHI D K. Long-term fertilization, manure and liming effects on soil organic matter and crop yields. Soil and Tillage Research, 2007, 94(2): 397-409.
[23] 韓梅, 胥婷婷, 曹衛(wèi)東. 青海高原長期復種綠肥毛葉苕子對土壤供氮能力的影響. 干旱地區(qū)農(nóng)業(yè)研究, 2018, 36(6): 104-109.
HAN M, XU T T, CAO W D. Effects of long-term green manure hairy vetch on soil nitrogen supply on the Qinghai Plateau. Agricultural Research in the Arid Areas, 2018, 36(6): 104-109. (in Chinese)
[24] 宋明丹, 李正鵬, 馮浩. 不同水氮水平冬小麥干物質(zhì)積累特征及產(chǎn)量效應. 農(nóng)業(yè)工程學報, 2016, 32(2): 119-126.
SUN M D, LI Z P, FENG H. Effects of irrigation and nitrogen regimes on dry matter dynamic accumulation and yield of winter wheat. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(2): 119-126. (in Chinese)
[25] 趙財, 王巧梅, 郭瑤, 殷文, 樊志龍, 胡發(fā)龍, 于愛忠, 柴強. 水氮耦合對地膜玉米免耕輪作小麥干物質(zhì)積累及產(chǎn)量的影響. 作物學報, 2018, 44(11): 1694-1703.
ZHAO C, WANG Q M, GUO Y, YIN W, FAN Z L, HU F L, YU A Z, CHAI Q. Effects of water-nitrogen coupling patterns on dry matter accumulation and yield of wheat under no-tillage with previous plastic mulched maize. Acta Agronomica Sinica, 2018, 44(11): 1694-1703. (in Chinese)
[26] 徐兆廷, 蘆倩, 吳彥霖, 張恒嘉, 肖讓, 鄧浩亮, 李福強, 王澤義. 不同有機肥部分替代化肥對河西綠洲制種玉米生長動態(tài)和籽粒產(chǎn)量的影響. 農(nóng)業(yè)工程, 2021, 11(8): 129-134.
XU Z T, LU Q, WU Y L, ZHANG H J, XIAO R, DENG H L, LI F Q, WANG Z Y. Effects of partial replacement of chemical fertilizers with different organic fertilizers on growth dynamics and grain yield of seed corn in Hexi Oasis. Agricultural Engineering, 2021, 11(8): 129-134. (in Chinese)
[27] 尹嘉德, 侯慧芝, 張緒成, 于顯楓, 王紅麗, 方彥杰, 張國平, 雷康寧, 馬一凡. 化肥與有機肥結(jié)合對旱地覆膜春小麥產(chǎn)量形成和土壤堿解氮累積影響. 水土保持學報, 2021, 35(2): 279-287.
YIN J D, HOU H Z, ZHANG X C, YU X F, WANG H L, FANG Y J, ZHANG G P, LEI K N, MA Y F. Effects of the combination of chemical and organic fertilizer on spring wheat grain yield formation and soil available nitrogen accumulation under plastic mulched rain-fed area. Journal of Soil and Water Conservation, 2021, 35(2): 279-287. (in Chinese)
[28] 王旭敏, 雒文鶴, 劉朋召, 張琦, 王瑞, 李軍. 節(jié)水減氮對夏玉米干物質(zhì)和氮素積累轉(zhuǎn)運及產(chǎn)量的調(diào)控效應. 中國農(nóng)業(yè)科學, 2021, 54(15): 3183-3197.
WANG X M, LUO W H, LIU P Z, ZHANG Q, WANG R, LI J. Regulation effects of water saving and nitrogen reduction on dry matter and nitrogen accumulation, transportation and yield of summer maize. Scientia Agricultura Sinica, 2021, 54(15): 3183-3197. (in Chinese)
[29] 劉斌祥, 王興龍, 周芳, 杜倫靜, 金容, 馮冬菊, 袁繼超, 孔凡磊. 減氮配施不同種類有機肥對玉米物質(zhì)分配、轉(zhuǎn)運與產(chǎn)量的影響. 生態(tài)學雜志, 2020, 39(1): 130-138.
LIU B X, WANG X L, ZHOU F, DU L J, JIN R, FENG D J, YUAN J C, KONG F L. Effects of reducing nitrogen combined with application of different types of organic fertilizers on dry matter allocation, transport, and yield of maize. Chinese Journal of Ecology, 2020, 39(1): 130-138. (in Chinese)
[30] 劉曉明, 王艷群, 馬陽, 付帥, 張子旋, 郭華強, 彭正萍. 機械化有機無機肥一體施用模式對玉米干物質(zhì)和氮素積累及轉(zhuǎn)運的影響. 河北農(nóng)業(yè)大學學報, 2021, 44(6): 17-23.
LIU X M, WANG Y Q, MA Y, FU S, ZHANG Z X, GUO H Q, PENG Z P. Effects of integrated application with mechanized organic-inorganic fertilizer on accumulation and transportation of dry matter and nitrogen in maize. Journal of Hebei Agricultural University, 2021, 44(6): 17-23. (in Chinese)
[31] RUSINAMHODZI L, CORBEELS M, ZINGORE S, NYAMANGARA J, GILLER K E. Pushing the envelope? Maize production intensification and the role of cattle manure in recovery of degraded soils in small holder farming areas of Zimbabwe. Field Crops Research, 2013, 147: 40-53.
[32] 侯小畔, 安婷婷, 周亞男, 李潮海, 張學林. 增施有機肥對夏玉米物質(zhì)生產(chǎn)及土壤特性的影響. 玉米科學, 2018, 26(1): 127-133.
HOU X P, AN T T, ZHOU Y N, LI C H, ZHANG X L. Effect of adding organic fertilizer on summer maize production and soil properties. Journal of Maize Sciences, 2018, 26(1): 127-133. (in Chinese)
[33] 劉占軍, 謝佳貴, 張寬, 王秀芳, 侯云鵬, 尹彩俠, 李書田. 不同氮肥管理對吉林春玉米生長發(fā)育和養(yǎng)分吸收的影響. 植物營養(yǎng)與肥料學報, 2011, 17(1): 38-47.
LIU Z J, XIE J G, ZHANG K, WANG X Q, HOU Y P, YIN C X, LI S T. Maize growth and nutrient uptake as influenced by nitrogen management in Jilin province. Plant Nutrition and Fertilizer Science, 2011, 17(1): 38-47. (in Chinese)
[34] 陳倩, 謝軍紅, 李玲玲, 王林林, 周永杰, 李景潤, 謝麗華, 王進斌. 不同比例有機肥替代化肥對玉米生長及水分利用效率的影響. 干旱地區(qū)農(nóng)業(yè)研究, 2021, 39(6): 162-170.
CHEN Q, XIE J H, LI L L, WANG L L, ZHOU Y J, LI J R, XIE L H, WANG J B. Effects of different proportions of organic fertilizer substitutes for chemical fertilizer on growth characteristics and water use efficiency of maize. Agricultural Research in the Arid Areas, 2021, 39(6): 162-170. (in Chinese)
[35] 謝志堅, 徐昌旭, 許政良, 蘇全平, 李水榮, 秦文婧. 翻壓等量紫云英條件下不同化肥用量對土壤養(yǎng)分有效性及水稻產(chǎn)量的影響. 中國土壤與肥料, 2011, 4: 79-82.
XIE Z J, XU C X, XU Z L, SU Q P, LI S R, QIN W J. Effects of applying mineral fertilizer reasonably on the availability of soil nutrient and yields of rice under applying equivalent green manure. Soils and Fertilizers Sciences in China, 2011, 4: 79-82. (in Chinese)
[36] 劉思超, 唐利忠, 李超, 楊晶, 石泉, 陳平平, 屠乃美, 易鎮(zhèn)邪, 周文新. 不同混作方式綠肥替代部分基施化學氮肥對雙季稻產(chǎn)量形成特性的影響. 華北農(nóng)學報, 2018, 33(5): 218-225.
LIU S C, TANG L Z, LI C, YANG J, SHI Q, CHEN P P, TU N M, YI Z X, ZHOU W X. Impact of substitution of green manure under different mixed cropping modes to chemical N fertilizer on yield formation characters of double cropping rice. Acta Agricultural Boreali-Sinica, 2018, 33(5): 218-225. (in Chinese)
[37] 呂玉虎, 潘茲亮, 王琴. 翻壓紫云英后化肥用量對稻田養(yǎng)分動態(tài)變化及產(chǎn)量效應的影響. 中國農(nóng)學通報, 2011, 27(3): 174-178.
Lü Y H, PAN Z L, WANG Q. Effects of different amount of chemical fertilizer usage under ploughing down milk vetch on the yield and the dynamics of soil nutrients in rice filed. Chinese Agricultural Science Bulletin, 2011, 27(3): 174-178. (in Chinese)
[38] 趙娜, 趙護兵, 魚昌為, 曹群虎, 李敏, 曹衛(wèi)東, 高亞軍. 旱地豆科綠肥腐解及養(yǎng)分釋放動態(tài)研究. 植物營養(yǎng)與肥料學報, 2011, 17(5): 1179-1187.
ZHAO N, ZHAO H B, YU C W, CAO Q H, LI M, CAO W D, GAO Y J. Nutrient releases of leguminous green manures in rainfed lands. Plant Nutrition and Fertilizer Science, 2011, 17(5): 1179-1187. (in Chinese)
[39] TANG H M, XIAO X P, SUN J M, GUO L J, WANG K, LI W Y, TANG W G. Soil enzyme activities and soil microbe population as influenced by long-term fertilizer management during the barley growth in Hunan Province, China. African Journal of Microbiology Research, 2016, 10(40): 1720-1727.
[40] 張璐, 黃晶, 高菊生, 曹衛(wèi)東, 高鵬, 楊志長. 長期綠肥與氮肥減量配施對水稻產(chǎn)量和土壤養(yǎng)分含量的影響. 農(nóng)業(yè)工程學報, 2020, 36(5): 106-112.
ZHANG L, HUANG J, GAO J S, CAO W D, GAO P, YANG Z C. Effects of long-term green manure and reducing nitrogen applications on rice yield and soil nutrient content. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(5): 106-112. (in Chinese)
Lü F L, HOU M M, ZHANG H T, QIANG J C R, ZHOU Y T, LU G Y, ZHAO B Q, YANG X Y, ZHANG S L. Replacement ratio of chemical fertilizer nitrogen with manure under the winter wheat-summer maize rotation system in Lou soil. Plant Nutrition and Fertilizer Science, 2018, 24(1): 22-32. (in Chinese)
Effects of Returning Green Manure to Field Combined with Reducing Nitrogen Application on the Dry Matter Accumulation, Distribution and Yield of Maize
WANG PengFei, YU AiZhong, WANG YuLong, SU XiangXiang, LI Yue, Lü HanQiang, CHAI Jian, YANG HongWei
College of Agronomy, Gansu Agricultural University/Gansu Provincial Key Laboratory of Arid Land Crop Science, Lanzhou 730070
【】In order to provide the theoretical basis for the development of high-yield and high-efficiency maize production technology in this area, the characteristics of dry matter accumulation and distribution and the response of grain yield to the return of green manure to the field combined with nitrogen reduction were analyzed in the oasis irrigation area. 【】The field experiment was carried out in Hexi Oasis Irrigation Area, Gansu Province from 2020 to 2021. The combination of green manure returning to the field and different nitrogen reduction ratios (green manure combined with nitrogen reduction 0%, N100; green manure combined with nitrogen reduction 10%, N90; green manure combined with nitrogen reduction 20%, N80; green manure combined with nitrogen reduction 30%, N70; green manure combined with nitrogen reduction 40%, N60) on the distribution of dry matter accumulation in maize and impact on production. 【】After the jointing stage, the aboveground dry matter accumulation under N80 and N90 treatments was significantly higher than that of N70 and N60 treatments. At the mature stage, the aboveground dry matter accumulation under N80 increased by 13.3%-23.2% compared with N70 and N60 treatments, and N90 was higher than N70 and N60 treatments. Compared with the N70 and N60 treatments, the maximum growth rate and average growth rate of the aboveground dry matter under N80 were significantly increased by 9.5%-21.2% and 13.0%-23.2%, respectively; N90 significantly increased by 10.2%-21.8% and 13.9%-23.7% compared with N70 and N60 treatments, both of which effectively delayed the decrease of aboveground dry matter accumulation rate of maize from silking stage to grain filling stage. Compared with N70 and N60, the maximum growth rate of dry matter under N80 treatment was 2.44 d and 2.77 d earlier than that under N70 and N60, respectively, and N90 was 1.92 d and 2.3 d earlier than the N70 and N60 treatments, respectively. N80 and N90 promoted the distribution of dry matter in the ears of maize, and effectively increased the contribution rate of dry matter transport before flowering to grain dry matter accumulation. At the same time, the post-flowering dry matter accumulation under N80 increased by 12.2% and 20.4% compared with N70 and N60 treatments, respectively. Compared with the N70 and N60 treatments, the post-flowering dry matter accumulation under N90 was increased by 12.4% and 20.5%, respectively, and the difference was significant. There was no significant difference in maize grain yield among N100, N90, and N80 treatments, but the maize grain yield under N80 increased by 16.8% and 27.4%, respectively. Compared with N70 and N60 treatments, the yield under N90 treatment increased by 17.4% and 27.9%, respectively, with significant differences. 【】The return of leguminous green manure to the field combined with 10% and 20% nitrogen reduction treatments increased the aboveground dry matter accumulation and accumulation rate of maize, promoted the distribution of dry matter in the ears at maturity, and improved the pre-flowering dry matter transport on grain dry matter. The cumulative contribution rate could be used as the recommended nitrogen application method for high maize yield in oasis irrigated areas.
green manure; nitrogen fertilizer; dry matter accumulation; dry matter distribution; yield
2022-07-26;
2022-10-08
國家自然科學基金(32160524)、甘肅省教育廳產(chǎn)業(yè)支撐項目(2021CYZC-54)、甘肅省基礎研究創(chuàng)新群體項目(20JR5RA037)、甘肅農(nóng)業(yè)大學伏羲杰出人才培育計劃(Gaufx-04J01)
王鵬飛,E-mail:Wangpf19970801@163.com。通信作者于愛忠,E-mail:yuaizh@gsau.edu.cn
(責任編輯 楊鑫浩,李莉)