国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

重視概念生長過程 搭建單元知識框架
——“認識分式”(第一課時)教學設計與思考

2023-04-15 04:46廣東省深圳市龍華區(qū)博雅實驗學校
中學數(shù)學 2023年4期
關鍵詞:代數(shù)式分式環(huán)節(jié)

廣東省深圳市龍華區(qū)博雅實驗學校

管志剛

“數(shù)學概念是產(chǎn)生數(shù)學知識的基礎,是提煉數(shù)學思想方法的平臺,是積累數(shù)學活動經(jīng)驗的載體,是數(shù)學學習的內(nèi)核.”[1]數(shù)學概念的教學過程,為培養(yǎng)學生用數(shù)學的眼光觀察世界,用數(shù)學的思維思考世界,用數(shù)學的語言表達世界提供了得天獨厚的平臺.所以,數(shù)學概念的教學,要重視概念的生長過程,凸顯概念的必要性、必然性和合理性.本文是筆者執(zhí)教北師大版“認識分式”第一課時的教學設計,以及對概念教學、單元統(tǒng)領教學的幾點思考,與大家探討.

1 教學內(nèi)容分析

分式和整式都屬于代數(shù)式,它們之間有著密不可分的聯(lián)系和本質(zhì)上的區(qū)別.二者定義的方式是否一樣,學習的思路是否一致,性質(zhì)和運算方法是否相同,等等,這些都等待著學生去學習和探索.生長數(shù)學教學主張認為,分式概念的主要屬性有:(1)分式表示除法運算(也可以表示成帶有分數(shù)線的形式);(2)被除數(shù)和除數(shù)都是整式(分子和分母都是整式);(3)除數(shù)中含有字母(分母中有字母).因此,本節(jié)課教學的關鍵就是要通過問題情境,讓學生抽象出分式的數(shù)學屬性,并在此過程中,讓學生感受概念的生長過程、感悟建立此概念的必要性和必然性.

2 教學活動設計

環(huán)節(jié)一:導入新課

問題1已知長方形的面積為7 cm2,寬為3 cm,則長方形的長為cm;若寬改為bcm,則長方形的長為cm.

問題2已知長方形的面積為acm2,寬為bcm,則長方形的長為cm;若寬增加2 cm,則長方形的長為cm.

圖1

問題3如圖1,矩形被一直線分成面積為pcm2和qcm2的兩部分,對應的邊長分別為xcm和ycm,則矩形的寬為cm.

環(huán)節(jié)二:概念生成

問題5你們能否再寫一些滿足這些特點的代數(shù)式呢?

問題7這樣的例子有無數(shù)多個,我們該怎么刻畫這些特點?

問題8像這樣的式子我們稱為分式,那你現(xiàn)在能給分式下個定義嗎?

環(huán)節(jié)三:概念辨析

問題9下列各式中,哪些是分式?哪些是整式?

設計意圖:問題9是第五個環(huán)節(jié)——“再辨析”.“再辨析”是根據(jù)概念的內(nèi)涵與外延,幫助學生進一步認清概念的本質(zhì),以便學生應用概念解決問題. 在這個環(huán)節(jié)中,教師可設置一些稍有難度、迷惑性較強的代數(shù)式讓學生辨別.

環(huán)節(jié)四:拓展探究

問題11在問題10中可以發(fā)現(xiàn),分式的值可以是正數(shù),也可以是負數(shù).分式的值可以為0嗎?

設計意圖:問題10旨在讓學生了解分式,它的值是隨著字母的取值變化而變化;問題11旨在讓學生自主發(fā)現(xiàn)分式值為0的條件;問題12旨在引導學生自主探索分式有意義的條件.之后,教師還需要引導學生發(fā)現(xiàn)之前僅從形式上定義分式是不完善的,必須加上分母不為0這個條件.因此,我們用“樣子”+“條件”的方式定義分式,二者缺一不可.

環(huán)節(jié)五:針對訓練

環(huán)節(jié)六:結(jié)構統(tǒng)領

問題13小明和小紅計劃周末去廣州長隆歡樂世界游玩.已知深圳到廣州的距離約為140 km, 小明選擇自駕前往,汽車的平均速度為xkm/h,小紅選擇高鐵出行,高鐵的平均速度是汽車的3倍多10 km/h.小明和小紅同時出發(fā),小紅比小明提前一小時到達廣州,求汽車和高鐵的速度分別是多少?

設計意圖:引導學生在解決實際問題中抽象出新的模型——分式方程.繼續(xù)求方程的解,則有必要先學習分式的性質(zhì)和四則運算,這樣就能很好地統(tǒng)領整個章節(jié)的知識,搭建知識生長的框架.同時,教師還可以引導學生類比整式的學習,發(fā)現(xiàn)分式的學習套路和整式的學習套路一脈相承,加深學生對于代數(shù)式學習的理解.

3 活動設計的思考

3.1 概念自然生成是概念學習的根本所在

本節(jié)課通過“給例子—找屬性—再舉例—下定義—再辨析”五個環(huán)節(jié),讓學生經(jīng)歷了概念的生成過程,感受了建立分式概念的必要性和必然性.具體來說,環(huán)節(jié)一的問題情境闡明了分式“從哪里來”,即分式是描述現(xiàn)實情境的一種重要模型.環(huán)節(jié)二讓學生去找這些代數(shù)式的共同特點,歸納其共同的數(shù)學屬性.待學生有一定的理解之后,環(huán)節(jié)三再次聚焦相同屬性,讓學生舉出一些具有這些屬性的例子.那些在“找屬性”環(huán)節(jié)中沒有任何發(fā)現(xiàn)的同學往往舉不出新的例子,或者容易寫出錯誤的例子,這些都是對屬性理解不到位和不深刻的體現(xiàn).厘清分式屬性之后,分式的概念就呼之欲出了,用數(shù)學語言將發(fā)現(xiàn)的共同屬性表達出來即可.教師可以先讓學生大致地說一說,再細致地優(yōu)化為教材中的語言.分式相對于整式而言有一個特殊的地方,就是分式在字母賦值的時候可能會導致分式無意義,因此在分式的概念中必須補充這一點,這是概念“精致”的過程.因此,筆者認為概念教學一般要經(jīng)過大致地描述、細致地優(yōu)化、精致地補充三個過程.

3.2 巧設問題情境是知識構建的重要途徑

教學是提出問題、解決問題的持續(xù)不斷的過程,提問是課堂教學的主要形式,也是師生交流的重要途徑.教師提問,學生作答,這看似平常的教學環(huán)節(jié)卻關系到課堂教學是否有效、實效、高效.數(shù)學課堂上,高質(zhì)量的提問是學生參與課堂、理解數(shù)學概念、參悟數(shù)學本質(zhì)的重要途徑.

3.3 搭建知識框架是點睛之筆

本節(jié)課是章節(jié)的起始課,在一定程度上起著承前啟后、開山引路的作用.教師在教學時要對整章內(nèi)容做一個提綱挈領式的“預覽”,搭建知識框架,使學生在開展后續(xù)的學習之前對整章內(nèi)容有一個全局認識,起到統(tǒng)領全章的作用,避免“只見樹木,不見森林”[2].所以本節(jié)課在利用分式解決實際問題的環(huán)節(jié)中,學生抽象出一個新模型——分式方程.而學生在求解分式方程的過程中,會意識到要先學習分式的性質(zhì)和運算才能解分式方程.通過這樣的設計,學生就能了解本章所有知識的建構過程,整體把握知識間的邏輯結(jié)構.同時,教師再加以引導,將 “現(xiàn)實情境—定義—性質(zhì)—運算—應用”的學習模式和有理數(shù)、整式的學習模式統(tǒng)一起來.這樣的引導對學生數(shù)學學習能力的培養(yǎng)、學習興趣的提升的和探究精神的養(yǎng)成等都有一定的價值.

猜你喜歡
代數(shù)式分式環(huán)節(jié)
必要的環(huán)節(jié)要寫清
在農(nóng)民需求迫切的環(huán)節(jié)上『深耕』
如何認識分式
1.3 分式
拆分在分式題中的應用
例談分式應用中的大小比較
對一個代數(shù)式上下界的改進研究
代數(shù)式中的“溫柔陷阱”
例說代數(shù)式的求值方法
現(xiàn)代學徒制管理模式及其頂崗實習環(huán)節(jié)