陳華培 楊召川 李蕾 曲政海
[摘要] 目的 探討人轉(zhuǎn)化生長因子β1(TGF-β1)干預(yù)構(gòu)建的人支氣管上皮細(xì)胞16HBE上皮-間質(zhì)轉(zhuǎn)化(EMT)模型中l(wèi)ncRNA和miRNA的表達(dá)情況。方法 體外培養(yǎng)16HBE細(xì)胞,設(shè)立對照組和處理組。處理組以TGF-β1誘導(dǎo)細(xì)胞構(gòu)建EMT細(xì)胞模型,對照組加入等量RPMI基礎(chǔ)培養(yǎng)液。分別于TGF-β1處理細(xì)胞后24、48、72 h使用倒置顯微鏡觀察兩組細(xì)胞形態(tài)及分布。當(dāng)處理組細(xì)胞開始出現(xiàn)明顯梭形改變時,采用RNA分離、逆轉(zhuǎn)錄以及實(shí)時熒光定量PCR(RT-qPCR)方法檢測兩組細(xì)胞中l(wèi)ncRNA和miRNA相對表達(dá)量。結(jié)果經(jīng)TGF-β1處理細(xì)胞48 h后,處理組細(xì)胞梭形改變明顯,細(xì)胞間隙增大,顯示EMT模型構(gòu)建成功。同時在該時間點(diǎn),兩組細(xì)胞中TBILA、NKILA、LNCRNA-ATB、HOTAIR、NEAT1、miR-125b-5p、miR-21-3p、miR-21-5p、miR-27a-3p、miR-27a-5p、miR-141-3p、miR-200c-3p、miR-17-5p、miR-34a-5p的相對表達(dá)量比較差異均具有顯著意義(t=-16.353~6.460,P<0.05)。結(jié)論 TGF-β1干預(yù)能夠成功構(gòu)建EMT細(xì)胞模型,該細(xì)胞模型中的細(xì)胞與正常細(xì)胞相比,多個lncRNA和miRNA表達(dá)具有顯著差異。上述基因可能參與了EMT或氣道重塑的形成和發(fā)展,或許為這些疾病的防治提供分子理論支持。
[關(guān)鍵詞] RNA,長鏈非編碼;微RNAs;轉(zhuǎn)化生長因子β1;上皮-間質(zhì)轉(zhuǎn)化;上皮細(xì)胞;氣道重塑;纖維化
[中圖分類號] R329.25;R394? ? [文獻(xiàn)標(biāo)志碼] A
[ABSTRACT] Objective To investigate the expression of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in the epithelial-mesenchymal transition (EMT) model of human bronchial epithelial cell line 16HBE induced by human transforming growth factor-β1 (TGF-β1).? Methods 16HBE cells were cultured in vitro, and the experiment established control group and treatment group. The cells in the treatment group were induced by TGF-β1 to establish an EMT cell model, and those in the control group were added with an equal volume of RPMI basic culture medium. At 24, 48, and 72 h after TGF-β1 treatment, an inverted microscope was used to observe cell morphology and distribution. At the time point when the cells in the treatment group began to show obvious spindle-shaped changes, the methods of RNA separation, reverse transcription, and quantitative real-time PCR were used to measure the relative expression levels of lncRNAs and miRNAs in the two groups.? Results After 48 h of TGF-β1 treatment, the cells in the treatment group showed obvious spindle-shaped changes and an increase in intercellular space, suggesting that the EMT model was successfully established. At this time point, there were significant differences between the two groups in the relative expression levels of TBILA, NKILA, LNCRNA-ATB, HOTAIR, NEAT1, miR-125b-5p, miR-21-3p, miR-21-5p, miR-27a-3p, miR-27a-5p, miR-141-3p, miR-200c-3p, miR-17-5p, miR-34a-5p(t=-16.353-6.460,P<0.05). Conclusion TGF-β1 intervention can successfully establish the EMT cell model, and the differentially expressed lncRNAs and miRNAs between this cell model and normal cells may be involved in the formation and development of EMT or airway remodeling, which might provide a theoretical basis for the prevention and treatment of such diseases.
[KEY WORDS] RNA, long noncoding; MicroRNAs; Transforming growth factor beta1; Epithelial-mesenchymal transition; Epithelial cells; Airway remodeling; Fibrosis
上皮-間質(zhì)轉(zhuǎn)化(EMT)是一種不具有遷移能力的上皮細(xì)胞在各種原因誘發(fā)下,失去上皮標(biāo)志物、獲得間質(zhì)表型并轉(zhuǎn)化為間質(zhì)細(xì)胞,致細(xì)胞形態(tài)呈長梭形改變,并獲得遷移能力的過程。其在組織發(fā)育、疾病發(fā)生發(fā)展中發(fā)揮著重要作用[1]。轉(zhuǎn)化生長因子β(TGF-β)屬于相關(guān)生長因子超家族一員,相關(guān)信號通路在控制組織發(fā)育、增殖、分化、凋亡和穩(wěn)態(tài)中發(fā)揮著關(guān)鍵性作用[2]。本課題組前期研究發(fā)現(xiàn),經(jīng)過TGF-β1處理后,人支氣管上皮細(xì)胞(16HBE)發(fā)生EMT,并參與哮喘氣道重塑和纖維化的過程[3-5]。
基因轉(zhuǎn)錄本不翻譯成蛋白質(zhì),但是可以直接作為結(jié)構(gòu)分子、調(diào)節(jié)分子或者催化分子發(fā)揮作用,此類RNA稱為非編碼RNA(ncRNA)[6]。ncRNA(例如lncRNA和miRNA)在氣道重塑和氣道纖維化相關(guān)的EMT形成過程中作用的研究報(bào)道較少。本研究擬通過TGF-β1干預(yù)構(gòu)建人16HBE EMT細(xì)胞模型,探討EMT細(xì)胞模型中l(wèi)ncRNA和miRNA相對表達(dá)量的變化,為氣道纖維化或氣道重塑防治方面的研究提供分子理論支持。
1 材料與方法
1.1 材料及試劑
人16HBE細(xì)胞(源自中國醫(yī)學(xué)科學(xué)院腫瘤細(xì)胞庫),特級胎牛血清、RPMI1640基礎(chǔ)培養(yǎng)基、青霉素-鏈霉素溶液(雙抗)(武漢普諾賽生命科技有限公司),TGF-β1蛋白(MedChemexpress生物科技公司,美國),RNA-easy Isolation Reagent(南京諾唯贊生物科技股份有限公司),Evo M-MLV反轉(zhuǎn)錄預(yù)混型試劑盒以及miRNA cDNA 第一鏈合成試劑盒(湖南艾科瑞生物工程有限公司),2×Universal Blue SYBR Green qPCR Master Mix(武漢賽維爾生物科技有限公司)。
1.2 研究方法
1.2.1 細(xì)胞培養(yǎng)和處理 16HBE細(xì)胞復(fù)蘇后,置于含體積分?jǐn)?shù)0.10胎牛血清以及10 g/L青霉素-鏈霉素的RPMI1640生長培養(yǎng)基中,每2~3 d換液1次,待融合度達(dá)80%~90%時進(jìn)行傳代。將細(xì)胞接種于6孔板中,每孔約30~50萬個細(xì)胞,每孔加入生長培養(yǎng)基2 mL,分為對照組和處理組,每組設(shè)3個復(fù)孔。接種當(dāng)天,處理組每孔中加入TGF-β1,使其在培養(yǎng)基中濃度約為10 μg/L,而對照組中加入與處理組TGF-β1等體積的RPMI基礎(chǔ)培養(yǎng)基;分別于細(xì)胞處理24、48、72 h后使用倒置顯微鏡觀察兩組細(xì)胞形態(tài)及分布,當(dāng)處理組細(xì)胞形態(tài)明顯梭形改變、細(xì)胞間隙增大時,表明EMT細(xì)胞模型已構(gòu)建成功,記錄該時間點(diǎn),以此作為后續(xù)實(shí)驗(yàn)處理時間。
1.2.2 RNA分離、逆轉(zhuǎn)錄及RT-qPCR檢測 根據(jù)RNA-easy Isolation Reagent說明書,當(dāng)EMT細(xì)胞模型構(gòu)建成功時,分別分離并提取上述兩組細(xì)胞中總RNA,紫外可見分光光度計(jì)檢測總RNA的濃度和純度。根據(jù)說明書,采用Evo M-MLV 反轉(zhuǎn)錄預(yù)混型試劑盒和miRNA cDNA 第一鏈合成試劑盒對分離RNA行反轉(zhuǎn)錄,兩種試劑反轉(zhuǎn)錄的cDNA分別進(jìn)行下一步lncRNA或miRNA的RT-qPCR檢測。除了miRNA的下游引物由湖南艾科瑞生物工程有限公司提供以外,lncRNA和miRNA的其他引物均由深圳華大基因股份有限公司進(jìn)行合成(表1)。其中GAPDH作為lncRNA的內(nèi)參基因,U6(湖南艾科瑞生物工程有限公司)作為miRNA的內(nèi)參基因。再使用2×Universal Blue SYBR Green qPCR Master Mix對經(jīng)反轉(zhuǎn)錄生成的cDNA進(jìn)行RT-qPCR,獲得各組樣本擴(kuò)增CT值,采用2-△△CT方法計(jì)算各基因的相對表達(dá)量。
2 結(jié)? 果
2.1 經(jīng)過TGF-β1處理后兩組細(xì)胞不同時間點(diǎn)形態(tài)比較
倒置顯微鏡觀察結(jié)果顯示,對照組16HBE細(xì)胞第24、48、72小時時均為鵝卵石樣或鋪路石樣的單層細(xì)胞,細(xì)胞間連接緊密,聚集成團(tuán)狀或島狀。處理組細(xì)胞在第24小時時形態(tài)和分布變化不明顯;而第48和72小時時呈長梭形,細(xì)胞與細(xì)胞間連接不緊密,間隙增大,細(xì)胞發(fā)生了EMT(圖1)。第48小時時EMT細(xì)胞模型已經(jīng)構(gòu)建成功。
2.2 兩組細(xì)胞中各lncRNA和miRNA相對表達(dá)量比較
兩組細(xì)胞處理48 h后進(jìn)行RT-qPCR檢測,處理組中各lncRNA和miRNA的相對表達(dá)量與對照組比較,差異均具有顯著性(t=-16.353~6.460,P<0.05)。見表2。
3 討? 論
氣道纖維化和氣道重塑是不可逆的呼吸系統(tǒng)疾病,嚴(yán)重影響患者的生活質(zhì)量,其預(yù)防和治療仍然是目前世界范圍內(nèi)亟待解決的難題。ncRNA在氣道纖維化和氣道重塑中發(fā)揮著重要作用,參與疾病的發(fā)生和發(fā)展,但相關(guān)研究報(bào)道較少。本研究通過構(gòu)建EMT細(xì)胞模型,模擬氣道纖維化,探討細(xì)胞中l(wèi)ncRNA和miRNA的表達(dá)情況,為氣道纖維化以及氣道重塑的預(yù)防或治療提供數(shù)據(jù)參考。
本研究中,TGF-β1處理16HBE 細(xì)胞48 h后,細(xì)胞形態(tài)呈長梭形,細(xì)胞與細(xì)胞間連接不再緊密,間隙增大,提示細(xì)胞已經(jīng)發(fā)生了EMT,細(xì)胞模型構(gòu)建成功。研究發(fā)現(xiàn)TGF-β對EMT有誘導(dǎo)或者促進(jìn)作用,但相關(guān)機(jī)制研究較少。WANG等[7] 體外研究發(fā)現(xiàn),TGF-β1可通過刺激人肺癌細(xì)胞抑制Src同源物2-b3 (SH2B3,又稱淋巴細(xì)胞接頭蛋白)的表達(dá),激活JAK2/STAT3和SHP2/Grb2/PI3K/AKT信號通路級聯(lián)反應(yīng),促進(jìn)人肺癌細(xì)胞EMT以及肺癌細(xì)胞擴(kuò)散、轉(zhuǎn)移。PEZONE等[8]體外培養(yǎng)人正常乳腺上皮細(xì)胞(MCF10A)并通過共聚焦顯微鏡和質(zhì)譜記錄分析發(fā)現(xiàn),組蛋白溶酶特異性去甲基化酶1 (LSD1) 與TGF-β1誘導(dǎo)或抑制基因的啟動子結(jié)合后,可引發(fā)一系列DNA氧化反應(yīng),調(diào)控EMT基因的轉(zhuǎn)錄或抑制。DAVID等[9]發(fā)現(xiàn)調(diào)控因子Sox4可以使TGF-β誘導(dǎo)的EMT的胰腺導(dǎo)管腺癌細(xì)胞發(fā)生凋亡,而胃腸譜系主調(diào)控因子Klf5則具有拮抗Sox4凋亡作用,提示在胰腺導(dǎo)管腺癌細(xì)胞中EMT進(jìn)程可能是受Sox4和Klf5同時調(diào)控。
本課題組前期實(shí)驗(yàn)發(fā)現(xiàn)miR-448-5p在哮喘小鼠肺組織和TGF-β1干預(yù)后16HBE中的相對表達(dá)量均下調(diào),同時在TGF-β1干預(yù)后的16HBE中過表達(dá)miR-448-5p可以抑制TGF-β1介導(dǎo)的EMT以及氣道纖維化[4],提示ncRNA在氣道纖維化或氣道重塑中發(fā)揮作用。
本研究結(jié)果顯示,與對照組相比,處理組細(xì)胞中TBILA等lncRNA和miR-125b-5p等miRNA基因的相對表達(dá)量存在顯著差異,這些差異均發(fā)現(xiàn)與EMT進(jìn)程的調(diào)控或組織纖維化的形成發(fā)展密切相關(guān)。如TBILA在非小細(xì)胞肺癌(NSCLC)患者腫瘤組織中以及TGF-β1處理的A549和H226細(xì)胞中表達(dá)上調(diào),沉默或者過表達(dá)TBILA可以分別產(chǎn)生抑制或促進(jìn)A549和H226細(xì)胞EMT作用[10]。NKILA在人肝癌組織和人肝癌細(xì)胞系中表達(dá)下調(diào),在體外NKILA過表達(dá)則能夠顯著抑制肝癌細(xì)胞系細(xì)胞EMT[11]。體外研究結(jié)果顯示,HOTAIR在經(jīng)過TGF-β1處理后的結(jié)腸癌細(xì)胞株HT-29及DLD1、乳腺上皮細(xì)胞MCF10a以及乳腺癌細(xì)胞株HCC1954中均表達(dá)上調(diào),經(jīng)siRNA干擾HOTAIR表達(dá)后,可改變TGF-β誘導(dǎo)的EMT進(jìn)展過程[12]。LNCRNA-ATB在草酸鈣刺激人近端腎小管上皮(HK-2)細(xì)胞的EMT模型中表達(dá)上調(diào),miR-200家族基因表達(dá)下調(diào),干擾lncRNA-ATB表達(dá)或者轉(zhuǎn)染miR-200a模擬物均可緩解EMT進(jìn)程和腎損傷程度[13]。在牛血清白蛋白(BSA)刺激的HK-2細(xì)胞和高脂飼料和鏈脲佐菌素誘導(dǎo)的糖尿病小鼠中NEAT1的表達(dá)均顯著上調(diào),通過干擾或者過表達(dá)NEAT1可分別抑制或者促進(jìn)BSA誘導(dǎo)HK-2細(xì)胞的纖維化和EMT[14]。另外,miR-125b在結(jié)直腸癌(CRC)原發(fā)灶和轉(zhuǎn)移灶中表達(dá)上調(diào),而體外培養(yǎng)的CRC細(xì)胞過表達(dá)miR-125b可增強(qiáng)EMT的遷移能力,敲低miR-125b表達(dá)后,可以降低CRC細(xì)胞EMT的遷移和侵襲能力[15]。miR-21-5p、miR-34a-5p的表達(dá)水平在人CRC組織中較正常組織高,而miR-200c-3p的表達(dá)水平則較低,這些miRNA均與腫瘤組織的EMT相關(guān)[16]。miR-17-5p在有轉(zhuǎn)移的原發(fā)性人CRC組織中的表達(dá)量低于無轉(zhuǎn)移的原發(fā)性人CRC組織,過表達(dá)miR-17-5p后體外培養(yǎng)的CRC細(xì)胞EMT能力受到抑制,而抑制miR-17-5p的表達(dá)則增強(qiáng)了CRC細(xì)胞的EMT能力[17]。
LncRNA、miRNA及其下游基因之間還可互相調(diào)控,并形成復(fù)雜的調(diào)控網(wǎng)絡(luò),參與蛋白質(zhì)翻譯、合成的一系列過程,進(jìn)而抑制或者促進(jìn)細(xì)胞EMT以及組織纖維化。例如,lncRNA BBOX1-AS1在人NSCLC組織中,以及體外培養(yǎng)并經(jīng)轉(zhuǎn)錄因子KLF5誘導(dǎo)的NSCLC細(xì)胞中均為高表達(dá),BBOX1-AS1與miR-27a-5p競爭性結(jié)合,促進(jìn)母體胚胎亮氨酸拉鏈激酶表達(dá),激活黏著斑激酶磷酸化,促進(jìn)NSCLC細(xì)胞的EMT[18]。
綜上所述,本研究成功構(gòu)建了EMT細(xì)胞模型,與正常細(xì)胞相比,該模型中多個lncRNA和miRNA表達(dá)具有顯著差異。這些基因間可能存在復(fù)雜的調(diào)控網(wǎng)絡(luò),促進(jìn)或抑制16HBE細(xì)胞EMT及其進(jìn)程。后續(xù)應(yīng)進(jìn)行更深入的實(shí)驗(yàn)研究,進(jìn)一步明確各基因調(diào)控機(jī)制以及他們之間的調(diào)控關(guān)系,為氣道纖維化或氣道重塑防治方面的研究提供分子理論支持。
作者聲明:曲政海、楊召川、陳華培參與了研究設(shè)計(jì);所有作者參與了論文的寫作和修改。所有作者均閱讀并同意發(fā)表該論文。所有作者均聲明不存在利益沖突。
[參考文獻(xiàn)]
[1] XU J, LAMOUILLE S, DERYNCK R. TGF-β-induced epithelial to mesenchymal transition[J]. Cell Res, 2009,19(2):156-172.
[2] ITATANI Y, KAWADA K, SAKAI Y. Transforming growth factor-β signaling pathway in colorectal cancer and its tumor microenvironment[J]. Int J Mol Sci, 2019, 20(23):5822.
[3] WANG W X, YANG Z C, LI M X, et al. Six1 promotes epithelial-mesenchymal transition in bronchial epithelial cells via the TGFβ1/smad signalling pathway[J]. Int Arch Allergy Immunol, 2021,182(6):479-488.
[4] YANG Z C, QU Z H, YI M J, et al. MiR-448-5p inhibits TGF-β1-induced epithelial-mesenchymal transition and pulmonary fibrosis by targeting Six1 in asthma[J]. J Cell Physiol, 2019, 234(6):8804-8814.
[5] YANG Z C, QU Z H, YI M J, et al. MiR-204-5p inhibits transforming growth factor-β1-induced proliferation and extracellular matrix production of airway smooth muscle cells by regulating Six1 in asthma[J]. Int Arch Allergy Immunol, 2020,181(4):239-248.
[6] SHABALINA S A, SPIRIDONOV N A. The mammalian transcriptome and the function of non-coding DNA sequences[J]. Genome Biol, 2004,5(4):105.
[7] WANG L N, ZHANG Z T, WANG L, et al. TGF-β1/SH2B3 axis regulates anoikis resistance and EMT of lung cancer cells by modulating JAK2/STAT3 and SHP2/Grb2 signaling pathways[J]. Cell Death Dis, 2022,13(5):472.
[8] PEZONE A, TADDEI M L, TRAMONTANO A, et al. Targeted DNA oxidation by LSD1-SMAD2/3 primes TGF-β1/EMT genes for activation or repression[J]. Nucleic Acids Res, 2020,48(16):8943-8958.
[9] DAVID C J, HUANG Y H, CHEN M, et al. TGF-β tumor suppression through a lethal EMT[J]. Cell, 2016,164(5):1015-1030.
[10] LU Z L, LI Y, CHE Y, et al. The TGFβ-induced lncRNA TBILA promotes non-small cell lung cancer progression in vitro and in vivo via cis-regulating HGAL and activating S100A7/JAB1 signaling[J]. Cancer Lett, 2018,432:156-168.
[11] CHEN R G, CHENG Q Y, OWUSU-ANSAH K G, et al. NKILA, a prognostic indicator, inhibits tumor metastasis by suppressing NF-κB/Slug mediated epithelial-mesenchymal transition in hepatocellular carcinoma[J]. Int J Biol Sci, 2020,16(3):495-503.
[12] ALVES C P, FONSECA A S, MUYS B R, et al. Brief report: The lincRNA Hotair is required for epithelial-to-mesenchymal transition and stemness maintenance of cancer cell lines[J]. Stem Cells, 2013,31(12):2827-2832.
[13] LI Y H, DING T, HU H Y, et al. LncRNA-ATB participates in the regulation of calcium oxalate crystal-induced renal injury by sponging the miR-200 family[J]. Mol Med, 2021,27(1):143.
[14] YANG Y L, XUE M, JIA Y J, et al. Long noncoding RNA NEAT1 is involved in the protective effect of Klotho on renal tubular epithelial cells in diabetic kidney disease through the ERK1/2 signaling pathway[J]. Exp Mol Med, 2020,52(2):266-280.
[15] ZHANG X H, LI T Y, HAN Y N, et al. miR-125b promotes colorectal cancer migration and invasion by dual-targeting CFTR and CGN[J]. Cancers (Basel), 2021,13(22):5710.
[16] KANG E, JUNG S C, NAM S K, et al. Tissue miR-200c-3p and circulating miR-1290 as potential prognostic biomarkers for colorectal cancer[J]. Sci Rep, 2022,12(1):2295.
[17] KIM T W, LEE Y S, YUN N H, et al. MicroRNA-17-5p re-gulates EMT by targeting vimentin in colorectal cancer[J]. Br J Cancer, 2020,123(7):1123-1130.
[18] SHI J, YANG C, AN J L, et al. KLF5-induced BBOX1-AS1 contributes to cell malignant phenotypes in non-small cell lung cancer via sponging miR-27a-5p to up-regulate MELK and activate FAK signaling pathway[J]. J Exp Clin Cancer Res, 2021,40(1):148.
(本文編輯 耿波 厲建強(qiáng))