吳曉明 何強 侯林毅 胡艷 甄小芳 郝靜 盛燕
摘要:目的 觀察淤膽通方對α-萘異硫氰酸酯(ANIT)誘導的膽汁淤積小鼠的治療作用,并基于腸道菌群和腸道屏障功能探討其作用靶點和機制。方法 將24只C57BL/6小鼠隨機分為對照組、模型組、淤膽通方組、熊去氧膽酸(UDCA)組,每組6只。模型組、淤膽通方組、UDCA組小鼠分別于第1天、第4天、第7天、第10天、第13天予ANIT 35 mg·kg-1·d-1灌胃,淤膽通方組、UDCA組小鼠每天分別予淤膽通方、UDCA灌胃,連續(xù)15 d,第16天取材。觀察肝臟組織病理學,檢測肝功能指標;免疫組化法檢測肝caspase-1、IL-1β、FXR的蛋白表達,流式細胞術檢測肝臟CD11b+、CD86+、CD45+免疫細胞的比例;對糞便微生物進行16S rDNA測序及信息分析;免疫組化法檢測腸FXR/NLRP3通路的蛋白表達,免疫熒光法檢測腸E-cadherin、Occludin的蛋白表達。當計量資料滿足方差齊性,多組間比較采用單因素方差分析,進一步兩兩比較采用LSD-t檢驗;當資料不滿足方差齊性,采用Welch檢驗,進一步兩兩比較采用Games-Howell檢驗。結果 HE染色顯示,模型組小鼠的部分肝細胞脂肪變性,肝小葉內肝細胞大面積壞死,肝小葉結構破壞,伴有大量炎性細胞浸潤,淤膽通方組和UDCA組小鼠的肝細胞脂肪變性減輕,肝小葉內肝細胞壞死不明顯,炎性細胞減少;模型組小鼠的血清ALT、AST、GGT、ALP、TBil、DBil、TBA水平較對照組明顯升高(P值均<0.05);與模型組相比,淤膽通方組的血清ALT、AST、GGT、ALP、TBil、DBil、TBA水平顯著降低(P值均<0.05),UDCA組的血清GGT、TBil、DBil、TBA水平顯著下降(P值均<0.05)。與對照組比較,模型組肝臟caspase-1、IL-1β水平明顯升高、肝FXR的表達明顯下降(P值均<0.05),與模型組比較,淤膽通方組肝臟caspase-1、IL-1β水平及UDCA組肝臟IL-1β水平顯著下降,淤膽通方組和UDCA組的肝FXR表達水平顯著升高(P值均<0.05)。模型組的腸道菌群組成較對照組發(fā)生顯著變化(P<0.05);淤膽通方組的腸道菌群結構與模型組存在統(tǒng)計學差異(P<0.05);UDCA組腸道菌群構成與對照組、模型組均有統(tǒng)計學差異(P值均<0.05);相對于對照組,模型組的腸道嗜黏蛋白阿克曼菌豐度明顯升高,約氏乳桿菌豐度明顯下降(P值均<0.05);與模型組比較,淤膽通方組、UDCA組嗜黏蛋白阿克曼菌的豐度均顯著下降,淤膽通方組的鼠乳桿菌、UDCA組的鼠乳桿菌和假長雙歧桿菌的豐度均明顯升高(P值均<0.05)。與對照組比較,模型組的腸FXR蛋白表達明顯降低,腸NLRP3蛋白表達明顯升高,腸E-cadherin和Occludin表達均明顯下降(P值均<0.05);與模型組相比,淤膽通方組和UDCA組的腸FXR表達顯著上調,腸NLRP3表達顯著下降,腸E-cadherin和Occludin的蛋白表達均顯著升高(P值均<0.05)。結論 淤膽通方可減輕ANIT誘導的膽汁淤積小鼠的肝損傷,改善腸道菌群和增強腸壁屏障功能可能是其作用靶點和機制之一。
關鍵詞:膽汁淤積; 胃腸道微生物組; 淤膽通方; 小鼠
基金項目:國家自然科學基金資助項目(82104926)
Effect of Yudantong decoction on intestinal flora and intestinal barrier function in mice with cholestasis induced by α-naphthyl isothiocyanate
WU Xiaoming, HE Qiang, HOU Linyi, HU Yan, ZHEN Xiaofang, HAO Jing, SHENG Yan. (Department of Traditional Chinese Medicine, Beijing Childrens Hospital, Capital Medical University, National Center for Childrens Health, Beijing 100045, China)
Corresponding author:
HOU Linyi, houlinyii@sohu.com (ORCID:0000-0001-6510-5194)
Abstract:
Objective To investigate the therapeutic effect of Yudantong decoction in mice with α-naphthyl isothiocyanate (ANIT)-induced cholestasis, as well as its targets and mechanism based on intestinal flora and intestinal barrier function. Methods A total of 24 C57BL/6 mice were randomly divided into control group, model group, Yudantong decoction group (YDTF group), and ursodeoxycholic acid (UDCA) group, with 6 mice in each group. The mice in the model group, the YDTF group, and the UDCA group were given ANIT 35 mg/kg/day by gavage on days 1, 4, 7, 10, and 13, and those in the YDTF group and the UDCA group were given Yudantong decoction or UDCA by gavage for 15 consecutive days; related samples were collected on day 16. Liver histopathology was observed, and liver function parameters were measured; immunohistochemistry was used to measure the protein expression levels of caspase-1, interleukin-1β (IL-1β), and FXR in the liver, and flow cytometry was used to measure the percentages of CD11b+, CD86+, and CD45+ immune cells in the liver; 16S rDNA sequencing and information analysis were performed for fecal microorganisms; immunohistochemistry was used to measure the protein expression of the intestinal FXR/NLRP3 pathway, and immunofluorescence assay was used to measure the protein expression of intestinal E-cadherin and occludin. A one-way analysis of variance was used for comparison of continuous data with homogeneity of variance between multiple groups, and the least significant difference t-test was used for further comparison between two groups; the Welch test was used for comparison of data with heterogeneity of variance between multiple groups, and the Games-Howell test was used for further comparison between two groups. Results HE staining showed that the model group had partial hepatocyte fatty degeneration, massive necrosis of hepatocytes in hepatic lobules, damage of lobular structure, and massive inflammatory cell infiltration, and the YDTF group and the UDCA group had alleviation of hepatocyte fatty degeneration and hepatocyte necrosis in hepatic lobules, with a reduction in inflammatory cells. Compared with the control group, the model group had significantly higher serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transpeptidase (GGT), alkaline phosphatase (ALP), total bilirubin (TBil), direct bilirubin (DBil), and total bile acid (TBA) (all P<0.05); compared with the model group, the YDTF group had significant reductions in the serum levels of ALT, AST, GGT, ALP, TBil, DBil, and TBA (all P<0.05), and the UDCA group had significant reductions in the serum levels of GGT, TBil, DBil, and TBA (all P<0.05). Compared with the control group, the model group had significant increases in the levels of caspase-1 and IL-1β and a significant reduction in the expression of FXR in the liver (all P<0.05); compared with the model group, the YDTF group had significant reductions in the levels of caspase-1 and IL-1β in the liver and the UDCA group had a significant reduction in the level of IL-1β in the liver, and both the YDTF group and the UDCA group had a significant increase in the expression level of FXR in the liver (all P<0.05). The model group had a significant change in the composition of intestinal flora compared with the control group (P<0.05); there was a significant difference in the structure of intestinal flora between the YDTF group and the model group (P<0.05), and there was also a significant difference in the composition of intestinal flora between the UDCA group and the control/model groups (P<0.05). Compared with the control group, the model group had a significant increase in the abundance of intestinal Akkermansia muciniphila and a significant reduction in the abundance of Lactobacillus johnsonii (both P<0.05); compared with the model group, both the YDTF group and the UDCA group had a significant reduction in the abundance of intestinal Akkermansia muciniphila, and the YDTF group had a significant increase in the abundance of Lactobacillus murinus, while the UDCA group had significant increases in the abundance of Lactobacillus murinus and Bifidobacterium pseudolongum (all P<0.05). Compared with the control group, the model group had a significant reduction in the protein expression of intestinal FXR, a significant increase in the protein expression of intestinal NLRP3, and significant reductions in the expression of intestinal E-cadherin and occludin (all P<0.05); compared with the model group, both the YDTF group and the UDCA group had a significant increase in the protein expression of intestinal FXR, a significant reduction in the protein expression of intestinal NLRP3, and significant increases in the expression of intestinal E-cadherin and occludin (all P<0.05). Conclusion Yudantong decoction can alleviate liver injury in mice with ANIT-induced cholestasis, possibly by improving intestinal flora and enhancing intestinal barrier function.
Key words:
Cholestasis; Gastrointestinal Microbiome; Yudantong Decoction; Mice
Research funding:
National Natural Science Foundation of China (82104926)
小兒膽汁淤積性肝病(childhood cholestatic liver disease, cCLD)是指肝內外各種原因造成膽汁形成、分泌、排泄障礙,膽汁流無法正常進入十二指腸,導致膽汁酸在肝內蓄積,從而引發(fā)肝臟病變的臨床綜合征,目前該病已成為小兒肝病就診及住院的首位原因[1]。該病若膽汁淤積持續(xù)不緩解,可加速肝細胞損害,隨病程進展而發(fā)展為肝纖維化和肝硬化,嚴重危及患兒的健康和生命[2]。cCLD的病因非常復雜,已知病因包括近百種遺傳代謝病、多種病原體感染、膽道發(fā)育畸形等。目前臨床治療cCLD的藥物非常有限,常用藥物為熊去氧膽酸(ursodeoxycholic acid, UDCA),但UDCA對大約1/3的cCLD療效不佳[3],因此越來越多的研究開始尋找cCLD新的治療靶點并研發(fā)新型藥物。最新研究[4]顯示,腸道微生態(tài)失衡是cCLD發(fā)生發(fā)展的重要機制,其涉及腸道菌群紊亂、膽汁酸代謝障礙、腸道屏障破壞、內毒素易位等相互關聯(lián)的病理過程,最終加重肝臟炎癥反應和膽汁淤積。改善腸道菌群,穩(wěn)定腸壁屏障功能,抑制肝臟炎癥和纖維化進展,是當前治療cCLD的重要策略[5-6]。
cCLD屬于中醫(yī)學“黃疸”的范疇,因中醫(yī)療效顯著,現(xiàn)已成為臨床中醫(yī)的優(yōu)勢病種[3]。本院首都名醫(yī)裴學義教授多年從事兒童肝膽疾病的臨床及理論研究,裴老強調cCLD的病位雖在肝膽,但其本源于脾,脾失健運、濕邪內生為根本原因,治療重在健脾祛濕、清熱利膽,并創(chuàng)制了淤膽通方,該方在緩解膽汁淤積、保護肝功能方面具有非常突出的作用和優(yōu)勢[7-9],但其作用機制尚不明確。本研究以α-萘異硫氰酸酯(alpha-naphthyl isothiocyanate,ANIT)誘導的膽汁淤積小鼠為研究對象,以腸道菌群、腸壁屏障功能為切入點,探討淤膽通方治療cCLD的效果及作用靶點和機制。
1 材料與方法
1.1 材料
1.1.1 動物 雄性C57BL/6小鼠,清潔級,20~22 g,購自北京維通利華實驗動物技術有限公司,實驗動物生產許可證號:SCXK(京)2021-0006,實驗動物使用許可證號:SYXK(京)2020-0050。小鼠飼養(yǎng)于SPF級實驗動物房,分籠飼養(yǎng),環(huán)境溫度為20~25 ℃,相對濕度60%,采用明暗各12 h交替的動物照明光循環(huán)照明,自由飲水和進食。
1.1.2 藥物 淤膽通方的基本組成為:生麥芽10 g、茯苓10 g、白術4 g、茵陳12 g、金錢草10 g、通草3 g、丹參10 g、澤蘭10 g、黃柏3 g、青黛0.3 g、血竭0.3 g、琥珀0.3 g、明礬0.3 g,中藥由北京兒童醫(yī)院提供,并由院內制劑室水煎煮制備成含生藥0.366 g/mL的藥液200 mL。UDCA膠囊(優(yōu)思弗)購自北京兒童醫(yī)院,稱取適量膠囊內容物加水配置成有效成分含量為5 mg/mL的混懸液,灌胃時充分混勻。
1.1.3 試劑 ANIT購自上海麥克林生化科技有限公司,ANIT溶液的配制:將1 g ANIT溶于50 mL色拉油,攪拌均勻,備用。核苷酸結合寡聚化結構域樣受體蛋白3(nod-like receptor protein 3,NLRP3)、半胱氨酸天冬氨酸特異性蛋白酶-1(caspase-1)、IL-1β、E-cadherin、Occludin、法尼醇X受體(farnesoid X receptor, FXR)抗體購自Abcam公司,CD86、CD45、CD11b抗體購自Miltenyi biotec公司。
1.2 分組與干預 24只小鼠使用簡單隨機化分組法分為對照組、模型組、淤膽通方組、UDCA組,每組6只。參考相關文獻[10-11]及預實驗結果,模型組、淤膽通方組、UDCA組的小鼠分別于第1天、第4天、第7天、第10天、第13天予ANIT溶液35 mg·kg-1·次-1,1 次/d灌胃,對照組小鼠在相同時間灌胃等體積色拉油。淤膽通方組小鼠每天予中藥18 mL·kg-1·次-1,1 次/d灌胃,連續(xù)15 d,對照組和模型組給予等體積蒸餾水灌胃,1 次/d,連續(xù)15 d。UDCA組每天給予UDCA混懸液100 mg/kg,1 次/d灌胃,連續(xù)15 d。第16天,予戊巴比妥鈉麻醉后下腔靜脈取血,留取肝臟、回腸、糞便等進行后續(xù)相關檢測。
1.3 研究方法
1.3.1 肝功能檢測 血液樣本于室溫靜置3 h,3 000 r/min離心10 min,取血清,檢測小鼠血清ALT、AST、GGT、ALP、TBil、DBil、總膽汁酸(total bile acid,TBA)水平。
1.3.2 肝組織病理學HE染色 取多聚甲醛固定后的肝組織進行石蠟包埋、切片、HE染色,并在放大200倍的顯微鏡下進行觀察。
1.3.3 免疫組化 脫蠟、水化組織切片;滴加過氧化物酶滅活試劑孵育5 min,蒸餾水沖洗,PBS洗2 min×2次;檸檬酸鈉緩沖液中微波修復抗原,PBS溶液洗3 min×2次;滴入5%羊血清后置于室溫下10~30 min;加入已稀釋的一抗,4 ℃過夜;PBS洗5 min×5次,加入已稀釋的二抗后37 ℃恒溫烤箱中30 min,PBS洗5 min×5次;DBA工作液顯色5~10 min,PBS洗3 min×3次后,用雙蒸水洗5 min,蘇木素染液20 s,自來水沖洗,雙蒸水洗5 min,PBS返藍5 min;脫水,透明,中性樹膠封片,顯微鏡下觀察、拍照。
1.3.4 免疫熒光染色 組織切片脫蠟入水;抗原微波修復10~15 min,自然冷卻至室溫;羊血清封閉,37 ℃,60 min;滴加一抗,4 ℃過夜,PBS沖洗5 min3次;滴加熒光素標記的二抗,避光,37 ℃,60 min,PBS沖洗5 min 3次,封片,4 ℃避光保存,熒光顯微鏡觀察拍照。
1.3.5 流式細胞術 取各組小鼠的新鮮肝臟組織,研磨,過濾,收集適量細胞;加入抗體試劑,37 ℃避光孵育30 min,離心去上清液,PBS洗滌3次;加入1 mL 4 ℃預冷的PBS完全重懸細胞,1 500 r/min離心5 min,棄上清液,沉淀用200 μL的PBS重懸;上機檢測。
1.3.6 糞便微生物16 S rDNA測序及信息分析 本實驗由北京諾禾致源科技股份有限公司完成。采用SDS方法提取樣本的基因組DNA,之后利用瓊脂糖凝膠電泳檢測DNA的純度和濃度,取適量的樣本DNA于離心管中,使用無菌水稀釋樣本至1 ng/μL。以稀釋后的基因組DNA為模板,根據(jù)測序區(qū)域的選擇,使用帶Barcode的特異引物,New England Biolabs公司的Phusion High-Fidelity PCR Master Mix with GC Buffer,和高效高保真酶進行PCR,確保擴增效率和準確性。PCR產物使用2%濃度的瓊脂糖凝膠進行電泳檢測,根據(jù)PCR產物濃度進行等量混樣,充分混勻后使用2%的瓊脂糖凝膠電泳檢測PCR產物,對目的條帶使用qiagen公司提供的膠回收試劑盒回收產物。使用TruSeq DNA PCR-Free Sample Preparation Kit建庫試劑盒進行文庫構建,構建好的文庫經過Qubit和Q-PCR定量,文庫合格后,使用NovaSeq6000進行上機測序。
1.4 統(tǒng)計學方法 使用SPSS 28.0統(tǒng)計軟件進行數(shù)據(jù)分析。計量資料以x±s表示。當資料滿足方差齊性,多組間比較采用單因素方差分析,進一步兩兩比較采用LSD-t檢驗;當資料不滿足方差齊性,采用Welch檢驗,進一步兩兩比較采用Games-Howell檢驗。P<0.05為差異有統(tǒng)計學意義。
2 結果
2.1 淤膽通方對膽汁淤積小鼠的肝功能及肝臟病理的影響 模型組小鼠的血清ALT、AST、GGT、ALP、TBil、DBil、TBA水平較對照組明顯升高(P值均<0.05);與模型組相比,淤膽通方組的血清ALT、AST、GGT、ALP、TBil、DBil、TBA水平均顯著降低,UDCA組的血清GGT、TBil、DBil、TBA水平顯著下降(P值均<0.05)(表1)。
HE染色結果顯示,模型組小鼠的部分肝細胞脂肪變性,細胞內可見形態(tài)規(guī)則的圓形或橢圓形空泡,肝小葉內肝細胞大面積壞死,肝小葉結構破壞,伴有大量炎性細胞浸潤,淤膽通方組和UDCA組小鼠的肝細胞脂肪變性減輕,肝小葉內肝細胞壞死不明顯,炎性細胞減少(圖1)。提示淤膽通方對膽汁淤積小鼠的肝臟具有保護作用。
2.2 淤膽通方對膽汁淤積小鼠的肝臟炎癥及肝臟FXR的影響 免疫組
化檢測結果顯示:模型組小鼠的肝caspase-1、IL-1β水平較對照組明顯升高(P值均<0.05);與模型組比較,淤膽通方組的肝caspase-1、IL-1β水平以及UDCA組的肝IL-1β水平均顯著降低(P值均<0.05)(圖2,表2)。流式細胞術結果顯示:模型組CD11b+細胞、CD86+細胞、CD45+細胞的比例明顯高于對照組(P值均<0.05),而淤膽通方、UDCA均可顯著下調上述肝臟免疫細胞的比例(P值均<0.05)(圖3,表3)。免疫組化結果表明:模型組小鼠的肝FXR表達量較對照組明顯下降(P<0.05),淤膽通方組和UDCA組的肝FXR表達水平較模型組顯著升高(P值均<0.05)(圖2,表2)。提示淤膽通方可抑制膽汁淤積小鼠的肝臟炎癥,激活肝FXR。
2.3 淤膽通方對膽汁淤積小鼠腸道菌群的影響
采用16S rDNA高通量測序技術分析各組小鼠的腸道菌群,結果如下。
2.3.1 腸道菌群α多樣性分析 不同組別的α多樣性稀釋曲線均接近平緩,說明測序深度已基本覆蓋到樣品中所有的物種,可以真實反映腸道菌群構成(圖4)。另外,α多樣性曲線可以間接反映不同樣品中物種的豐富程度,4組小鼠的腸道菌群α多樣性分析指數(shù)(shannon、simpson、chao1、ACE、goods_coverage、PD_whole_tree)比較,差異均無統(tǒng)計學意義(P值均>0.05),說明4組小鼠的腸道菌群物種豐富程度無明顯差異。
2.3.2 腸道菌群β多樣性分析 基于OUT(operational taxonomic units)水平的NMDS分析及ANOSIM分析結果表明:模型組小鼠的腸道菌群組成較對照組發(fā)生顯著變化(P<0.05);淤膽通方組的腸道菌群結構與對照組無明顯差異(P>0.05),而與模型組存在顯著差異(P<0.05);UDCA組的腸道菌群構成與對照組、模型組均有明顯差異(P值均<0.05)(圖5,表4),提示膽汁淤積小鼠的腸道菌群失調,淤膽通方可恢復膽汁淤積小鼠的腸道菌群結構。
2.3.3 組間差異物種分析 在種水平上,相對于對照組,模型組小鼠的Akkermansia muciniphila(嗜黏蛋
白阿克曼菌)、Bacteroides sartorii(擬桿菌)豐度明顯升高,Lactobacillus johnsonii(約氏乳桿菌)豐度顯著下降(P值均<0.05);與模型組比較,淤膽通方組和UDCA組的
Akkermansia muciniphila豐度均顯著下降,淤膽通方組的Lactobacillus murinus(鼠乳桿菌)豐度明顯升高,UDCA組的Lactobacillus murinus、Bifidobacterium pseudolongum(假長雙歧桿菌)豐度顯著上升(P值均<0.05)(圖6)。
2.4 淤膽通方對膽汁淤積小鼠腸道黏膜屏障功能及FXR/NLRP3通路的影響 免疫熒光結果顯示:相對于對照組,模型組小鼠的腸E-cadherin與Occludin的表達均明顯下降(P值均<0.05);與模型組比較,淤膽通方組和UDCA組小鼠的腸E-cadherin和Occludin的蛋白表達均顯著升高(P值均<0.05),提示淤膽通方可保護膽汁淤積小鼠的腸道屏障功能(圖7,表5)。免疫組化結果顯示:相對于對照組,模型組小鼠的腸FXR蛋白表達明顯降低,腸NLRP3蛋白表達明顯升高(P值均<0.05);與模型組比較,淤膽通方組和UDCA組小鼠的腸FXR表達均顯著上調,腸NLRP3表達均顯著下降(P值均<0.05),提示淤膽通方可調控膽汁淤積小鼠的腸FXR/NLRP3通路,保護腸道屏障功能(圖7,表5)。
3 討論
從脾論治是中醫(yī)治療肝病的經典方法,療效顯著。中醫(yī)認為肝、脾同處中焦,在結構、生理、病理上緊密聯(lián)系,肝脾升降如軸運輪轉,脾為軸、肝為輪,論治肝病,當先健運脾胃以軸運帶輪轉。淤膽通方的基本組成為生麥芽、茯苓、白術、茵陳、金錢草、通草、丹參、澤蘭、黃柏、青黛、血竭、明礬、琥珀。方中以大劑量的生麥芽生發(fā)脾胃之氣、消食化滯、疏肝解郁;茯苓、白術健脾祛濕,固護中焦之氣;茵陳、金錢草祛濕解熱、利膽退黃;通草、黃柏清熱利尿,引肝膽濕熱下行從小便而出;丹參、澤蘭活血行滯、疏通肝脈、利膽退黃。此外,酌情使用少量青黛、琥珀、明礬、血竭4味藥沖服,以加強祛濕濁、化瘀滯之功,防止膽汁淤積日久轉生癥瘕、積聚等。本課題組前期臨床研究[8-9]發(fā)現(xiàn),淤膽通方可明顯促進患兒黃疸消退,顯著改善肝功能,降低肝硬化風險,臨床總有效率優(yōu)于UDCA等西藥,并具有依從性好、用量少、見效快、副作用少等優(yōu)勢,但其作用機制尚不明確。研究[12]表明,腸道微環(huán)境是從脾論治肝病的重要生物學基礎。
膽汁淤積時,肝臟NLRP3炎癥小體活化,pro-caspase-1自剪切成有活性的caspase-1,caspase-1可誘導促炎因子IL-1β的惰性前體成熟并分泌至細胞外,促進炎癥級聯(lián)反應[13-14]。炎癥因子可進一步誘導相關免疫細胞聚集,如中性粒細胞、巨噬細胞等,CD11b、CD86主要表達于巨噬細胞,CD45是白細胞的共同抗原。FXR是膽汁酸代謝的核心因子和抗炎的關鍵因素,肝FXR激活有利于減輕肝臟炎癥反應,緩解肝內膽汁淤積[15]。膽汁淤積時,腸道NLRP3炎癥小體明顯活化,繼而下調腸黏膜黏著連接蛋白E-cadherin和緊密連接蛋白Occludin的表達,導致腸黏膜通透性增加[16],F(xiàn)XR可與NLRP3或caspase-1直接相互作用,對NLRP3進行負調控,從而發(fā)揮抗炎作用[17]。
最近研究[5]發(fā)現(xiàn),腸道菌群紊亂通過“腸-肝軸”在cCLD肝臟炎癥、膽汁淤積、肝損傷、肝纖維化、肝硬化的發(fā)生發(fā)展中起至關重要的作用。正常情況下,腸道微生物產生的膽汁鹽水解酶(bile salt hydrolase, BSH)可將結合型膽汁酸水解為游離型膽汁酸,結合型膽汁酸對膽汁酸核受體FXR具有明顯的拮抗作用,而游離型膽汁酸激活FXR的能力更強[18]。膽汁淤積時腸道分泌BSH的有益菌數(shù)量下降,腸道BSH活性降低,導致腸道中的結合型膽汁酸無法水解為游離型膽汁酸,進而抑制腸FXR信號通路[19]。FXR作為抗炎的關鍵因子,在調控腸壁通透性中起核心作用[20]。膽汁淤積時腸FXR表達降低,腸黏膜屏障受損,細菌和內毒素經門靜脈入血造成肝損傷,激活腸FXR可抑制腸道急性炎癥反應,減少腸黏膜中促炎因子產生,改善腸道屏障功能[21],其機制可能是FXR與NLRP3或caspase-1直接相互作用,阻止NLRP3炎癥小體組裝,從而抑制下游促炎基因表達,發(fā)揮抗炎作用[17]。因此,調節(jié)腸道菌群、穩(wěn)定腸壁屏障功能,進而抑制肝臟炎癥和纖維化進展,是治療cCLD的重要方法。本研究從改善腸道菌群、加強腸壁屏障功能的角度入手,探討該方從脾論治cCLD的部分科學內涵。? 為探討淤膽通方減輕cCLD肝損傷的機制,本研究利用16S rDNA測序技術檢測小鼠的腸道菌群。文獻[22]報道,cCLD嬰兒腸道細菌的豐富度較健康嬰兒增加,但未相應導致微生物群功能多樣化,本研究亦發(fā)現(xiàn)在物種多樣性方面存在模型組>對照組>淤膽通方組的趨勢,但差異無統(tǒng)計學意義。腸道菌群β多
樣性分析顯示淤膽通方能改善膽汁淤積小鼠的腸道菌群失調,進一步采用MetaStat方法篩選組間具有顯著性差異的物種:Lactobacillus murinus、Lactobacillus johnsonii屬于乳桿菌屬,具有抗炎特性,均可有效抑制腸道炎癥,增強腸壁屏障功能,降低血清內毒素水平,改善系統(tǒng)性炎癥[23-24]; Bifidobacterium pseudolongum和Bifidobacterium animalis(動物雙歧桿菌)均屬于雙歧桿菌屬,Bifidobacterium animalis可通過上調緊密連接蛋白改善腸壁屏障功能,降低血清內毒素水平,進而促進肝臟免疫穩(wěn)態(tài),減輕肝損傷[25],口服Bifidobacterium pseudolongum可使腸壁黏液厚度大幅度增加,從而增強腸道的黏液屏障功能[26];Akkermansia muciniphila是定植于腸道黏液層的細菌,依靠降解腸黏液層的黏蛋白生存,其在某些情況下若增殖異常,可能導致腸道屏障損傷,誘發(fā)腸道炎癥,使內毒素進入血液增加[27]。本研究中,膽汁淤積小鼠的腸道Lactobacillus johnsonii、Lactobacillus murinus、Bifidobacterium animalis、Bifidobacterium pseudolongum的豐度較正常小鼠均有下降,而Akkermansia muciniphila的豐度明顯升高,這可能是促進膽汁淤積小鼠腸道炎癥和腸壁通透性增高的重要原因,而淤膽通方和UDCA能不同程度地上調Lactobacillus johnsonii、Lactobacillus murinus、Bifidobacterium animalis、Bifidobacterium pseudolongum的豐度,顯著下調Akkermansia muciniphila的豐度,這可能是其減輕腸道炎癥、加強腸壁屏障功能的關鍵機制。
綜上所述,本研究發(fā)現(xiàn)淤膽通方可調節(jié)膽汁淤積小鼠的腸道菌群,抑制腸道炎癥,加強腸壁屏障功能,減輕肝損傷,初步揭示了淤膽通方從脾論治cCLD的作用機制。然而,淤膽通方是否通過增加腸道益生菌的豐度,提高腸道BSH活性,促進腸道膽汁酸代謝,進而激活腸FXR信號通路,保護腸道屏障功能和減輕肝損傷,有待進一步探索。
倫理學聲明:本研究方案經由北京邁德康納生物技術有限公司實驗動物倫理委員會審批,批號:MDKN-2022-007,符合實驗室動物管理與使用準則。
利益沖突聲明:本研究不存在研究者、倫理委員會成員以及與公開研究成果有關的利益沖突。
作者貢獻聲明:吳曉明負責課題設計、實驗操作、撰寫論文;何強、侯林毅負責課題思路和實驗設計指導;胡艷、甄小芳、郝靜負責指導撰寫文章和修改論文;盛燕負責修改論文和最后定稿。
參考文獻:
[1]
YU RH, WANG YZ, ZHANG T. Clinical characteristics of infantile liver disease[J]. J Clin Pediatr, 2021, 39(1): 1-5. DOI: 10.3969/j.issn.1000-3606.2021.01.001.
余榮華, 王怡仲, 張婷. 嬰兒期肝病臨床特點分析[J]. 臨床兒科雜志, 2021, 39(1): 1-5. DOI: 10.3969/j.issn.1000-3606.2021.01.001.
[2]JIN M. Progress of cholestatic liver disease and intestinal flora in children[J]. Int J Pediatr, 2020, 47(8): 548-551. DOI: 10.3760/cma.j.issn.1673-4408.2020.08.008.
金萌. 膽汁淤積性肝病與兒童腸道菌群研究進展[J]. 國際兒科學雜志, 2020, 47(8): 548-551. DOI: 10.3760/cma.j.issn.1673-4408.2020.08.008.
[3]FANG KL, ZHENG XT, XU LP, et al. Experimental research progress of traditional chinese medicine in prevention and treatment of cholestatic liver disease[J]. Chin J Integr Tradit West Med Liver Dis, 2020, 30(4): 375-377. DOI: 10.3969/j.issn.1005-0264.2020.04.027.
方凱璐, 鄭秀婷, 徐麗萍, 等.傳統(tǒng)中藥防治膽汁淤積性肝病的實驗研究進展[J]. 中西醫(yī)結合肝病雜志, 2020, 30(4): 375-377. DOI: 10.3969/j.issn.1005-0264.2020.04.027.
[4]LARUSSO NF, TABIBIAN JH, OHARA SP. Role of the intestinal microbiome in cholestatic liver disease[J]. Dig Dis, 2017, 35(3):? 166-168. DOI: 10.1159/000450906.
[5]ZHOU R, FAN X, SCHNABL B. Role of the intestinal microbiome in liver fibrosis development and new treatment strategies[J]. Transl Res, 2019, 209: 22-38. DOI: 10.1016/j.trsl.2019.02.005.
[6]GUO C. Clinical and basic study on intestinal microecology of cholestasis[D]. Shijiazhuang: Hebei Medical University, 2020.
郭城. 膽汁淤積癥腸道微生態(tài)學的臨床與基礎研究[D]. 石家莊: 河北醫(yī)科大學, 2020.
[7]HU Y, YAO Y, LIU J, et al. Pei Xueyis experience in treating infantile hepatitis syndrome[J]. Chin J Inf? Tradit Chin Med, 2012, 19(2): 87. DOI: 10.3969/j.issn.1005-5304.2012.02.041.
胡艷, 幺遠, 柳靜, 等. 裴學義治療嬰兒肝炎綜合征經驗[J]. 中國中醫(yī)藥信息雜志, 2012, 19(2): 87. DOI: 10.3969/j.issn.1005-5304.2012.02.041.
[8]CHEN L, HU Y, YANG M, et al. Interventional effect of traditional Chinese medicine on infants with biliary atresia after operation and its long-term effect[J]. JETCM, 2016, 25(2): 353-356. DOI: 10.3969/j.issn.1004-745X.2016.02.060.
陳黎, 胡艷, 楊夢, 等. 中藥對嬰兒膽道閉鎖術后的干預作用及其遠期療效的觀察[J]. 中國中醫(yī)急癥, 2016, 25(2): 353-356. DOI: 10.3969/j.issn.1004-745X.2016.02.060.
[9]HU Y, CHEN L, SHU J, et al. Clinical observation on 60 cases of infant cytomegalovirus hepatitis treated with traditional Chinese medicine[J]. Chin Pediatr Integr Tradit Wset Med, 2012, 4(1): 98-99. DOI: 10.3969/j.issn.1674-3865.2012.02.002.
胡艷, 陳黎, 舒靜, 等. 中藥治療嬰兒巨細胞病毒性肝炎60例療效觀察[J]. 中國中西醫(yī)結合兒科學, 2012, 4(1): 98-99. DOI: 10.3969/j.issn.1674-3865.2012.02.002.
[10]DU LN, YANG Y. Establishment and application of animal models of cholestasis[J]. J Clin Hepatol, 2019, 35(2): 444-447. DOI: 10.3969/j.issn.1001-5256.2019.02.046.
杜麗娜, 楊燕. 膽汁淤積動物模型的構建及應用前景[J]. 臨床肝膽病雜志, 2019, 35(2): 444-447. DOI: 10.3969/j.issn.1001-5256.2019.02.046.
[11]LUO YS, ZHENG XT, ZHANG HY, et al. The cholestatic fibrosis induced by α-naphthylisothiocyanate in mice and the inflammation pathway[J]. CJAP, 2020, 36(2): 152-157. DOI: 10.12047/j.cjap.5903.2020.034.
羅怡爽, 鄭秀婷, 章浩月, 等. α-荼異硫氰酸酯誘導小鼠膽汁淤積性肝纖維化及其炎癥通路[J]. 中國應用生理學雜志, 2020, 36(2): 152-157. DOI: 10.12047/j.cjap.5903.2020.034.
[12]ZHANG CY, LIU TH, WANG W, et al. Discussion on intestinal microenvironment as an important biological basis for the theory of treating liver disease from the spleen[J]. CJTCMP, 2019, 34(7): 2877-2880.
張晨陽, 劉天浩, 王維, 等. 論腸道微環(huán)境是從脾論治肝病的重要生物學基礎[J]. 中華中醫(yī)藥雜志, 2019, 34(7): 2877-2880.
[13]LIAO L, SCHNEIDER KM, GALVEZ E, et al. Intestinal dysbiosis augments liver disease progression via NLRP3 in a murine model of primary sclerosing cholangitis[J]. Gut, 2019, 68(8): 1477-1492. DOI: 10.1136/gutjnl-2018-316670.
[14]SWANSON KV, DENG M, TING JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics[J]. Nat Rev Immunol, 2019, 19(8): 477-489. DOI: 10.1038/s41577-019-0165-0.
[15]JIA SQ, DOU XG. Farnesol X receptor and its agonists and liver diseases[J]. Chin Hepatol, 2021, 26(11): 1293-1297. DOI: 10.3969/j.issn.1008-1704.2021.11.027.
賈鍶琦, 竇曉光. 法尼醇X受體及其激動劑與肝臟疾病[J]. 肝臟, 2021, 26(11): 1293-1297. DOI: 10.3969/j.issn.1008-1704.2021.11.027.
[16]ISAACS-TEN A, ECHEANDIA M, MORENO-GONZALEZ M, et al. Intestinal microbiome-macrophage crosstalk contributes to cholestatic liver disease by promoting intestinal permeability[J]. Hepatology, 2020, 72(6): 2090-2108. DOI: 10.1002/hep.31228.
[17]HAO H, CAO L, JIANG C, et al. Farnesoid X receptor regulation of the NLRP3 inflammasome underlies cholestasis-associated sepsis[J]. Cell Metab, 2017, 25(4): 856-867. e5. DOI: 10.1016/j.cmet.2017.03.007.
[18]HUANG F, ZHENG X, MA X, et al. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism[J]. Nat Commun, 2019, 10(1): 4971. DOI: 10.1038/s41467-019-12896-x.
[19]WAHLSTRM A, KOVATCHEVA-DATCHARY P, STHLMAN M, et al. Crosstalk between bile acids and gut microbiota and its impact on farnesoid X receptor signalling[J]. Dig Dis, 2017, 35(3): 246-250. DOI: 10.1159/000450982.
[20]LI SL. Effect of FXR on LPS-induced macrophage inflammatory response and intestinal barrier injury in mice[D]. Chinese Peoples Liberation Army (PLA) Medical School, 2019.
李淑玲. FXR對LPS誘導的巨噬細胞炎癥反應及小鼠腸道屏障損傷的作用研究[D]. 中國人民解放軍醫(yī)學院, 2019.
[21]VERBEKE L, FARRE R, VERBINNEN B, et al. The FXR agonist obeticholic acid prevents gut barrier dysfunction and bacterial translocation in cholestatic rats[J]. Am J Pathol, 2015, 185(2): 409-419. DOI: 10.1016/j.ajpath.2014.10.009.
[22]ZHOU JL, WANG ZX, ZHOU SM, et al. Composition and functional change of intestinal microbiota in infantile cholestasis[J]. J Clin Hepatol, 2021, 37(1): 126-130. DOI: 10.3969/j.issn.1001-5256.2021.01.025.
周建利, 王朝霞, 周少明, 等. 嬰兒膽汁淤積的腸道菌群組成及功能變化[J].??? 臨床肝膽病雜志, 2021, 37(1): 126-130. DOI: 10.3969/j.issn.1001-5256.2021.01.025.
[23]PAN F, ZHANG L, LI M, et al. Predominant gut Lactobacillus murinus strain mediates anti-inflammaging effects in calorie-restricted mice[J]. Microbiome, 2018, 6(1): 54. DOI: 10.1186/s40168-018-0440-5.
[24]WANG H, HE S, XIN J, et al. Psychoactive effects of lactobacillus johnsonii against restraint stress-induced memory dysfunction in mice through modulating intestinal inflammation and permeability-a study based on the gut-brain axis hypothesis[J]. Front Pharmacol, 2021, 12: 662148. DOI: 10.3389/fphar.2021.662148.
[25]ZHANG H, LIU M, LIU X, et al. Bifidobacterium animalis ssp. lactis 420 mitigates autoimmune hepatitis through regulating intestinal barrier and liver immune cells[J]. Front Immunol, 2020, 11: 569104. DOI: 10.3389/fimmu.2020.569104.
[26]MANGIN I, DOSSOU-YOVO F, LVQUE C, et al. Oral administration of viable Bifidobacterium pseudolongum strain Patronus modified colonic microbiota and increased mucus layer thickness in rat[J]. FEMS Microbiol Ecol, 2018, 94(11): fiy177. DOI: 10.1093/femsec/fiy177.
[27]SEREGIN SS, GOLOVCHENKO N, SCHAF B, et al. NLRP6 protects Il10-/- mice from colitis by limiting colonization of akkermansia muciniphila[J]. Cell Rep, 2017, 19(4): 733-745. DOI: 10.1016/j.celrep.2017.03.080.
收稿日期:
2022-08-04;錄用日期:2022-10-25
本文編輯:林姣