許鈞 金衛(wèi)林 李汛
摘要:肝纖維化是由多種病因引起的細(xì)胞外基質(zhì)過度累積,導(dǎo)致纖維瘢痕形成的病理過程。目前,病因治療(如有效的抗病毒治療)仍是肝纖維化的主要治療策略。肝巨噬細(xì)胞作為肝纖維化的核心參與者,影響肝纖維化的進(jìn)展與消退,被認(rèn)為是肝纖維化治療的重要靶點(diǎn)。近年來,隨著免疫代謝領(lǐng)域的進(jìn)展,代謝重編程已成為決定巨噬細(xì)胞結(jié)局和推動(dòng)疾病發(fā)展的關(guān)鍵因素。本文綜述了肝纖維化過程中巨噬細(xì)胞的作用及其代謝變化,并討論靶向巨噬細(xì)胞代謝的抗纖維化潛力,為肝纖維化的發(fā)生、發(fā)展和治療提供新的思路
關(guān)鍵詞:肝硬化; 巨噬細(xì)胞; 治療學(xué)
基金項(xiàng)目:國(guó)家自然科學(xué)基金地區(qū)項(xiàng)目(82060119)
A new perspective in the treatment of liver fibrosis: Targeting macrophage metabolism
XU Jun1, JIN Weilin1,2b, LI Xun1,2a,2b,3. (1. The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; 2. a. Medical Frontier Innovation Research Center, b. Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China; 3. Gansu Province Key Laboratory of Biotherapy and Regenerative Medicine, Lanzhou 730000, China)
Corresponding author:
LI Xun, Lxdr21@126.com (ORCID:0000-0003-3787-1558)
Abstract:
Liver fibrosis is a pathological process of fibrous scar formation caused by excessive accumulation of extracellular matrix due to various etiologies. At present, etiological treatment, such as effective antiviral therapy, is still the main treatment strategy for liver fibrosis. As the core participant of liver fibrosis, liver macrophages affect the progression and regression of liver fibrosis and are thus considered an important target for the treatment of liver fibrosis. With the recent advances in the field of immune metabolism, metabolic reprogramming has become a key factor for determining the outcome of macrophages and promoting the development of diseases. This article reviews the role and metabolic changes of macrophages during liver fibrosis and discusses the anti-fibrotic potential of targeting macrophage metabolism, so as to provide new ideas for the development, progression, and treatment of liver fibrosis.
Key words:Liver Cirrhosis; Macrophages; Therapeutics
Research funding:
Regional Project of National Natural Science Foundation of China (82060119)
肝纖維化是由病毒性肝炎、膽汁淤積性肝病、酒精性肝病、非酒精性脂肪性肝病、藥物及毒素等多種病因引起的持續(xù)性肝實(shí)質(zhì)慢性炎癥,最終導(dǎo)致肝細(xì)胞外基質(zhì)過度沉積,形成纖維性瘢痕。若不及時(shí)干預(yù),肝纖維化最終發(fā)展為肝硬化甚至肝細(xì)胞癌,并出現(xiàn)一系列嚴(yán)重并發(fā)癥,如肝衰竭、門靜脈高壓癥、肝性腦病等[1]。肝臟富含巨噬細(xì)胞,包括常駐巨噬細(xì)胞和單核細(xì)胞來源的巨噬細(xì)胞(monocyte-derived macrophage, MDM)。巨噬細(xì)胞作為肝臟中重要的免疫細(xì)胞,其激活、極化和生物功能受到自身新陳代謝的調(diào)控[2]。近年來,隨著對(duì)免疫細(xì)胞代謝的深入研究發(fā)現(xiàn),免疫細(xì)胞的代謝途徑及代謝產(chǎn)物在其激活、分化中發(fā)揮重要調(diào)節(jié)作用[3]。本文將對(duì)肝纖維化過程中巨噬細(xì)胞的作用及其代謝變化進(jìn)行綜述,并討論靶向巨噬細(xì)胞代謝的抗纖維化潛力,為肝纖維化治療提供新的思路。
1 肝臟巨噬細(xì)胞的起源及分型
肝臟巨噬細(xì)胞占人體總巨噬細(xì)胞的90%,具有顯著異質(zhì)性,主要由肝臟駐留巨噬細(xì)胞和各種浸潤(rùn)巨噬細(xì)胞組成[4]。肝臟駐留巨噬細(xì)胞,又稱Kupffer細(xì)胞,通常存在于肝竇中,其起源于卵黃囊衍生的特定祖細(xì)胞,在胚胎發(fā)生期間已定植在肝臟組織中,也可通過骨髓來源的單核細(xì)胞分化進(jìn)行補(bǔ)充[5]。Kupffer細(xì)胞在肝臟中自我更新,可清除病原體,吞噬細(xì)胞碎片和調(diào)節(jié)鐵代謝等,維持肝臟穩(wěn)態(tài)。浸潤(rùn)巨噬細(xì)胞主要包括骨髓來源的巨噬細(xì)胞、腹膜巨噬細(xì)胞和脾巨噬細(xì)胞[6]。其中,骨髓來源的巨噬細(xì)胞是浸潤(rùn)巨噬細(xì)胞的主要成員,主要在肝臟病理狀態(tài)下發(fā)揮功能,在Kupffer細(xì)胞和肝星狀細(xì)胞(hepatic stellate cell, HSC)活化后募集,是肝巨噬細(xì)胞耗竭后補(bǔ)充和再生的重要來源。當(dāng)發(fā)生肝損傷時(shí),除骨髓來源的巨噬細(xì)胞外,腹膜巨噬細(xì)胞完成自我更新,積聚在包膜下的肝臟組織中,通過間皮細(xì)胞遷移促進(jìn)肝臟再生。此外,由于脾臟是單核細(xì)胞儲(chǔ)存和分布的部位,脾巨噬細(xì)胞在肝損傷時(shí)也可被招募到肝臟發(fā)揮免疫調(diào)節(jié)作用[7]??偟膩碚f,在正常肝臟中,Kupffer細(xì)胞作為肝臟的前哨細(xì)胞,占據(jù)肝巨噬細(xì)胞主導(dǎo)地位,維持肝臟穩(wěn)態(tài)。當(dāng)肝臟受外部因素影響形成病變時(shí),Kupffer細(xì)胞首先接收信號(hào)并分化成不同的表型,產(chǎn)生促炎或抗炎因子,同時(shí)募集大量其他巨噬細(xì)胞到肝臟,即MDM。MDM具有與Kupffer細(xì)胞相似的功能和可塑性,在肝臟疾病的進(jìn)展和逆轉(zhuǎn)中起重要作用[8]。
巨噬細(xì)胞根據(jù)激活途徑、細(xì)胞表面標(biāo)志物及其釋放的細(xì)胞因子可分為兩種類型:經(jīng)典活化(M1)型巨噬細(xì)胞和替代活化(M2)型巨噬細(xì)胞[9]。M1型巨噬細(xì)胞又稱為促炎型巨噬細(xì)胞,主要由脂多糖和IFNγ誘導(dǎo)激活,參與Th1及Th17型免疫反應(yīng)。M1型巨噬細(xì)胞可分泌IL-1β、IL-6、IL-12、IL-23、TNFα等細(xì)胞因子,發(fā)揮抗原遞呈功能,還具有促進(jìn)炎癥、清除病原微生物和抗腫瘤的生物學(xué)功能。M1型巨噬細(xì)胞極化的常見機(jī)制包括:(1)TLR4/NF-κB信號(hào)通路。目前多種藥物(如小檗堿、槲皮素)已被報(bào)道可以通過抑制TLR4/NF-κB信號(hào)通路來抑制M1型巨噬細(xì)胞極化[10-11]。(2)JAK/STAT1信號(hào)通路。IFNγ與其受體結(jié)合后激活JAK,誘導(dǎo)STAT1的磷酸化,從而使M1型巨噬細(xì)胞極化[12]。(3)Notch信號(hào)通路。研究[13]表明M1型巨噬細(xì)胞Notch受體表達(dá)顯著增加,可以通過靶向Notch信號(hào)通路來調(diào)節(jié)M1型巨噬細(xì)胞極化[14-15]。M2型巨噬細(xì)胞則被稱為抑炎型巨噬細(xì)胞,主要由IL-4和IL-13誘導(dǎo)激活,參與Th2型免疫反應(yīng)。M2型巨噬細(xì)胞可分泌抗炎因子,如IL-10、IL-4、IL-13、TGFβ等,具有抑制炎癥,促進(jìn)組織重塑,預(yù)防寄生蟲感染以及參與血管生成、免疫調(diào)節(jié)等生物學(xué)功能[16]。M2型巨噬細(xì)胞極化的常見機(jī)制包括:(1)JAK/STAT6信號(hào)通路。JAK/STAT6是M2型巨噬細(xì)胞極化的重要途徑,姜黃素通過分泌IL-4和IL-13上調(diào)STAT6表達(dá),從而誘導(dǎo)M2型巨噬細(xì)胞極化[17]。(2)TGFβ/Smads信號(hào)通路。槲皮素通過抑制TGFβ1-Smad2/3途徑來抑制M2型巨噬細(xì)胞極化[18]。
巨噬細(xì)胞不同極化表型在肝臟疾病的發(fā)生和進(jìn)展中發(fā)揮不同作用,對(duì)肝臟疾病具有雙重調(diào)節(jié)作用[19]。HSC是肝纖維化的主要效應(yīng)細(xì)胞,靜止的HSC轉(zhuǎn)化為肌成纖維細(xì)胞是肝纖維化發(fā)病機(jī)制的核心,而巨噬細(xì)胞在HSC活化的過程中起關(guān)鍵作用[1]。由此,肝巨噬細(xì)胞在肝纖維化中發(fā)揮雙重作用,既可促進(jìn)纖維化進(jìn)展,也可使纖維化消退[20]。
2 肝臟巨噬細(xì)胞在肝纖維化中的雙重作用
2.1 M1型巨噬細(xì)胞推動(dòng)肝纖維化進(jìn)展 在肝纖維化的起始和進(jìn)展階段,損傷相關(guān)的模式分子及凋亡小體激活Disse空間中的Kupffer細(xì)胞并使其表型發(fā)生轉(zhuǎn)變,此時(shí)肝臟巨噬細(xì)胞表型以M1型(促炎型)為主。激活的Kupffer細(xì)胞可通過如圖1所示的方式促進(jìn)肝纖維化的發(fā)生及發(fā)展:(1)Kupffer細(xì)胞可產(chǎn)生TGFβ、血小板生長(zhǎng)因子(platelet-derived growth factor, PDGF)等促纖維化因子,激活HSC,使其向肌成纖維細(xì)胞轉(zhuǎn)化,促進(jìn)肝纖維化發(fā)生[21];(2)Kupffer細(xì)胞產(chǎn)生TNFγ、IL-1β等炎癥因子,招募肝外炎癥細(xì)胞入肝,進(jìn)一步加重肝細(xì)胞損傷。同時(shí),炎癥因子可通過NF-κB途徑激活HSC,并維持HSC活性,促進(jìn)肝纖維化進(jìn)展[22];(3)Kupffer細(xì)胞表達(dá)MMP,如MMP-9,促進(jìn)細(xì)胞外基質(zhì)沉積[23];(4)激活的Kupffer細(xì)胞吞噬死亡的紅細(xì)胞,使來源于血紅蛋白中的鐵沉積在肝臟,誘導(dǎo)氧化應(yīng)激與炎癥反應(yīng),進(jìn)而激活HSC,促進(jìn)纖維化發(fā)生[24];(5)活化的Kupffer細(xì)胞可破壞肝臟血管結(jié)構(gòu),使肝臟局部環(huán)境缺氧,從而觸發(fā)缺氧誘導(dǎo)的肝纖維化形成[25]。
除Kupffer細(xì)胞,肝臟中MDM浸潤(rùn)也影響肝纖維化的發(fā)生。小鼠肝臟損傷期間Ly6C高表達(dá)(Ly6Chigh)單核巨噬細(xì)胞可促進(jìn)炎癥的發(fā)生;相反,Ly6C低表達(dá)(Ly6Clow)單核巨噬細(xì)胞具有抗炎作用[26]。在肝臟損傷早期,Ly6Chigh單核巨噬細(xì)胞通過趨化因子配體2(chemokine ligand-2, CCL2)/趨化因子受體2(C-C chemokine receptor, CCR2)軸的作用,被募集到損傷肝臟中,釋放TGFβ、IL-1b、PDGF、CCL2等作用于HSC,使其活化、增殖,從而推動(dòng)肝纖維化發(fā)生[27]。在人體中,MDM主要包括CD14++CD16-單核巨噬細(xì)胞、CD14++CD16+單核巨噬細(xì)胞和CD14+CD16++單核巨噬細(xì)胞3種類型,其中CD14++CD16+單核巨噬細(xì)胞是參與肝纖維化形成的主要細(xì)胞類型。當(dāng)肝損傷時(shí),CD14++CD16+單核細(xì)胞在受損的肝臟內(nèi)聚集,釋放炎癥因子和纖維化因子,促進(jìn)肝纖維化形成[28]。
2.2 M2型巨噬細(xì)胞促進(jìn)肝纖維化消退 在肝纖維化消退過程中,肝臟巨噬細(xì)胞表型以M2型(抑炎型)為主,Kupffer細(xì)胞可能通過以下方式發(fā)揮作用:(1)Kupffer細(xì)胞招募并激活MDM和自然殺傷細(xì)胞,使活化HSC凋亡,從而發(fā)揮抗纖維化作用[29];(2)Kupffer細(xì)胞可吞噬損傷的肝細(xì)胞,減輕炎癥反應(yīng),從而減緩肝纖維化的進(jìn)程。(3)Kupffer細(xì)胞在提高M(jìn)MP(如 MMP-1、MMP-13)表達(dá)的同時(shí),可調(diào)節(jié)MMP與TIMP的平衡,降解細(xì)胞外基質(zhì),促進(jìn)肝纖維化消退[29-30]。
在小鼠肝臟內(nèi)Ly6Clow單核巨噬細(xì)胞通過下調(diào)TGFβ等促炎因子水平,減輕肝臟炎癥,誘導(dǎo)活化的HSC衰老、死亡。同時(shí)Ly6Clow單核巨噬細(xì)胞中部分MMP(如MMP-12、MMP-13)表達(dá)水平升高,參與細(xì)胞外基質(zhì)降解[27]。
3 肝臟巨噬細(xì)胞代謝重編程與肝纖維化
肝損傷后,肝臟的局部微環(huán)境發(fā)生變化,為應(yīng)對(duì)微環(huán)境的變化,巨噬細(xì)胞的代謝方式及代謝產(chǎn)物發(fā)生變化,即代謝重編程。肝臟巨噬細(xì)胞的代謝重編程是影響巨噬細(xì)胞極化、HSC活化以及肝纖維化發(fā)展和消退的重要因素[31]。M1型巨噬細(xì)胞的代謝特征包括糖酵解、磷酸戊糖途徑的增強(qiáng)和三羧酸循環(huán)的激活(生成用于脂肪酸合成的檸檬酸)。M2型巨噬細(xì)胞的代謝特征包括脂肪酸氧化、精氨酸酶途徑的增強(qiáng)以及三羧酸循環(huán)的激活(參與氧化磷酸化)[3]。在此部分中,筆者將討論細(xì)胞內(nèi)營(yíng)養(yǎng)物質(zhì)代謝的變化如何影響肝纖維化中的巨噬細(xì)胞極化和功能。
3.1 巨噬細(xì)胞葡萄糖代謝與肝纖維化 肝臟急、慢性損傷及繼發(fā)炎癥時(shí),多伴隨乏氧現(xiàn)象,乏氧微環(huán)境作為肝臟物理化學(xué)損傷的重要因素之一,對(duì)巨噬細(xì)胞的激活和肝纖維化的形成與發(fā)展有重要作用[25]。在缺氧條件下,巨噬細(xì)胞經(jīng)歷從氧化磷酸化到有氧糖酵解的代謝轉(zhuǎn)換,以滿足其高能量需求。該過程受缺氧誘導(dǎo)因子1α調(diào)控,糖酵解關(guān)鍵蛋白(葡萄糖轉(zhuǎn)運(yùn)體1)以及糖酵解的關(guān)鍵酶(如己糖激酶、丙酮酸激酶和果糖-2,6-二磷酸酶3)的表達(dá)增加[32]。此時(shí)巨噬細(xì)胞表型以M1型為主,推動(dòng)纖維化的發(fā)生及發(fā)展。除了增強(qiáng)的糖酵解外,M1型巨噬細(xì)胞中不完整的三羧酸循環(huán),導(dǎo)致琥珀酸鹽和檸檬酸鹽積累;過量的琥珀酸鹽使缺氧誘導(dǎo)因子1α更加穩(wěn)定,這反過來又維持了M1型巨噬細(xì)胞的糖酵解代謝,從而增強(qiáng)M1型巨噬細(xì)胞中炎性因子IL-1β的分泌[33]。
3.2 巨噬細(xì)胞脂質(zhì)代謝與肝纖維化 脂肪酸合成增強(qiáng)促使巨噬細(xì)胞極化為M1型。在巨噬細(xì)胞中飽和脂肪酸的結(jié)合或氧化脂蛋白被清除受體(如巨噬細(xì)胞清除受體1)捕獲,導(dǎo)致M1型巨噬細(xì)胞的形成[34]。與上述結(jié)論一致,缺乏巨噬細(xì)胞清除受體1的小鼠在高脂肪飲食中表現(xiàn)出更少的肝臟炎癥和更強(qiáng)的抗纖維化能力[35]。此外,有研究[36]表明,巨噬細(xì)胞暴露于脂肪酸中可導(dǎo)致具有細(xì)胞毒性的脂質(zhì)(如二酰基甘油和神經(jīng)酰胺)積累,使巨噬細(xì)胞進(jìn)入促炎狀態(tài)。
3.3 巨噬細(xì)胞微量元素代謝與肝纖維化? 鐵代謝失調(diào)和肝鐵超載與非酒精性脂肪性肝炎(non-alcoholic steatohepatitis, NASH)及晚期肝纖維化有關(guān)。在高脂飲食誘導(dǎo)的NASH模型中,具有促炎表型的富鐵Kupffer細(xì)胞通過激活MiT/TFE轉(zhuǎn)錄因子促進(jìn)NASH相關(guān)肝纖維化的發(fā)展[37]。鐵超載可破壞巨噬細(xì)胞M1/M2極化的平衡,誘導(dǎo)表型轉(zhuǎn)變?yōu)镸1型,導(dǎo)致低脂飲食小鼠的炎癥和纖維生成[38]。
4 靶向巨噬細(xì)胞免疫代謝的抗纖維化治療
鑒于巨噬細(xì)胞在肝纖維化發(fā)生發(fā)展中的重要作用以及免疫細(xì)胞代謝重編程機(jī)制的闡明,靶向免疫代謝重編程可能是肝纖維化的一種潛在治療策略,以下將介紹肝纖維化中巨噬細(xì)胞的一些代謝靶點(diǎn)。
轉(zhuǎn)錄因子C-Rel是協(xié)調(diào)巨噬細(xì)胞糖代謝,誘導(dǎo)巨噬細(xì)胞極化的關(guān)鍵角色。當(dāng)轉(zhuǎn)錄因子C-Rel與表達(dá)6-磷酸果糖-2-激酶-3的啟動(dòng)子結(jié)合時(shí),細(xì)胞糖酵解增強(qiáng),誘導(dǎo)巨噬細(xì)胞M1型極化,最終導(dǎo)致肝損傷模型中的HSC激活,推動(dòng)肝纖維化發(fā)生;當(dāng)轉(zhuǎn)錄因子C-Rel與6-磷酸果糖-2-激酶-1的啟動(dòng)子結(jié)合時(shí),細(xì)胞的氧化磷酸化增強(qiáng),誘導(dǎo)巨噬細(xì)胞的M2型極化,抑制HSC活化,從而抑制肝纖維化的發(fā)生及發(fā)展[39]。此外,膜聯(lián)蛋白家族成員膜聯(lián)蛋白A5,通過與丙酮酸激酶 M2相互作用,使肝巨噬細(xì)胞從糖酵解轉(zhuǎn)變?yōu)檠趸姿峄?,這種代謝重編程過程刺激肝巨噬細(xì)胞的激活和從M1型到M2型的表型轉(zhuǎn)換,從而改善高脂飲食NASH 模型中的脂肪變性、炎癥和肝纖維化[40]。
巨噬細(xì)胞中脂肪酸合成增強(qiáng)導(dǎo)致巨噬細(xì)胞極化為M1型,推動(dòng)肝纖維化的發(fā)生。脂肪酸合成的限速步驟是乙酰輔酶A轉(zhuǎn)化為丙二酰輔酶 A,此過程由乙酰輔酶A羧化酶 (acetyl-CoA carboxylase, ACC)催化。Gao等[41]通過使用ACC抑制劑WZ66,可抑制ACC進(jìn)而減輕肝脂肪變性,阻止巨噬細(xì)胞的活化和浸潤(rùn),降低HSC的活化[42]。同時(shí)在一項(xiàng)ACC抑制劑對(duì)NASH患者的Ⅱ期臨床試驗(yàn)[43]中,也有類似結(jié)果報(bào)道。
過氧化物酶體增殖物激活受體(peroxisome proliferator-activated receptor, PPAR)是一個(gè)核轉(zhuǎn)錄因子家族,包括α、β、δ和γ四種亞型,參與脂質(zhì)代謝和葡萄糖代謝的調(diào)節(jié)。PPARα亞型主要存在于肝細(xì)胞中,少量存在于巨噬細(xì)胞和內(nèi)皮細(xì)胞。PPARβ/δ亞型在所有的肝臟細(xì)胞中表達(dá),而PPARγ亞型在巨噬細(xì)胞和靜止的HSC中表達(dá)[44]。已有研究[45]發(fā)現(xiàn)PPARα的定位在肝臟炎癥期間會(huì)從肝細(xì)胞轉(zhuǎn)移到Kupffer細(xì)胞上,而PPARα的激活可使巨噬細(xì)胞表型轉(zhuǎn)變?yōu)镸2型。目前在野生小鼠以及蛋氨酸和膽堿缺乏飲食飼養(yǎng)的小鼠中發(fā)現(xiàn)PPARα激動(dòng)劑(WY-14643)可以激活PPARα,減輕肝臟脂質(zhì)積累和肝臟炎癥,從而減緩肝纖維化發(fā)生[46-47]。PPARβ/δ盡管在Kupffer細(xì)胞中表現(xiàn)出抗炎特性,但對(duì)HSC具有活化作用,其激動(dòng)劑(GW501516)的肝保護(hù)和抗纖維化作用有待在臨床試驗(yàn)中得到證實(shí)[48]。PPARγ亞型可下調(diào)炎癥基因的表達(dá),使巨噬細(xì)胞轉(zhuǎn)變?yōu)镸2型[48]。雖然在使用PPARγ激動(dòng)劑(如吡格列酮或羅格列酮)的動(dòng)物模型中纖維化改善明顯[49],但在羅格列酮治療1~2年后,患者肝纖維化并未得到改善[50]。
法尼醇X受體(farnesoid X receptor, FXR)是一種膽汁酸受體,主要存在于肝細(xì)胞、Kupffer細(xì)胞、肝竇內(nèi)皮細(xì)胞和HSC中。FXR通過誘導(dǎo)脂蛋白代謝相關(guān)基因表達(dá),抑制與肝臟甘油三酯合成相關(guān)的基因表達(dá)調(diào)節(jié)脂代謝。已有文獻(xiàn)[51]報(bào)道,在非酒精性脂肪性肝病小鼠模型中,使用雙重FXR/TGR5激動(dòng)劑治療可減輕肝臟脂肪變性并抑制肝臟炎癥;雙重激動(dòng)劑可抑制巨噬細(xì)胞產(chǎn)生促炎因子,增加IL-10的產(chǎn)生,并導(dǎo)致由肥胖誘導(dǎo)的M1到M2型巨噬細(xì)胞的轉(zhuǎn)換。目前,F(xiàn)XR激動(dòng)劑奧貝膽酸用于NASH 患者的臨床試驗(yàn)正在開展[52]。
5 小結(jié)與展望
隨著對(duì)肝臟中巨噬細(xì)胞極化以及免疫代謝的進(jìn)一步研究,靶向巨噬細(xì)胞代謝已是肝纖維化治療及藥物開發(fā)的可行策略。靶向巨噬細(xì)胞代謝具有改善肝纖維化和較少藥物副作用的獨(dú)特優(yōu)勢(shì),但也存在一些不足:如代謝靶標(biāo)的非特異性,以及還需對(duì)巨噬細(xì)胞代謝的時(shí)空特征進(jìn)行準(zhǔn)確描述,使靶向巨噬細(xì)胞代謝治療更為精確。
總的來說,近十年免疫代謝方面的重大進(jìn)展表明,免疫與代謝的相互作用是包括肝纖維化在內(nèi)的許多疾病的核心。不同代謝方式及代謝產(chǎn)物對(duì)肝纖維化過程中巨噬細(xì)胞極化產(chǎn)生不同影響,從而影響肝纖維化的進(jìn)展與消退,靶向巨噬細(xì)胞代謝將是肝纖維化治療的新策略。
利益沖突聲明:所有作者均聲明不存在利益沖突。
作者貢獻(xiàn)聲明:許鈞、金衛(wèi)林參與文章的結(jié)構(gòu)設(shè)計(jì);許鈞起草文章初稿;李汛、金衛(wèi)林修改文章關(guān)鍵內(nèi)容;所有作者閱讀并批準(zhǔn)最終稿。
參考文獻(xiàn):
[1]
ROEHLEN N, CROUCHET E, BAUMERT TF. Liver fibrosis: Mechanistic concepts and therapeutic perspectives[J]. Cells, 2020, 9(4): 875. DOI: 10.3390/cells9040875.
[2]PHAN AT, GOLDRATH AW, GLASS CK. Metabolic and epigenetic coordination of T cell and macrophage immunity[J]. Immunity, 2017, 46(5): 714-729. DOI: 10.1016/j.immuni.2017.04.016.
[3]
ONEILL LA, KISHTON RJ, RATHMELL J. A guide to immunometabolism for immunologists[J]. Nat Rev Immunol, 2016, 16(9): 553-565. DOI: 10.1038/nri.2016.70.
[4]van DER HEIDE D, WEISKIRCHEN R, BANSAL R. Therapeutic targeting of hepatic macrophages for the treatment of liver diseases[J]. Front Immunol, 2019, 10: 2852. DOI: 10.3389/fimmu.2019.02852.
[5]LI P, HE K, LI J, et al. The role of Kupffer cells in hepatic diseases[J]. Mol Immunol, 2017, 85: 222-229. DOI: 10.1016/j.molimm.2017.02.018.
[6]GUILLOT A, TACKE F. Liver macrophages: Old dogmas and new insights[J]. Hepatol Commun, 2019, 3(6): 730-743. DOI: 10.1002/hep4.1356.
[7]WANG C, MA C, GONG L, et al. Macrophage polarization and its role in liver disease[J]. Front Immunol, 2021, 12: 803037. DOI: 10.3389/fimmu.2021.803037.
[8]TACKE F. Targeting hepatic macrophages to treat liver diseases[J]. J Hepatol, 2017, 66(6): 1300-1312. DOI: 10.1016/j.jhep.2017.02.026.
[9]YUNNA C, MENGRU H, LEI W, et al. Macrophage M1/M2 polarization[J]. Eur J Pharmacol, 2020, 877: 173090. DOI: 10.1016/j.ejphar.2020.173090.
[10]WU K, MA J, ZHAN Y, et al. Down-regulation of microRNA-214 contributed to the enhanced mitochondrial transcription factor A and inhibited proliferation of colorectal cancer cells[J]. Cell Physiol Biochem, 2018, 49(2): 545-554. DOI: 10.1159/000492992.
[11]GONG J, LI J, DONG H, et al. Inhibitory effects of berberine on proinflammatory M1 macrophage polarization through interfering with the interaction between TLR4 and MyD88[J]. BMC Complement Altern Med, 2019, 19(1): 314. DOI: 10.1186/s12906-019-2710-6.
[12]WANG F, ZHANG S, JEON R, et al. Interferon gamma induces reversible metabolic reprogramming of M1 macrophages to sustain cell viability and pro-inflammatory activity[J]. EBioMedicine, 2018, 30: 303-316. DOI: 10.1016/j.ebiom.2018.02.009.
[13]SINGLA RD, WANG J, SINGLA DK. Regulation of Notch 1 signaling in THP-1 cells enhances M2 macrophage differentiation[J]. Am J Physiol Heart Circ Physiol, 2014, 307(11): H1634-H1642. DOI: 10.1152/ajpheart.00896.2013.
[14]WEI W, LI ZP, BIAN ZX, et al. Astragalus polysaccharide RAP induces macrophage phenotype polarization to M1 via the Notch signaling pathway[J]. Molecules, 2019, 24(10): 2016. DOI: 10.3390/molecules24102016.
[15]
SHENG J, ZHANG B, CHEN Y, et al. Capsaicin attenuates liver fibrosis by targeting Notch signaling to inhibit TNF-α secretion from M1 macrophages[J]. Immunopharmacol Immunotoxicol, 2020, 42(6): 556-563. DOI: 10.1080/08923973.2020.1811308.
[16]SHAPOURI-MOGHADDAM A, MOHAMMADIAN S, VAZINI H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233(9): 6425-6440. DOI: 10.1002/jcp.26429.
[17]GAO S, ZHOU J, LIU N, et al. Curcumin induces M2 macrophage polarization by secretion IL-4 and/or IL-13[J]. J Mol Cell Cardiol, 2015, 85: 131-139. DOI: 10.1016/j.yjmcc.2015.04.025.
[18]LU H, WU L, LIU L, et al. Quercetin ameliorates kidney injury and fibrosis by modulating M1/M2 macrophage polarization[J]. Biochem Pharmacol, 2018, 154: 203-212. DOI: 10.1016/j.bcp.2018.05.007.
[19]DOU L, SHI X, HE X, et al. Macrophage phenotype and function in liver disorder[J]. Front Immunol, 2019, 10: 3112. DOI: 10.3389/fimmu.2019.03112.
[20]CHENG D, CHAI J, WANG H, et al. Hepatic macrophages: Key players in the development and progression of liver fibrosis[J]. Liver Int, 2021, 41(10): 2279-2294. DOI: 10.1111/liv.14940.
[21]SCHWABE RF, TABAS I, PAJVANI UB. Mechanisms of fibrosis development in nonalcoholic steatohepatitis[J]. Gastroenterology, 2020, 158(7): 1913-1928. DOI: 10.1053/j.gastro.2019.11.311.
[22]TSUCHIDA T, FRIEDMAN SL. Mechanisms of hepatic stellate cell activation[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(7): 397-411. DOI: 10.1038/nrgastro.2017.38.
[23]ROBERT S, GICQUEL T, VICTONI T, et al. Involvement of matrix metalloproteinases (MMPs) and inflammasome pathway in molecular mechanisms of fibrosis[J]. Biosci Rep, 2016, 36(4): e00360. DOI: 10.1042/BSR20160107.
[24]MEHTA KJ, FARNAUD SJ, SHARP PA. Iron and liver fibrosis: Mechanistic and clinical aspects[J]. World J Gastroenterol, 2019, 25(5): 521-538. DOI: 10.3748/wjg.v25.i5.521.
[25]ROTH KJ, COPPLE BL. Role of hypoxia-inducible factors in the development of liver fibrosis[J]. Cell Mol Gastroenterol Hepatol, 2015, 1(6): 589-597. DOI: 10.1016/j.jcmgh.2015.09.005.
[26]LIASKOU E, ZIMMERMANN HW, LI KK, et al. Monocyte subsets in human liver disease show distinct phenotypic and functional characteristics[J]. Hepatology, 2013, 57(1): 385-398. DOI: 10.1002/hep.26016.
[27]KISSELEVA T, BRENNER D. Molecular and cellular mechanisms of liver fibrosis and its regression[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(3): 151-166. DOI: 10.1038/s41575-020-00372-7.
[28]TACKE F, ZIMMERMANN HW. Macrophage heterogeneity in liver injury and fibrosis[J]. J Hepatol, 2014, 60(5): 1090-1096. DOI: 10.1016/j.jhep.2013.12.025.
[29]
FENG M, DING J, WANG M, et al. Kupffer-derived matrix metalloproteinase-9 contributes to liver fibrosis resolution[J]. Int J Biol Sci, 2018, 14(9): 1033-1040. DOI: 10.7150/ijbs.25589.
[30]YU B, QIN SY, HU BL, et al. Resveratrol improves CCL4-induced liver fibrosis in mouse by upregulating endogenous IL-10 to reprogramme macrophages phenotype from M(LPS) to M(IL-4)[J]. Biomed Pharmacother, 2019, 117: 109110. DOI: 10.1016/j.biopha.2019.109110.
[31]VAN DEN BOSSCHE J, ONEILL LA, MENON D. Macrophage immunometabolism: Where are we (going)?[J]. Trends Immunol, 2017, 38(6): 395-406. DOI: 10.1016/j.it.2017.03.001.
[32]
CASTEGNA A, GISSI R, MENGA A, et al. Pharmacological targets of metabolism in disease: Opportunities from macrophages[J]. Pharmacol Ther, 2020, 210: 107521. DOI: 10.1016/j.pharmthera.2020.107521.
[33]FERNNDEZ-VELEDO S, CEPERUELO-MALLAFR V, VENDRELL J. Rethinking succinate: an unexpected hormone-like metabolite in energy homeostasis[J]. Trends Endocrinol Metab, 2021, 32(9): 680-692. DOI: 10.1016/j.tem.2021.06.003.
[34]BIEGHS V, WALENBERGH SM, HENDRIKX T, et al. Trapping of oxidized LDL in lysosomes of Kupffer cells is a trigger for hepatic inflammation[J]. Liver Int, 2013, 33(7): 1056-1061. DOI: 10.1111/liv.12170.
[35]BIEGHS V, WOUTERS K, VAN GORP PJ, et al. Role of scavenger receptor A and CD36 in diet-induced nonalcoholic steatohepatitis in hyperlipidemic mice[J]. Gastroenterology, 2010, 138(7): 2477-2486. DOI: 10.1053/j.gastro.2010.02.051.
[36]LEROUX A, FERRERE G, GODIE V, et al. Toxic lipids stored by Kupffer cells correlates with their pro-inflammatory phenotype at an early stage of steatohepatitis[J]. J Hepatol, 2012, 57(1): 141-149. DOI: 10.1016/j.jhep.2012.02.028.
[37]KANAMORI Y, TANAKA M, ITOH M, et al. Iron-rich Kupffer cells exhibit phenotypic changes during the development of liver fibrosis in NASH[J]. iScience, 2021, 24(2): 102032. DOI: 10.1016/j.isci.2020.102032.
[38]HANDA P, THOMAS S, MORGAN-STEVENSON V, et al. Iron alters macrophage polarization status and leads to steatohepatitis and fibrogenesis[J]. J Leukoc Biol, 2019, 105(5): 1015-1026. DOI: 10.1002/JLB.3A0318-108R.
[39]LESLIE J, MACIA MG, LULI S, et al. c-Rel orchestrates energy-dependent epithelial and macrophage reprogramming in fibrosis[J]. Nat Metab, 2020, 2(11): 1350-1367. DOI: 10.1038/s42255-020-00306-2.
[40]XU F, GUO M, HUANG W, et al. Annexin A5 regulates hepatic macrophage polarization via directly targeting PKM2 and ameliorates NASH[J]. Redox Biol, 2020, 36: 101634. DOI: 10.1016/j.redox.2020.101634.
[41]GAO YS, QIAN MY, WEI QQ, et al. WZ66, a novel acetyl-CoA carboxylase inhibitor, alleviates nonalcoholic steatohepatitis (NASH) in mice[J]. Acta Pharmacol Sin, 2020, 41(3): 336-347. DOI: 10.1038/s41401-019-0310-0.
[42]WENG SY, SCHUPPAN D. AMPK regulates macrophage polarization in adipose tissue inflammation and NASH[J]. J Hepatol, 2013, 58(3): 619-621. DOI: 10.1016/j.jhep.2012.09.031.
[43]LOOMBA R, KAYALI Z, NOUREDDIN M, et al. GS-0976 reduces hepatic steatosis and fibrosis markers in patients with nonalcoholic fatty liver disease[J]. Gastroenterology, 2018, 155(5): 1463-1473. DOI: 10.1053/j.gastro.2018.07.027.
[44]FRANCQUE S, SZABO G, ABDELMALEK MF, et al. Nonalcoholic steatohepatitis: the role of peroxisome proliferator-activated receptors[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(1): 24-39. DOI: 10.1038/s41575-020-00366-5.
[45]ORFILA C, LEPERT JC, ALRIC L, et al. Immunohistochemical distribution of activated nuclear factor kappaB and peroxisome proliferator-activated receptors in carbon tetrachloride-induced chronic liver injury in rats[J]. Histochem Cell Biol, 2005, 123(6): 585-593. DOI: 10.1007/s00418-005-0785-2.
[46]STIENSTRA R, MANDARD S, TAN NS, et al. The Interleukin-1 receptor antagonist is a direct target gene of PPARalpha in liver[J]. J Hepatol, 2007, 46(5): 869-877. DOI: 10.1016/j.jhep.2006.11.019.
[47]IP E, FARRELL G, HALL P, et al. Administration of the potent PPARalpha agonist, Wy-14,643, reverses nutritional fibrosis and steatohepatitis in mice[J]. Hepatology, 2004, 39(5): 1286-1296. DOI: 10.1002/hep.20170.
[48]GILGENKRANTZ H, MALLAT A, MOREAU R, et al. Targeting cell-intrinsic metabolism for antifibrotic therapy[J]. J Hepatol, 2021, 74(6): 1442-1454. DOI: 10.1016/j.jhep.2021.02.012.
[49]
GALLI A, CRABB DW, CENI E, et al. Antidiabetic thiazolidinediones inhibit collagen synthesis and hepatic stellate cell activation in vivo and in vitro[J]. Gastroenterology, 2002, 122(7): 1924-1940. DOI: 10.1053/gast.2002.33666.
[50]
RATZIU V, CHARLOTTE F, BERNHARDT C, et al. Long-term efficacy of rosiglitazone in nonalcoholic steatohepatitis: results of the fatty liver improvement by rosiglitazone therapy (FLIRT 2) extension trial[J]. Hepatology, 2010, 51(2): 445-453. DOI: 10.1002/hep.23270.
[51]
MCMAHAN RH, WANG XX, CHENG LL, et al. Bile acid receptor activation modulates hepatic monocyte activity and improves nonalcoholic fatty liver disease[J]. J Biol Chem, 2013, 288(17): 11761-11770. DOI: 10.1074/jbc.M112.446575.
[52]
YOUNOSSI ZM, RATZIU V, LOOMBA R, et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial[J]. Lancet, 2019, 394(10215): 2184-2196. DOI: 10.1016/S0140-6736(19)33041-7.
收稿日期:
2022-08-02;錄用日期:2022-09-21
本文編輯:葛俊