王慧媛 陳豫眉
本文針對2維和3維對流-擴散-反應(yīng)方程的界面問題提出了一種基于非貼體網(wǎng)格的擴展雜交間斷有限元方法.該方法在單元的內(nèi)部分別用分片 k(k≥1)和m(m=k,k-1)次多項式逼近標量函數(shù)及其梯度,在單元邊界上用 k 次多項式逼近標量函數(shù)的跡,在界面上則用界面單元內(nèi)部的 k 次多項式在界面上的限制去逼近標量函數(shù)的跡.對于弱問題,本文利用 Lax-Milgram定理證明其解的存在唯一性.對于離散格式,本文給出了其解的存在唯一性以及能量范數(shù)下的最優(yōu)誤差估計.
對流-擴散-反應(yīng)方程; 界面問題; 非貼體網(wǎng)格; 擴展雜交間斷有限元
O241.82A2023.021003
收稿日期: 2022-04-07
基金項目: 國家自然科學(xué)基金(11971094)
作者簡介: 王慧媛 (1997-), 女, 碩士研究生, 主要研究方向為偏微分方程數(shù)值解. E-mail: 3311484766@qq.com.
通訊作者: 陳豫眉. E-mail: xhshuxue@163.com
An extended HDG finite element for convection-diffusion-reaction equation interface problems
WANG Hui-Yuan1, CHEN Yu-Mei2
(1.School of Mathematics, Sichuan University, Chengdu 610064, China;
2.College of Mathematics Education, China West Normal University, Nanchong 637009, China)
This paper proposes an extended hybridizable discontinuous Galerkin (HDG) finite element for 2D and 3D convection-diffusion-reaction equation interface problems on body-unfitted meshes. This finite element uses piecewise polynomials of degrees k(k≥1)and m(m=k,k-1) to approximate the scalar function and its gradient respectively in the interior of elements, piecewise polynomials of degrees k to approximate the traces of the scalar function on the inter-element boundaries inside the sub-domains and constraints on the interface of piecewise polynomials of degrees k inside interface elements to approximate? the traces of the scalar function on the interface. The existence and uniqueness of weak solution for the weak problem and discrete solution for the discrete scheme are proved respectively. Lax-Milgram theorem is used for the weak problem.The optimal error estimation is derived in the energy norm for the discrete scheme.
Convection-diffusion-reaction equation; Interface problem; Body-unfitted meshes; Extended HDG method
(2010 MSC 65M60)
6 結(jié) 論
本文針對對流-擴散-反應(yīng)方程界面問題提出了一個任意階的擴展雜交間斷 Galerkin 有限元.在假設(shè)1.1和1.2成立的條件下,利用 Lax-Milgram 定理證明了弱解的存在唯一性.對離散格式,本文給出了解的存在唯一性結(jié)果及其在能量范數(shù)下的最優(yōu)誤差估計.
參考文獻:
[1] Ames W F. Nonlinear partial differential equations in engineering [M]. New York: Academic Press, 1965.
[2] Murray J D. Nonlinear differential equation models in biology [M]. Oxford: Clarendon Press, 1977.
[3] Wang X, Posny D, Wang J. A reaction-convection-diffusion model for cholera spatial dynamics [J]. Discrete Cont Dyn-B, 2016, 21: 2785.
[4] Ribeiro M C, Rego L G C, DAjello P C T. Diffusion, reaction and forced convection in electrochemical cells [J]. J Electroanal Chem, 2009, 628: 21.
[5] Babuka I. The finite element method for elliptic equations with discontinuous coefficients [J]. Computing, 1970, 5: 207.
[6] 許進超. 具有間斷系數(shù)的二階橢圓型方程的有限元解的斂速估計[J]. 湘潭大學(xué): 自然科學(xué)學(xué)報, 1982, 1: 84.
[7] Barrett J W, Elliott C M. Fitted and unfitted finite element methods for elliptic equations with smooth interfaces [J]. IMA J Numer Anal, 1987, 7: 283.
[8] Bramble J H, King J T. A finite element method for interface problems in domains with smooth boundaries and interfaces [J].Adv Comput Math, 1996, 6: 109.
[9] Cai Z, He C, Zhang S. Discontinuous finite element methods for interface problems: robust a priori and a posteriori error estimates [J]. SIAM J Numer Anal, 2017, 55: 400.
[10] Chen Z, Zou J. Finite element methods and their convergence for elliptic and parabolic interface problems [J]. Numer Math, 1998, 79: 175.
[11] Babuka I, Caloz G, Osborn J E. Special finite element methods for a class of second order elliptic problems with rough coefficients [J]. SIAM J Numer Anal, 1994, 31: 945.
[12] Strouboulis T, Babuka I, Copps K. The design and analysis of the generalized finite element method [J]. Comput Method Appl M, 2000, 181: 43.
[13] Abdelaziz Y, Hamouine A. A survey of the extended finite element [J]. Comput Struct,2008,? 86: 1141.
[14] Fries T P, Belytschko T. The extended/generalized finite element method: an overview of the method and its applications [J]. Int J Numer Meth Eng, 2010, 84: 253.
[15] Wu H, Xiao Y. An unfitted hp-interface penalty finite element method for elliptic interface problems [J]. J Comput Math, 2019, 37: 316.
[16] Hansbo A, Hansbo P. An unfitted finite element method, based on Nitsches method, for elliptic interface problems [J]. Comput Method Appl M, 2002, 191: 5537.
[17] Han Y, Chen H, Wang X, et al. EXtended HDG methods for second order elliptic interface problems [J]. J Sci Comput, 2020, 84: 22.
[18] Han Y, Wang X, Xie X. An interface/boundary-unfitted eXtended HDG method for linear elasticity problems [EB/OL].[2022-02-07]. https://www.arxiv.org/pdf/2004.06275v2.pdf.
[19] Reusken A, Nguyen T H. Nitsches method for a transport problem in two-phase incompressible flows [J]. J Fourier Anal Appl, 2009, 15: 663.
[20] Lehrenfeld C, Reusken A. Nitsche-XFEM with streamline diffusion stabilization for a two-phase mass transport problem [J]. SIAM J Sci Comput, 2012, 34: A2740.
[21] Pietro D, Ern A, Guermond J L. Discontinuous Galerkin methods for anisotropic semi-definite diffusion with advection [J]. SIAM J Numer Anal, 2008, 46: 805.
[22] Cockburn B, Gopalakrishnan J, Lazarov R. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems [J]. SIAM J Numer Anal, 2009, 47: 1319.
[23] Cockburn B, Dong B, Guzmán J, et al. A hybridizable discontinuous Galerkin method for steady-state convection-diffusion-reaction problems [J]. SIAM J Sci Comput, 2009, 31: 3827.
[24] Qiu W, Shi K. An HDG method for convection diffusion equation [J]. J Sci Comput, 2016, 66: 346.
[25] Chen G, Feng M, Xie X. A robust WG finite element method for convection-diffusion-reaction equations [J]. J Comput Appl Math, 2017, 315: 107.
[26] Adams R A. Sobolev spaces [M]. New York: Academic Press, 1975.
[27] Brenner S C, Scott L R. The mathematical theory of finite element methods [M]. New York: Springer, 2008.