傅凱 張振國(guó) 郭晶晶 荀苗苗 袁長(zhǎng)春
以吲哚-2,3-環(huán)氧化合物和商品化的酸為主要反應(yīng)物,經(jīng)環(huán)氧的酸開(kāi)環(huán)反應(yīng),可以高收率地得到一系列的酯基取代的二氫吲哚化合物. 該方法簡(jiǎn)便高效,首次實(shí)現(xiàn)了吲哚-2,3-環(huán)氧化合物在酸性條件下的開(kāi)環(huán)反應(yīng),為酯基取代的吲哚化合物的合成提供了一種新的合成方法.
吲哚-2,3-環(huán)氧化合物; 環(huán)氧; 酸; 開(kāi)環(huán)反應(yīng)
O629.9A2023.025001
收稿日期: 2022-10-04
基金項(xiàng)目: 山西省自然科學(xué)基金(201901D211220)
作者簡(jiǎn)介: 傅凱(1990-), 男, 山西太原人, 博士, 講師. E-mail: kaifu@nuc.edu.cn
通訊作者:? 袁長(zhǎng)春. E-mail: ycc543700483@nuc.edu.cn
The ring-opening reaction of indole-2,3-epoxides with acid
FU Kai, ZHANG Zhen-Guo, GUO Jing-Jing, XUN Miao-Miao, YUAN Chang-Chun
(National Demonstration Center for Experimental Chemical Engineering Comprehensive Education, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030000, China)
A series of dihydroindoles 3-ester substituted compounds can be obtained in high yield through the acid ring-opening reaction of epoxy using indole-2,3-epoxy compounds and commercial acids as the main reactants. This method is simple and efficient, and it is the first time to realize the ring opening reaction of indole-2,3-epoxy compounds under acidic conditions, which provides a new synthesis method for the synthesis of ester substituted indole compounds.
Indole-2,3-epoxides; Epoxides; Acid; Ring opening reaction
1 引 言
吲哚以及二氫吲哚骨架化合物作為藥物和生化試劑等有著重要的市場(chǎng)應(yīng)用[1-5]. 例如:解熱鎮(zhèn)痛類藥物阿西美辛[6]、腫瘤抑制劑褪黑素[7]和治療慢粒白血病的藥物靛玉紅[8]等都含有吲哚骨架,抗癌天然藥物長(zhǎng)春堿以及長(zhǎng)春新堿[9]、鎮(zhèn)靜藥利血平[10]和生物試劑熒光染料D149 Dye等都具有二氫吲哚結(jié)構(gòu). 不僅如此,以吲哚為基本骨架所設(shè)計(jì)的吲哚類衍生物,也均表現(xiàn)了良好的生物活性. 因此,吲哚骨架類化合物的化學(xué)合成研究一直是有機(jī)合成研究中的熱點(diǎn)問(wèn)題之一. 吲哚3-位被酯基取代的化合物,如:5-溴代-3-羥基吲哚乙酸酯、3-吲哚乙酸酯和乙酸-5-溴-4-氯-3-吲哚氧基酯為分析膽堿酯酶、脂肪酶、?;D(zhuǎn)移酶和酸性磷酸酶的熒光底物[11-14] (圖1). 在以往的報(bào)道中,合成吲哚3-位酯基取代的化合物需要使用當(dāng)量的氧化劑,而本文另辟蹊徑,通過(guò)對(duì)吲哚-2,3-環(huán)氧化合物的開(kāi)環(huán)反應(yīng)得到一系列吲哚3-位酯基取代的化合物.
本文通過(guò)吲哚-2,3-環(huán)氧化合物(HITAB)在酸性條件下與酸發(fā)生環(huán)氧開(kāi)環(huán),得到一系列取代的酯基取代二氫吲哚化合物. 在以往報(bào)道的吲哚-2,3-環(huán)氧化合物的開(kāi)環(huán)反應(yīng)中,吲哚-2,3-環(huán)氧化合物的開(kāi)環(huán)反應(yīng)都是在堿性三乙胺的條件下發(fā)生開(kāi)環(huán)反應(yīng)[15-17] (圖2). 而本文報(bào)道了首例在酸性條件下進(jìn)行吲哚-2,3-環(huán)氧化合物的開(kāi)環(huán)反應(yīng).
2 實(shí)驗(yàn)部分
2.1 儀器與試劑
瑞士Bruker公司Advance Ⅲ HD 600 MHz型核磁共振波譜儀(CDCl3為溶劑,TMS為內(nèi)標(biāo));美國(guó)Thermo Fisher Exactive Plus型高分辨質(zhì)譜儀.
吲哚和N-溴代丁二酰亞胺,百靈威科技有限公司;對(duì)甲苯磺酰氯、氫化鈉、苯甲酸、2-萘甲酸、2-呋喃甲酸和三乙胺,薩恩化學(xué)技術(shù)(上海)有限公司. N,N-二甲基甲酰胺、丙酮、乙酸乙酯、乙腈、乙醇和四氫呋喃均為分析純,用前未經(jīng)處理.
2.2 合 成
2.2.1 化合物HITAB的合成 根據(jù)已知步驟可合成化合物HITAB(路線如圖3所示),白色固體,純度99.5%,收率67%.
2.2.2 化合物 1的合成 在裝有冷凝回流管的試管中,加入HITAB(46.8 mg, 0.1 mmol)和苯甲酸(24.4 mg, 0.2 mmol)后,再加入0.5 mL乙酸乙酯攪拌,將反應(yīng)液加熱到80 ℃,反應(yīng)8 h后停止加熱并冷卻至室溫. 然后室溫?cái)嚢柘拢蚍磻?yīng)體系加入3.0 mL飽和碳酸氫鈉,水相使用乙酸乙酯萃取(5 mL×3次),合并有機(jī)相并用無(wú)水硫酸鈉干燥除去水分,過(guò)濾除去硫酸鈉,在旋轉(zhuǎn)蒸發(fā)儀上減壓濃縮后經(jīng)硅膠層析柱 [洗脫劑:A=V(石油醚)∶V(乙酸乙酯)=8∶1] 純化后得到白色固體化合物1,共37.6 mg,純度99.2%,收率92%.
2.2.3 化合物 2的合成 在裝有冷凝回流管的試管中加入HITAB(46.8 mg, 0.1 mmol)和2-萘甲酸(34.4 mg, 0.2 mmol)后,再加入0.5 mL乙酸乙酯攪拌,將反應(yīng)液加熱到80 ℃,反應(yīng)8 h后停止加熱并冷卻至室溫. 然后室溫?cái)嚢柘拢蚍磻?yīng)體系加入3.0 mL飽和碳酸氫鈉,水相使用乙酸乙酯萃?。? mL×3次),合并有機(jī)相并用無(wú)水硫酸鈉干燥除去水分,過(guò)濾除去硫酸鈉,在旋轉(zhuǎn)蒸發(fā)儀上減壓濃縮后經(jīng)硅膠層析柱 [洗脫劑:A=V(石油醚)∶V(乙酸乙酯)=8∶1] 純化后得白色固體化合物2,共41.5 mg,純度99.1%,收率90%.
2.2.3 化合物 3的合成 在裝有冷凝回流管的試管中,加入HITAB(46.8 mg, 0.1 mmol)和2-呋喃甲酸(22.4 mg, 0.2 mmol)后,再加入0.5 mL乙酸乙酯攪拌,將反應(yīng)液加熱到80 ℃,反應(yīng)8 h后停止加熱并冷卻至室溫. 然后室溫?cái)嚢柘拢蚍磻?yīng)體系加入3.0 mL飽和碳酸氫鈉,水相使用乙酸乙酯萃?。? mL×3次),合并有機(jī)相并用無(wú)水硫酸鈉干燥除去水分,過(guò)濾除去硫酸鈉,在旋轉(zhuǎn)蒸發(fā)儀上減壓濃縮后經(jīng)硅膠層析柱 [洗脫劑:A=V(石油醚)∶V(乙酸乙酯)=8∶1] 純化后得白色固體化合物3,共35.5 mg,純度99%,收率89%.
3 結(jié)果與討論
3.1 反應(yīng)條件的篩選
以HITAB和苯甲酸為起始原料,比例1∶2,對(duì)HITAB的酸開(kāi)環(huán)反應(yīng)進(jìn)行了條件優(yōu)化(表1). 首先考慮添加劑因素,將添加劑三乙胺加入前后進(jìn)行對(duì)比(表1, Entries 1和2),發(fā)現(xiàn)在反應(yīng)體系中三乙胺的加入對(duì)反應(yīng)的影響不大.因此選擇不加添加劑. 再對(duì)溶劑因素進(jìn)行考察,分別選取四氫呋喃、乙腈、無(wú)水乙醇和乙酸乙酯作為反應(yīng)溶劑(表1, Entries 1, 3~5),發(fā)現(xiàn)溶劑效應(yīng)對(duì)該反應(yīng)的收率影響很大.其中乙酸乙酯的效果最好, 收率92%,而在乙醇中反應(yīng)不能發(fā)生. 隨后又對(duì)反應(yīng)溫度進(jìn)行了考察(表1, Entries 1,6和7),發(fā)現(xiàn)隨著反應(yīng)溫度的降低,反應(yīng)收率降低. 最終確定該反應(yīng)的最優(yōu)條件為:HITAB和苯甲酸比例1∶2,在乙酸乙酯溶劑中,反應(yīng)溫度為80 ℃條件下反應(yīng)8 h,收率為92%. 最后通過(guò)1H NMR、13C NMR譜表征了該化合物.
3.2 化合物結(jié)構(gòu)表征
化合物HITAB:1H NMR (600 MHz, DMSO-d6) δ 8.02 (d, J = 8.0 Hz, 2H), 7.88 (d, J = 6.9 Hz, 1H), 7.55 (d, J = 8.1 Hz, 1H), 7.48 (t, J = 7.5 Hz, 1H), 7.40 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.0 Hz, 1H), 7.14 (t, J = 7.5 Hz, 1H), 6.35 (d, J = 7.5 Hz, 1H), 4.82 (s, 1H), 3.30~3.46 (m, 6H), 2.33 (s, 3H), 1.01 (t, J = 7.5 Hz, 9H); 13C NMR (150 MHz, DMSO-d6) δ 145.4, 142.8, 136.1, 132.9, 130.4, 130.4, 128.2, 124.0, 120.4, 113.8, 84.8, 75.4, 53.3, 21.5, 8.8; HRMS (ESI): m/z 計(jì)算值 C21H29N2O3S {[M+H]+}389.1899, 實(shí)測(cè)值 389.1891.
化合物1:1H NMR (600 MHz, CDCl3) δ 7.72 (d, J = 8.3 Hz, 2H), 7.66 (dd, J = 8.2, 1.1 Hz, 2H), 7.64 (d, J = 8.2 Hz, 1H), 7.54 (t, J = 7.4 Hz, 1H), 7.47 (d, J = 7.5 Hz, 1H), 7.41~ 7.37 (m, 1H), 7.35 (t, J = 7.8 Hz, 2H), 7.18 (d, J = 8.1 Hz, 2H), 7.10 (t, J = 7.5 Hz, 1H), 6.04 (s, 1H), 5.82 (d, J = 2.7 Hz, 1H), 3.62 (d, J = 3.2 Hz, 1H), 2.32 (s, 3H);13C NMR (150 MHz, CDCl3) δ 165.44, 144.38, 141.85, 135.34, 133.39, 131.27, 129.85, 129.71, 129.08, 128.25, 127.78, 127.14, 127.04, 124.64, 115.05, 90.29, 78.07, 21.59;HRMS (ESI): m/z 計(jì)算值 C22H10NO5S {[M+H]+}410.1057, 實(shí)測(cè)值 410.1059.
化合物2:1H NMR (600 MHz, CDCl3) δ 8.30 (s, 1H), 7.88 (d, J = 8.9 Hz, 2H), 7.80 (d, J = 8.6 Hz, 1H), 7.77 (d, J = 8.3 Hz, 2H), 7.71 (dd, J = 8.6, 1.7 Hz, 1H), 7.66 (d, J = 8.2 Hz, 1H), 7.62 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 7.59~7.55 (m, 1H), 7.54 (d, J = 7.6 Hz, 1H), 7.45~ 7.40 (m, 1H), 7.17 (d, J = 8.0 Hz, 2H), 7.14 (td, J = 7.5, 0.8 Hz, 1H), 3.71 (d, J = 3.2 Hz, 1H), 2.22 (s, 3H);13C NMR (150 MHz, CDCl3) δ 164.68, 143.39, 140.90, 134.61, 134.38, 131.23, 130.39, 130.26, 128.80, 128.25, 127.58, 127.02, 126.80, 126.76, 126.04, 125.79, 125.25, 124.01, 123.56, 113.93, 89.30, 77.29, 20.45;HRMS (ESI): m/z 計(jì)算值 C26H24NO5S {[M+H]+}462.1370, 實(shí)測(cè)值 462.1374.
化合物3:1H NMR (600 MHz, CDCl3) δ 7.74 (d, J = 7.9 Hz, 2H), 7.58~7.54 (m, 2H), 7.46 (d, J = 7.6 Hz, 1H), 7.37 (t, J = 7.9 Hz, 1H), 7.21 (d, J = 8.2 Hz, 2H), 7.08 (t, J = 7.5 Hz, 1H), 6.80 (d, J = 3.5 Hz, 1H), 6.47~6.43 (m, 1H), 6.02 (s, 1H), 5.83 (d, J = 2.7 Hz, 1H), 3.71 (d, J = 3.1 Hz, 1H), 2.35 (s, 3H);13C NMR (150 MHz, CDCl3) δ 156.46, 145.87, 143.35, 142.64, 140.81, 134.33, 130.31, 128.81, 126.85, 126.14, 125.66, 123.52, 117.68, 113.76, 110.79, 89.18, 77.07, 20.53;HRMS (ESI): m/z 計(jì)算值 C20H18NO6S {[M+H]+}400.0849, 實(shí)測(cè)值 400.0844.
4 結(jié) 論
以HITAB和商品化的酸為主要反應(yīng)物,經(jīng)環(huán)氧的酸開(kāi)環(huán)反應(yīng),可以高收率的得到一系列的酯基取代的二氫吲哚化合物. 該方法簡(jiǎn)便高效,避免了以往報(bào)道中氧化劑的使用. 本文首次報(bào)道了HITAB在酸性條件下的酸開(kāi)環(huán)反應(yīng),為酯基取代的吲哚化合物的合成提供了一種新的合成方法,具有深入研究的價(jià)值.
參考文獻(xiàn):
[1] Bharat B, A,Haruyo I. Molecular targets and anticancer potential of indole-3-carbinol and its derivatives [J]. Cell Cycle, 2005, 4: 1201.
[2] Masanori S, Fumio Y. Simple indole alkaloids and those with a non-rearrangedmonoterpenoid unit [J]. Nat Prod Rep, 2005, 22: 73.
[3] Abou-Gharbia M. Discovery of innovative small molecule therapeutics [J]. J Med Chem, 2009, 52: 2.
[4] Barry M T, Megan K B. Asymmetric syntheses ofoxindole and indole spirocyclic alkaloid natural products [J]. Synthesis, 2009, 18: 3003.
[5] Li S M, Prenylated indole derivatives from fungi: structure diversity, biological activities, biosynthesis and chemoenzymatic synthesis [J]. Nat Prod Rep, 2010, 27: 57.
[6] Archana K, Rajesh K S. Medicinal chemistry of indole derivatives: current to future therapeutic prospectives [J]. Bioorg Chem, 2019, 89: 103021.
[7] Tan D, Reiter R J, Manchester L C, et al. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger [J]. Curr Top Med Chem, 2002, 2: 181.
[8] Reece G K, Celine J M. Toward multi-targeted platinum and ruthenium drugs-a new paradigm in cancer drug treatment regimens? [J]. Chem Rev, 2019, 119: 1058.
[9] Dumontet C, Jordan M. Microtubule-binding agents: a dynamic field of cancer therapeutics [J]. Nat Rev Drug Discov, 2010, 9: 790.
[10] Susan D, Peter J. Animal models of Parkinsons disease: a source of novel treatments and clues to the cause of the disease [J]. Brit J Pharmacol, 2011, 164: 1357.
[11] Speeleveld E, Fossépré J M, Gordts B, et al. Comparison of three rapid methods, tributyrine, 4-methylumbelliferyl butyrate, and indoxyl acetate, for rapid identification of Moraxella catarrhalis [J]. J Clin Microbiol, 1994, 32: 1362.
[12] Maria José F, Luis C, Arturo L, et al. Arcobacter molluscorum sp. nov., a new species isolated from shellfish [J]. Syst Appl Microbiol, 2011, 34: 105.
[13] Stijn S, Jos V, Roseline R. Indole-3-acetic acid in microbial and microorganism-plant signaling [J]. FEMS Microbiol Rev, 2007, 31: 425.
[14] Duca D, Lorv J, Patten C L, et al. Indole-3-acetic acid in plant-microbe interactions [J]. Anton Leeuw 2014, 106: 85.
[15] Takumi A,Takuro S, Masahiro A, et al. 2-hydroxyindoline-3-triethylammonium bromide: a reagent for formal c3-electrophilic reactions of indole [J]. Org Lett, 2017, 19: 4275.
[16] Takumi A, Haruka S, Shiori T, et al. Double “open and shut” transformation of γ-carbolines triggered by ammonium salts: one-pot synthesis of multiheterocyclic compounds [J]. Org Lett, 2018, 20: 1589.
[17] Takumi A, Koji Y.Dehydrative mannich-type reaction for the synthesis of azepinobisindole alkaloid iheyamine A [J]. Org Lett, 2018, 20: 1469.
四川大學(xué)學(xué)報(bào)(自然科學(xué)版)2023年2期