李俊 李倩茹 吉星 何濤 魏瑞成 王冉
摘要:細(xì)菌可以通過多種水平基因轉(zhuǎn)移方式,如自然轉(zhuǎn)化、轉(zhuǎn)導(dǎo)、接合等,在微生物種群內(nèi)交換遺傳物質(zhì),進(jìn)行細(xì)菌種內(nèi)和種間交流。外膜囊泡是新發(fā)現(xiàn)的一種水平基因轉(zhuǎn)移方式,它是細(xì)菌在自然生長(zhǎng)過程中分泌的納米級(jí)球狀結(jié)構(gòu),可以作為載體攜帶核酸、酶、毒素和毒力因子等多種生物分子進(jìn)行遠(yuǎn)距離運(yùn)輸。目前已有多項(xiàng)研究報(bào)道了細(xì)菌外膜囊泡的組成成分、生物合成和轉(zhuǎn)移傳播機(jī)制。本文就外膜囊泡在水平基因轉(zhuǎn)移機(jī)制方面的研究進(jìn)展進(jìn)行綜述。
關(guān)鍵詞:細(xì)菌;外膜囊泡;生物發(fā)生;水平基因轉(zhuǎn)移;耐藥性;毒力
中圖分類號(hào):R378? ? ? ? 文獻(xiàn)標(biāo)志碼:A? ? ? ? ?文章編號(hào):1001-8751(2023)03-0178-07
Research Progress of Mechanisms of Bacterial Outer Membrane Vesicles Mediated Horizontal Gene Transfer
Li Jun1, Li Qian-ru1,2,? Ji Xing1, He Tao1,Wei Rui-cheng1,Wang Ran1
(1 Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base,
Key Laboratory of Agro-Product Safety Risk Evaluation (Nanjing) of Ministry of Agriculture and Rural Affairs,
Institute of Agricultural Product Safety and Nutrition, Jiangsu Academy of Agricultural Sciences,? ?Nanjing? 210014;
2 School of Animal Science and Technology, Guangxi University,? ?Nanning? ?530004)
Abstract: Bacteria have evolved many ways to horizontal transfer their genetic materials within the microbial world, such as natural transformation, transduction, conjugation, etc. Bacterial outer membrane vesicle is a newly found method for the horizontal gene transfer. Outer membrane vesicles are nanoscale spherical bag-like structures, released predominantly by bacteria during their growth and reproduction. Many kinds of biological molecules, such as nucleic acid, enzymes, toxins, virulence factors can be carried by outer membrane vesicles for long distance transmission. There has been many papers reporting the components, biosynthesis and transmission of outer membrane vesicles. This review summarized the recent progresses on the horizontal gene transfer of bacterial outer membrane vesicles.
Key words: bacteria;? ?outer membrane vesicles;? ?biogenesis;? ?horizontal gene transfer;? ?antimicrobial resistance;? ?virulence
多重耐藥菌感染是全球公共衛(wèi)生面臨的嚴(yán)重問題,因耐藥菌感染導(dǎo)致的死亡人數(shù)在發(fā)展中國(guó)家的致死性疾病中排名第二位[1]。抗生素耐藥基因可以通過多種水平基因轉(zhuǎn)移方式傳播[2],如自然轉(zhuǎn)化,轉(zhuǎn)導(dǎo)和接合等。自然轉(zhuǎn)化是指從環(huán)境中獲得游離DNA,即從活細(xì)菌和死細(xì)菌中釋放的DNA[3];但是細(xì)菌必須處于感受態(tài)狀態(tài)才能獲得細(xì)胞外的DNA,目前研究發(fā)現(xiàn)細(xì)菌的感受態(tài)狀態(tài)由20多個(gè)基因共同調(diào)控[4],大約1%的細(xì)菌物種可以發(fā)生自然轉(zhuǎn)化[5]。轉(zhuǎn)導(dǎo)是噬菌體通過感染細(xì)菌將DNA轉(zhuǎn)移給細(xì)菌,噬菌體可以攜帶多達(dá)100 kb的DNA,但是其侵襲的宿主具有特異性[6]。接合需要細(xì)菌間的直接接觸,由連接供體菌和受體菌的性菌毛介導(dǎo),質(zhì)粒轉(zhuǎn)移系統(tǒng)嚴(yán)格依賴于轉(zhuǎn)移的遺傳物質(zhì)的特性[7]。
這些已知的水平基因轉(zhuǎn)移機(jī)制有助于細(xì)菌之間的基因交換,但具有一定限制性,如有限的遺傳負(fù)荷、宿主特異性和轉(zhuǎn)移的遺傳物質(zhì)的種類等。近期研究發(fā)現(xiàn)一種由外膜囊泡(OMV)介導(dǎo)的新型基因轉(zhuǎn)移方式。OMV是細(xì)菌自然生長(zhǎng)過程中產(chǎn)生的球狀納米級(jí)結(jié)構(gòu)(50~500 nm)[8],在細(xì)菌毒力、調(diào)節(jié)宿主免疫反應(yīng)和細(xì)胞通訊中發(fā)揮重要作用[9],但對(duì)其在水平基因轉(zhuǎn)移中的作用知之甚少。本文就目前OMV在水平基因轉(zhuǎn)移中的作用和機(jī)制進(jìn)展進(jìn)行綜述。
1 OMV的生物發(fā)生過程
OMV是由細(xì)菌外膜出芽形成的[8]。目前就OMV的產(chǎn)生過程存在三種假說[10]。第一個(gè)模型由Burdett提出,即細(xì)菌外膜和肽聚糖層之間共價(jià)連接的缺失或轉(zhuǎn)移促進(jìn)了OMV形成[11]。通過Braun脂蛋白[12]、大腸埃希菌Tol-Pal系統(tǒng)[13]和腦膜炎奈瑟菌RmpM[14]的突變證實(shí)外膜肽聚糖連接結(jié)構(gòu)對(duì)于提高OMV產(chǎn)量的重要性。第二個(gè)模型為周質(zhì)空間中肽聚糖片段或折疊不良蛋白質(zhì)的累積對(duì)外膜施加壓力,導(dǎo)致膜的彎曲率和最終出芽[15]。第三個(gè)模型中,Mashburn等確定了誘導(dǎo)膜曲率的分子,如假單胞菌喹諾酮信號(hào)(PQS)和B型脂多糖(LPS)等[16-17]。PQS不僅是OMV的誘導(dǎo)信號(hào),還是OMV形成的直接效應(yīng)子[18],可誘導(dǎo)膜彎曲、結(jié)合磷脂和LPS[19]。PQS可螯合帶正電荷的化合物(Mg2+和Ca2+鹽),排斥LPS的陰離子,導(dǎo)致OMV產(chǎn)生[20]。此外,銅綠假單胞菌B型LPS的存在導(dǎo)致了膜的彎曲,從而誘導(dǎo)排斥LPS[21]。Berry等發(fā)現(xiàn)銅綠假單胞菌的細(xì)胞壁突變株不能合成B型LPS,因此其OMV產(chǎn)量降低[22]。
OMV的生物發(fā)生始于指數(shù)生長(zhǎng)期,在穩(wěn)定生長(zhǎng)期達(dá)到最大峰值[23-24]。然而,許多因素(如溫度、培養(yǎng)基、抗生素等)可定性或定量地影響OMV的產(chǎn)生。Baumgarten等[25]發(fā)現(xiàn)熱應(yīng)力條件下(55 ℃)惡臭假單胞菌OMV的產(chǎn)量顯著增加。另有研究發(fā)現(xiàn)營(yíng)養(yǎng)限制和處于化學(xué)或物理壓力誘導(dǎo)因素會(huì)促使OMV增加[26]。細(xì)菌產(chǎn)生OMV是其應(yīng)激反應(yīng)機(jī)制之一,以提高細(xì)菌存活率,是細(xì)菌感染期間對(duì)宿主環(huán)境的適應(yīng)機(jī)制[27]。
2 OMV的組成成分
OMV是雙層膜納米級(jí)球形結(jié)構(gòu),大小為50~500 nm,外膜主要由LPS、磷脂、膜蛋白和肽聚糖成分組成,囊泡腔內(nèi)含有周質(zhì)蛋白、胞質(zhì)組分和核酸[28]。OMV的組成成分因細(xì)菌生長(zhǎng)條件而不同,還受到宿主和細(xì)菌之間相互作用的調(diào)節(jié)[29-30]。研究表明,OMV中存在外膜蛋白、周質(zhì)蛋白和不同的毒力因子,它們參與細(xì)菌對(duì)宿主的粘附和侵襲過程[23]。通過蛋白組學(xué)可以鑒定出OMV相關(guān)蛋白種類,主要分為兩大類:(1)外膜蛋白。包括膜蛋白,如孔蛋白、轉(zhuǎn)運(yùn)系統(tǒng)成分、粘附素、磷脂酶和蛋白酶等。銅綠假單胞菌的外膜囊泡中廣泛鑒定出的孔蛋白是OprF和OprH/OprG[31],腦膜炎奈瑟菌的OMV中含量最多的是孔蛋白A,H因子結(jié)合蛋白和不透明相關(guān)蛋白C[32],在福氏志賀菌的OMV中檢測(cè)到外膜磷脂酶A[33],牙密螺旋體的OMV中含有對(duì)宿主細(xì)胞造成損害的活性蛋白酶[34]。(2)囊腔蛋白。主要由毒素組成,如霍亂弧菌的霍亂毒素、腸毒性大腸埃希菌的溶細(xì)胞素A、幽門螺桿菌的空泡形成細(xì)胞毒素、空腸彎曲桿菌的細(xì)胞致死擴(kuò)張毒素[35],以及酶類,如蛋白酶、糖苷酶和脲酶等[36]。
脂質(zhì)在OMV的結(jié)構(gòu)中起重要作用,由磷脂和LPS組成。磷脂構(gòu)成外膜的內(nèi)層,LPS僅位于外膜的外表面上。大腸埃希菌OMV的磷脂主要由磷脂酰乙醇胺、磷脂酰甘油和溶血磷脂酰乙醇胺組成[37]。腦膜炎奈瑟氏菌OMV主要包括磷脂酰甘油和磷脂酰乙醇胺[32]。在銅綠假單胞菌OMV中,大量檢測(cè)到磷脂酰甘油和硬脂酸,證明OMV具有更強(qiáng)的剛性[25]。幽門螺桿菌的OMV以心磷脂為主要脂質(zhì)成分[23]。OMV上存在的LPS條帶類型取決于出芽的部位[8]。LPS擁有兩種不同類型的O多糖,即A型和B型的LPS,其不同的化學(xué)成分賦予了不同的表面和抗原特性。在銅綠假單胞菌的OMV中,僅發(fā)現(xiàn)B型LPS,而在牙齦卟啉單胞菌中,OMV主要由A型LPS組成[38]。
OMV的外膜表面或囊泡腔中可攜帶DNA和RNA。用DNase I和RNase處理OMV可以觀察到明顯的區(qū)別[24]。多項(xiàng)研究報(bào)道大腸埃希菌[39]、淋病奈瑟菌[40]、銅綠假單胞菌[41]、鮑曼不動(dòng)桿菌[42]等分泌的OMV攜帶DNA。在霍亂弧菌和銅綠假單胞菌OMV中還檢測(cè)到RNA序列[43],OMV相關(guān)的RNA可通過降低宿主的免疫反應(yīng)來促進(jìn)銅綠假單胞菌的致病性[43]。最近在衣原體和軍團(tuán)菌菌株的OMV中還發(fā)現(xiàn)了tRNA片段,直接參與破壞宿主菌基因翻譯和mRNA穩(wěn)定性[44]。
3 OMV的生物功能
OMV可攜帶核酸、酶、毒素和毒力因子等生物分子進(jìn)行遠(yuǎn)距離運(yùn)輸,保護(hù)它們免受降解和稀釋,OMV介導(dǎo)細(xì)菌種內(nèi)和種間進(jìn)行交流,并有助于與宿主的相互作用[9]。此外,OMV還參與營(yíng)養(yǎng)物質(zhì)的獲取、應(yīng)激反應(yīng)以及病原菌生存所必需的微環(huán)境的形成等[30, 45]。OMV中蛋白酶、磷酸酶和糖苷酶的包裝在復(fù)雜分子的降解中起重要作用,促進(jìn)了營(yíng)養(yǎng)物質(zhì)的吸收利用[36]。黃色粘球菌OMV中的堿性磷酸酶會(huì)導(dǎo)致磷酸鹽的釋放,從而促進(jìn)微生物菌群的平衡[46]。此外,OMV表面相關(guān)的蛋白質(zhì)和DNA是細(xì)菌生長(zhǎng)過程中碳和氮的重要來源[13]。
OMV在微生物毒力和調(diào)節(jié)宿主免疫反應(yīng)中發(fā)揮重要作用[30]。OMV通過釋放胞外多糖參與生物被膜基質(zhì)的形成,從而促進(jìn)細(xì)菌聚集[47]。在囊性纖維化患者中,銅綠假單胞菌能夠形成生物被膜,導(dǎo)致手術(shù)部位感染、骨科種植體周圍骨感染和肺部感染。研究發(fā)現(xiàn)PQS通過在生物被膜發(fā)育過程中以高度動(dòng)態(tài)的生物物理機(jī)制誘導(dǎo)銅綠假單胞菌和其他假單胞菌屬物種的OMV形成。值得注意的是,與細(xì)菌生物被膜附著和成熟階段相比,OMV的產(chǎn)量在生物被膜分散過程中顯著上升,可能由于PQS誘導(dǎo)的OMV增強(qiáng)了銅綠假單胞菌感染中的生物被膜分散,從而促進(jìn)了生物被膜的分解[16]。另有研究報(bào)道氣單胞菌屬OMV可劑量依賴性地促進(jìn)生物被膜形成[48]。Bielaszewska等[49]發(fā)現(xiàn)OMV增加了細(xì)菌對(duì)腸上皮的粘附,以幫助它們抵抗物理消除。OMV攜帶的毒素和毒力因子比它們的可溶物形式更為活躍[15]。OMV中包含多種致病分子,包括孔蛋白和LPS等[50],可強(qiáng)烈調(diào)節(jié)免疫反應(yīng),導(dǎo)致細(xì)胞因子和趨化因子的產(chǎn)生,從而誘導(dǎo)炎癥反應(yīng)的激活[51]。
OMV還被認(rèn)為是基因轉(zhuǎn)移的載體[52],已有多項(xiàng)研究在OMV中檢測(cè)到質(zhì)粒、染色體DNA片段、噬菌體DNA和RNA片段[53-54]。本文著重對(duì)OMV在水平基因轉(zhuǎn)移中的作用研究進(jìn)展進(jìn)行綜述探討(表1)。
4 OMV介導(dǎo)的水平基因轉(zhuǎn)移
目前研究發(fā)現(xiàn),水平基因轉(zhuǎn)移可以通過轉(zhuǎn)化、轉(zhuǎn)導(dǎo),接合以及新發(fā)現(xiàn)的OMV方式進(jìn)行[3]。Kolling等[39]首先發(fā)現(xiàn)OMV可以作為水平基因轉(zhuǎn)移的載體,他們純化了大腸埃希菌O157: H7的OMV,用DNase I處理OMV證實(shí)了囊泡內(nèi)部攜帶基因,通過聚合酶鏈反應(yīng)(PCR)在外膜囊腔中檢測(cè)到eae、uidA、stx1和stx2等毒力基因,這些基因可通過OMV轉(zhuǎn)移到受體菌大腸埃希菌JM109,并且在JM109轉(zhuǎn)化子中鑒定到毒力基因,證實(shí)了OMV可介導(dǎo)毒力基因的水平轉(zhuǎn)移過程。這些初步發(fā)現(xiàn)為其他研究奠定了基礎(chǔ),深化了OMV在水平基因轉(zhuǎn)移機(jī)制中的作用。隨后Yaron等[55]研究證明OMV可介導(dǎo)遺傳物質(zhì)在不同菌種之間發(fā)生交換。研究人員從大腸埃希菌O157: H7的培養(yǎng)上清液中分離出OMV,經(jīng)DNase I處理和PCR鑒定在OMV內(nèi)檢測(cè)到染色體基因eaeA和uidA,噬菌體相關(guān)基因stx1和stx2,pO157、pO157和p4821質(zhì)粒相關(guān)基因hlyCA, L7095和mobA。以大腸埃希菌JM109和腸炎沙門菌為受體菌進(jìn)行轉(zhuǎn)化實(shí)驗(yàn),通過菌落PCR擴(kuò)增鑒定到靶基因,轉(zhuǎn)化子對(duì)Vero細(xì)胞毒性比受體菌提升6倍,表明轉(zhuǎn)化子獲得毒力基因后,致病性增加。
除大腸埃希菌外,其他革蘭陰性菌也可利用OMV作為水平基因轉(zhuǎn)移載體。Ho等[56]證明,牙齦卟啉單胞菌的OMV可介導(dǎo)同一菌種之間毒力基因的轉(zhuǎn)移。OMV內(nèi)腔中攜帶菌毛和超氧化物歧化酶的編碼基因fimA和sod。在轉(zhuǎn)移實(shí)驗(yàn)中,將2.1 kb的紅霉素抗性基因ermF-ermAM融合入fimA基因進(jìn)行標(biāo)記,牙齦卟啉單胞菌49417通過產(chǎn)生OMV將紅霉素抗性基因ermF-ermAM和毒力基因fimA轉(zhuǎn)移給敏感菌株33277。
Rumbo等[57]首次發(fā)現(xiàn)OMV可以介導(dǎo)耐藥質(zhì)粒水平轉(zhuǎn)移。研究人員以攜帶碳青霉烯類blaOXA-24質(zhì)粒的鮑曼不動(dòng)桿菌臨床菌株為對(duì)象,通過DNase I處理和點(diǎn)印跡實(shí)驗(yàn)證明blaOXA-24基因存在于耐碳青霉烯類臨床菌株產(chǎn)生的OMV中。通過與碳青霉烯類敏感的鮑曼不動(dòng)桿菌共孵育實(shí)現(xiàn)OMV介導(dǎo)的耐藥質(zhì)粒轉(zhuǎn)化,獲得耐藥質(zhì)粒后,敏感受體菌的MIC達(dá)到>32 μg/mL。并且轉(zhuǎn)化過程非常迅速,3 h內(nèi)即可發(fā)生,24 h內(nèi)達(dá)到平臺(tái)期[57]。Chatterjee等[42]研究了鮑曼不動(dòng)桿菌菌株A_115產(chǎn)生的OMV介導(dǎo)blaNDM-1基因傳播的能力。通過DNase I處理、PCR和點(diǎn)印跡分析證明blaNDM-1基因存在于OMV內(nèi)腔中。采用不同濃度的OMV與鮑曼不動(dòng)桿菌和大腸埃希菌JM109的β-內(nèi)酰胺敏感菌株進(jìn)行轉(zhuǎn)化。轉(zhuǎn)化子數(shù)量與OMV濃度成正比關(guān)系,當(dāng)使用50 μg的OMV與鮑曼不動(dòng)桿菌ATCC 19606共孵育,轉(zhuǎn)化效率最高,達(dá)到4.62×109 CFU/mL。轉(zhuǎn)化子blaNDM-1基因呈陽性,對(duì)β-內(nèi)酰胺類抗生素呈現(xiàn)廣泛耐藥,同時(shí)MIC值更高。使用游離質(zhì)粒與β-內(nèi)酰胺敏感菌株一起孵育時(shí),沒有獲得轉(zhuǎn)化子,證明轉(zhuǎn)移完全由OMV介導(dǎo)[42]。
將DNA裝載到OMV中可保護(hù)其免受不利環(huán)境條件的影響。例如,在熱環(huán)境中,細(xì)胞外DNA的完整性受到高溫和DNase I作用的影響,而OMV內(nèi)的DNA仍可以發(fā)生水平轉(zhuǎn)移,這是細(xì)菌額外的生存優(yōu)勢(shì)。Blesa等[58]在嗜熱棲熱菌中發(fā)現(xiàn)了基于OMV的水平基因轉(zhuǎn)移途徑。研究人員收集了攜帶pMKpnqosYFP質(zhì)粒的嗜熱棲熱菌產(chǎn)生的OMV,在對(duì)OMV采用DNase I處理后,通過瓊脂糖凝膠電泳和Hind III消化質(zhì)粒證實(shí)了OMV中質(zhì)粒的完整性,表明OMV為其中的DNA提供了保護(hù)。使用ΔpilQ和ΔpilA4嗜熱棲熱菌作為受體菌進(jìn)行轉(zhuǎn)化實(shí)驗(yàn),在熱環(huán)境和存在DNase I的情況下,與游離DNA相比,OMV介導(dǎo)的轉(zhuǎn)化效率更高,證實(shí)OMV在不利條件下可作為載體為水平基因轉(zhuǎn)移提供保護(hù)[58]。
5 OMV介導(dǎo)水平基因轉(zhuǎn)移的影響因素
目前多項(xiàng)研究探索了OMV在水平基因轉(zhuǎn)移中的作用,但轉(zhuǎn)移的分子機(jī)制以及該過程的影響因素尚不清楚。Fulsundar等[59]發(fā)現(xiàn)高溫、干燥、營(yíng)養(yǎng)缺乏、紫外線和抗生素暴露導(dǎo)致巴伊不動(dòng)桿菌OMV釋放增加。當(dāng)細(xì)菌用氯霉素和慶大霉素處理并在沒有營(yíng)養(yǎng)物的情況下生長(zhǎng)時(shí),觀察到OMV中質(zhì)粒的數(shù)量顯著增加,從而增加了質(zhì)粒的轉(zhuǎn)移頻率??股睾蜖I(yíng)養(yǎng)缺乏條件處理,導(dǎo)致細(xì)菌OMV直徑顯著增加。與其他處理相比,慶大霉素作用下產(chǎn)生的OMV的zeta電位顯示出更多的負(fù)值。這些研究結(jié)果證明應(yīng)激因素會(huì)影響OMV釋放、DNA含量以及OMV大小。
Tran等[61]系統(tǒng)評(píng)估了質(zhì)粒類型和受體/供體菌株對(duì)轉(zhuǎn)移效率的影響。以pLC291、pUC19和pZS2501質(zhì)粒轉(zhuǎn)化大腸埃希菌菌株,三種質(zhì)粒大小相似,但復(fù)制起點(diǎn)不同。pLC291和pUC19是高拷貝質(zhì)粒,pZS2501是低拷貝質(zhì)粒。通過PCR分析證實(shí)這三種質(zhì)粒均可分泌于大腸埃希菌OMV。三種OMV的蛋白含量相似,但含有pZS2501質(zhì)粒的OMV體積增大。通過實(shí)時(shí)定量PCR分析評(píng)估質(zhì)粒在OMV中的陽性率,發(fā)現(xiàn)低拷貝質(zhì)粒的負(fù)載能力低,每pg蛋白的OMV中攜帶0.49×103拷貝的質(zhì)粒。高拷貝pLC291和pUC19質(zhì)粒顯示出高負(fù)載潛力,每pg蛋白OMV分別有2.58×103和482.7×103拷貝。這些發(fā)現(xiàn)表明質(zhì)粒特征影響OMV的直徑和質(zhì)粒負(fù)載量。此外,他們還研究了不同菌株釋放OMV的特征。在轉(zhuǎn)化實(shí)驗(yàn)中,使用維氏氣單胞菌,陰溝桿菌和大腸埃希菌作為受體菌株。用攜帶pLC291質(zhì)粒的大腸埃希菌作為供體菌。不同受體菌株接收pLC291質(zhì)粒后,釋放的OMV中含有相同的蛋白質(zhì)和質(zhì)粒量并且具有相似的大小。進(jìn)而評(píng)估了OMV進(jìn)行細(xì)菌種間水平基因轉(zhuǎn)移的潛力。從維氏氣單胞菌,陰溝桿菌和大腸埃希菌中分離出含有pLC291的OMV,再將其與五種不同的受體菌(維氏氣單胞菌,陰溝桿菌,大腸埃希菌,紫色桿菌和銅綠假單胞菌)進(jìn)行轉(zhuǎn)化,對(duì)質(zhì)粒轉(zhuǎn)移時(shí)間進(jìn)行量化。維氏氣單胞菌通過OMV在更短的時(shí)間內(nèi)將pLC291質(zhì)粒轉(zhuǎn)移到不同的受體菌株。無論供體菌種如何,銅綠假單胞菌在較短的時(shí)間內(nèi)獲得了抗生素耐藥性。維氏氣單胞菌比陰溝桿菌、大腸埃希菌和紫色桿菌更快地接收質(zhì)粒。這些結(jié)果表明,獲得DNA的能力由供體/受體細(xì)菌的種類共同決定[61]。
Tran等[64]后續(xù)深入研究了質(zhì)粒特征(質(zhì)??截悢?shù)、質(zhì)粒大小和復(fù)制起點(diǎn))對(duì)OMV介導(dǎo)的水平基因轉(zhuǎn)移的影響。在pSC101質(zhì)粒復(fù)制起點(diǎn)引入三個(gè)特定點(diǎn)突變以增加質(zhì)??截悢?shù)。將拷貝數(shù)增加的pSC101+、pSC101++和 pSC101+++電轉(zhuǎn)到供體大腸埃希菌菌株中。增加的質(zhì)??截悢?shù)不會(huì)影響純化的OMV的大小和數(shù)量,但會(huì)改變包載到OMV中的質(zhì)粒數(shù)量。轉(zhuǎn)移實(shí)驗(yàn)表明,質(zhì)粒轉(zhuǎn)移時(shí)間隨著質(zhì)粒拷貝數(shù)的增加而減少。此外,研究評(píng)估了質(zhì)粒大小對(duì)OMV負(fù)載的影響?;谫|(zhì)粒pLC291,通過插入非功能性λ噬菌體DNA產(chǎn)生了四種不同大小的質(zhì)粒。獲得的質(zhì)粒大小分別為3.5、7、10和15 kb,分別命名為pLC-3.5、pLC-7、pLC10和pLC15。用每種質(zhì)粒轉(zhuǎn)化大腸埃希菌菌株,并純化OMV。隨著質(zhì)粒大小的增加,OMV的產(chǎn)量幾乎沒有增加。動(dòng)態(tài)光散射分析表明OMV尺寸與質(zhì)粒大小無關(guān)。此外,熒光定量qPCR結(jié)果表明,質(zhì)粒大小與OMV中質(zhì)??截悢?shù)成反比。為了評(píng)估質(zhì)粒來源對(duì)OMV產(chǎn)生的影響,他們基于質(zhì)粒pLC291構(gòu)建了三個(gè)大小相同(3.5 kb)但來源不同的質(zhì)粒:pMB1、具有RK2和ColE1雙重來源的pLC和SC101,轉(zhuǎn)化入大腸埃希菌后,純化OMV。不同來源質(zhì)粒的大腸埃希菌產(chǎn)生的OMV的大小相近。不同來源的質(zhì)粒(pMB1、pLC和SC101)在OMV中的負(fù)載不同:對(duì)于pMB1,每pg蛋白的OMV中攜帶364.45×103拷貝,而對(duì)于pLC和SC101,每pg蛋白OMV中攜帶3.13×103和1.12×103拷貝。隨后進(jìn)行了OMV介導(dǎo)的水平基因轉(zhuǎn)移實(shí)驗(yàn),使用大腸埃希菌作為受體菌株,并添加相同數(shù)量的OMV。研究發(fā)現(xiàn)基因轉(zhuǎn)移頻率受到質(zhì)粒復(fù)制起點(diǎn)的強(qiáng)烈影響。攜帶pLC質(zhì)粒的OMV的轉(zhuǎn)移頻率大約是攜帶pMB1和SC101質(zhì)粒的OMV的10倍。由此可見,質(zhì)粒的數(shù)量和大小影響了OMV的包載效率,而復(fù)制起點(diǎn)影響了OMV的轉(zhuǎn)化頻率[64]。
6 總結(jié)
水平基因轉(zhuǎn)移促進(jìn)細(xì)菌之間遺傳物質(zhì)的交換,并在許多微生物的進(jìn)化中發(fā)揮重要作用。已知的水平基因轉(zhuǎn)移方式(自然轉(zhuǎn)化、轉(zhuǎn)導(dǎo)和接合)對(duì)細(xì)菌物種之間的遺傳多樣性具有重要貢獻(xiàn)。近期研究發(fā)現(xiàn)OMV是水平基因轉(zhuǎn)移的新型途徑。OMV不僅參與微生物毒力,調(diào)節(jié)宿主免疫反應(yīng),還可通過攜帶質(zhì)粒、染色體DNA片段、噬菌體DNA和RNA片段水平基因轉(zhuǎn)移,介導(dǎo)遺傳元素在微生物群體間傳播交換。并且供體/受體菌株種類,遺傳物質(zhì)類型,外界環(huán)境條件(高溫、營(yíng)養(yǎng)缺乏、紫外線和抗生素)等均會(huì)影響OMV介導(dǎo)的水平基因轉(zhuǎn)移頻率。目前OMV分泌的調(diào)控機(jī)制,包載物質(zhì)的選擇性,與受體細(xì)胞膜融合的方式等尚不清楚,需要更進(jìn)一步深入研究。
參 考 文 獻(xiàn)
Talebi B A, Rizvanov A A, Haertlé T, et al. World health organization report: current crisis of antibiotic resistance[J]. BioNanoScience, 2019, 9(4): 778-788.
Deng Y, Xu H, Su Y, et al. Horizontal gene transfer contributes to virulence and antibiotic resistance of Vibrio harveyi 345 based on complete genome sequence analysis[J]. BMC Genomics, 2019, 20(1): 1-19.
Johnston C, Martin B, Fichant G, et al. Bacterial transformation: distribution, shared mechanisms and divergent control[J]. Nat Rev Microbiol, 2014, 12(3): 181-196.
Mell J C, Redfield R J. Natural competence and the evolution of DNA uptake specificity[J]. J Bacteriol, 2014, 196(8): 1471-1483.
Nazarian P, Tran F, Boedicker J Q. Modeling multispecies gene flow dynamics reveals the unique roles of different horizontal gene transfer mechanisms[J]. Front Microbiol, 2018, 9: 2978.
Chiang Y N, Penadés J R, Chen J. Genetic transduction by phages and chromosomal islands: The new and noncanonical[J]. PLoS Pathog, 2019, 15(8): e1007878.
Cabezón E, Ripoll-Rozada J, Pe?a A, et al. Towards an integrated model of bacterial conjugation[J]. FEMS Microbiol Rev, 2015, 39(1): 81-95.
Kulp A, Kuehn M J. Biological functions and biogenesis of secreted bacterial outer membrane vesicles[J]. Annu Rev Microbiol, 2010, 64: 163-184.
Berleman J, Auer M. The role of bacterial outer membrane vesicles for intra- and interspecies delivery[J]. Environ Microbiol, 2013, 15(2): 347-354.
Schwechheimer C, Sullivan C J, Kuehn M J. Envelope control of outer membrane vesicle production in Gram-negative bacteria[J]. Biochemistry, 2013, 52(18): 3031-3040.
Burdett I D, Murray R G. Electron microscope study of septum formation in Escherichia coli strains B and B-r during synchronous growth[J]. J Bacteriol, 1974, 119(3): 1039-1056.
Eddy J L, Gieldal M, Caulfield A J, et al. Production of outer membrane vesicles by the plague pathogen Yersinia pestis[J]. PLoS One, 2014, 9(9): e107002.
Roier S, Zingl F G, Cakar F, et al. A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria[J]. Nat Commun, 2016, 7: 10515.
Gerritzen M J H, Maas R H W, Van D I J, et al. High dissolved oxygen tension triggers outer membrane vesicle formation by Neisseria meningitidis[J]. Microb Cell Fact, 2018, 17(1): 157.
Schwechheimer C, Kuehn M J. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions[J]. Nat Rev Microbiol, 2015, 13(10): 605-619.
Cooke A C, Florez C, Dunshee E B, et al. Pseudomonas quinolone signal-induced outer membrane vesicles enhance biofilm dispersion in Pseudomonas aeruginosa[J]. mSphere, 2020, 5(6):1109-1120.
Florez C, Raab J E, Cooke A C, et al. Membrane distribution of the Pseudomonas quinolone signal modulates outer membrane vesicle production in Pseudomonas aeruginosa[J]. mBio, 2017, 8(4):e01034-17.
Wessel A K, Liew J, Kwon T, et al. Role of Pseudomonas aeruginosa peptidoglycan-associated outer membrane proteins in vesicle formation[J]. J Bacteriol, 2013, 195(2): 213-219.
Mashburn-Warren L, Howe J, Garidel P, et al. Interaction of quorum signals with outer membrane lipids: insights into prokaryotic membrane vesicle formation[J]. Mol Microbiol, 2008, 69(2): 491-502.
Li A, Scherizer J W, Yong X. Molecular dynamics modeling of Pseudomonas aeruginosa outer membranes[J]. Phys Chem Chem Phys, 2018, 20(36): 23635-23648.
Ellis T N, Leiman S A, Kuehn M J. Naturally produced outer membrane vesicles from Pseudomonas aeruginosa elicit a potent innate immune response via combined sensing of both lipopolysaccharide and protein components[J]. Infect Immun, 2010, 78(9): 3822-3831.
Beveridge T J. Structures of gram-negative cell walls and their derived membrane vesicles[J]. J Bacteriol, 1999, 181(16): 4725-4733.
Yu Y J, Wang X H, Fan G C. Versatile effects of bacterium-released membrane vesicles on mammalian cells and infectious/inflammatory diseases[J]. Acta Pharmacol Sin, 2018, 39(4): 514-533.
Jan A T. Outer Membrane Vesicles (OMVs) of Gram-negative bacteria: A perspective update[J]. Front Microbiol, 2017, 8: 1053.
Baumgarten T, Sperling S, Seifert J, et al. Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation[J]. Appl Environ Microbiol, 2012, 78(17): 6217-6224.
Bauwens A, Kunsmann L, Marejková M, et al. Intrahost milieu modulates production of outer membrane vesicles, vesicle-associated Shiga toxin 2a and cytotoxicity in Escherichia coli O157:H7 and O104:H4[J]. Environ Microbiol Rep, 2017, 9(5): 626-634.
Macdonald I A, Kuehn M J. Stress-induced outer membrane vesicle production by Pseudomonas aeruginosa[J]. J Bacteriol, 2013, 195(13): 2971-2981.
Qing G, Gong N, Chen X, et al. Natural and engineered bacterial outer membrane vesicles[J]. Biophysics Reports, 2019, 5(4): 184-198.
Orench-Rivera N, Kuehn M J. Environmentally controlled bacterial vesicle-mediated export[J]. Cell Microbiol, 2016, 18(11): 1525-1536.
Cecil J D, Sirisaengtaksin N, O'brien-Simpson N M, et al. Outer membrane vesicle-host cell interactions[J]. Microbiol Spectr, 2019, 7(1):PSIB-0001-2018.
Chevalier S, Bouffartigues E, Bodilis J, et al. Structure, function and regulation of Pseudomonas aeruginosa porins[J]. FEMS Microbiol Rev, 2017, 41(5): 698-722.
Gerritzen M J H, Stangowez L, Van D W B, et al. Continuous production of Neisseria meningitidis outer membrane vesicles[J]. Appl Microbiol Biotechnol, 2019, 103(23-24): 9401-9410.
Wang X, Jiang F, Zheng J, et al. The outer membrane phospholipase A is essential for membrane integrity and type Ⅲ secretion in Shigella flexneri[J]. Open Biol, 2016, 6(9):160073.
Chi B, Qi M, Kuramitsu H K. Role of dentilisin in Treponema denticola epithelial cell layer penetration[J]. Res Microbiol, 2003, 154(9): 637-643.
Van D P L, Stork M, Van D L P. Outer membrane vesicles as platform vaccine technology[J]. Biotechnol J, 2015, 10(11): 1689-1706.
Valguarnera E, Scott N E, Azimzadeh P, et al. Surface exposure and packing of lipoproteins into outer membrane vesicles are coupled processes in bacteroides[J]. mSphere, 2018, 3(6):e00559-18.
Tashiro Y, Inagaki A, Shimizu M, et al. Characterization of phospholipids in membrane vesicles derived from Pseudomonas aeruginosa[J]. Biosci Biotechnol Biochem, 2011, 75(3): 605-607.
Veith P D, Chen Y Y, Gorasia D G, et al. Porphyromonas gingivalis outer membrane vesicles exclusively contain outer membrane and periplasmic proteins and carry a cargo enriched with virulence factors[J]. J Proteome Res, 2014, 13(5): 2420-2432.
Kolling G L, Matthews K R. Export of virulence genes and Shiga toxin by membrane vesicles of Escherichia coli O157:H7[J]. Appl Environ Microbiol, 1999, 65(5): 1843-1848.
Pérez-Cruz C, Delgado L, López-Iglesias C, et al. Outer-inner membrane vesicles naturally secreted by gram-negative pathogenic bacteria[J]. PLoS One, 2015, 10(1): e0116896.
Bitto N J, Chapman R, Pidot S, et al. Bacterial membrane vesicles transport their DNA cargo into host cells[J]. Sci Rep, 2017, 7(1): 7072.
Chatterjee S, Mondal A, Mitra S, et al. Acinetobacter baumannii transfers the blaNDM-1 gene via outer membrane vesicles[J]. J Antimicrob Chemother, 2017, 72(8): 2201-2207.
Koeppen K, Hampton T H, Jarek M, et al. A novel mechanism of host-pathogen interaction through sRNA in bacterial outer membrane vesicles[J]. PLoS Pathog, 2016, 12(6): e1005672.
Furuse Y, Finethy R, Saka H A, et al. Search for microRNAs expressed by intracellular bacterial pathogens in infected mammalian cells[J]. PLoS One, 2014, 9(9): e106434.
Yá?ez-Mó M, Silhander P R, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions[J]. J Extracell Vesicles, 2015, 4: 27066.
Berleman J E, Allen S, Danielewicz M A, et al. The lethal cargo of Myxococcus xanthus outer membrane vesicles[J]. Front Microbiol, 2014, 5: 474.
Cooke A C, Nello A V, Ernst R K, et al. Analysis of Pseudomonas aeruginosa biofilm membrane vesicles supports multiple mechanisms of biogenesis[J]. PLoS One, 2019, 14(2): e0212275.
Seike S, Kobayashi H, Ueda M, et al. Outer membrane vesicles released from Aeromonas strains are involved in the biofilm formation[J]. Front Microbiol, 2020, 11: 613650.
Bielaszewska M, Marejková M, Bauwens A, et al. Enterohemorrhagic Escherichia coli O157 outer membrane vesicles induce interleukin 8 production in human intestinal epithelial cells by signaling via Toll-like receptors TLR4 and TLR5 and activation of the nuclear factor NF-κB[J]. Int J Med Microbiol, 2018, 308(7): 882-889.
Cai W, Kesavan D K, Wan J, et al. Bacterial outer membrane vesicles, a potential vaccine candidate in interactions with host cells based[J]. Diagn Pathol, 2018, 13(1): 95.
Kaparakis-Liaskos M, Ferrero R L. Immune modulation by bacterial outer membrane vesicles[J]. Nat Rev Immunol, 2015, 15(6): 375-387.
Domingues S, Nielsen K M. Membrane vesicles and horizontal gene transfer in prokaryotes[J]. Curr Opin Microbiol, 2017, 38: 16-21.
Velimirov B, Ranftler C. Unexpected aspects in the dynamics of horizontal gene transfer of prokaryotes: the impact of outer membrane vesicles[J]. Wiener Medizinische Wochenschrift, 2018, 168(11-12): 307-313.
Gaudin M, Krupovic M, Marguet E, et al. Extracellular membrane vesicles harbouring viral genomes[J]. Environ Microbiol, 2014, 16(4): 1167-1175.
Yaron S, Kolling G L, Simon L, et al. Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria[J]. Appl Environ Microbiol, 2000, 66(10): 4414-4420.
Ho M H, Chen C H, Goodwin J S, et al. Functional advantages of Porphyromonas gingivalis vesicles[J]. PLoS One, 2015, 10(4): e0123448.
Rumbo C, Fernandez-Moreira E, Merino M, et al. Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles: a new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii[J]. Antimicrob Agents Ch, 2011, 55(7): 3084-3090.
Blesa A, Berrenguer J. Contribution of vesicle-protected extracellular DNA to horizontal gene transfer in Thermus spp[J]. Int Microbiol, 2015, 18(3): 177-187.
Fulsundar S, Harms K, Flaten G E, et al. Gene transfer potential of outer membrane vesicles of Acinetobacter baylyi and effects of stress on vesiculation[J]. Appl Environ Microbiol, 2014, 80(11): 3469-3483.
Renelli M, Matias V, Lo R Y, et al. DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential[J]. Microbiology (Reading), 2004, 150(Pt 7): 2161-2169.
Tran F, Boedicker J Q. Genetic cargo and bacterial species set the rate of vesicle-mediated horizontal gene transfer[J]. Sci Rep, 2017, 7(1): 8813.
Bielaszewska M, Daniel O, Karch H, et al. Dissemination of the blaCTX-M-15 gene among Enterobacteriaceae via outer membrane vesicles[J]. J Antimicrob Chemother, 2020, 75(9): 2442-2451.
Qiao W, Wang L, Luo Y, et al. Outer membrane vesicles mediated horizontal transfer of an aerobic denitrification gene between Escherichia coli[J]. Biodegradation, 2021, 32(4): 435-448.
Tran F, Boedicker J Q. Plasmid characteristics modulate the propensity of gene exchange in bacterial vesicles[J]. J Bacteriol, 2019, 201(7):e00430-18.
收稿日期:2022-10-26
基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(32102728);江蘇省農(nóng)業(yè)科學(xué)院探索性顛覆性創(chuàng)新項(xiàng)目(ZX(21)1224);
江蘇省自然科學(xué)基金(BK20200056);江蘇省自主創(chuàng)新項(xiàng)目(CX(20)1011-1)。
作者簡(jiǎn)介:李俊,博士,助理研究員,主要從事細(xì)菌耐藥性分子機(jī)制及防控策略研究。
李倩茹(并列第一作者),本科,主要從事細(xì)菌耐藥性研究。
*通訊作者:何濤,博士,副研究員,主要從事細(xì)菌耐藥性產(chǎn)生及傳播分子機(jī)制研究。