国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

抗菌藥物致肝臟毒性的研究進展

2023-04-29 03:42凌亞豪廖樂樂靳洪濤時濤
國外醫(yī)藥抗生素分冊 2023年1期
關(guān)鍵詞:發(fā)病機制抗菌藥物合理用藥

凌亞豪 廖樂樂 靳洪濤 時濤

摘要:藥物性肝損傷(DILI)是指各類藥物及其代謝產(chǎn)物和輔料等所誘發(fā)的肝損傷,是臨床藥源性疾病之一。在DILI 相關(guān)研究中,抗菌藥物是最為常見的藥物類型。隨著抗菌藥物在臨床上日益廣泛應(yīng)用,抗菌藥物相關(guān)性肝損傷事件發(fā)生也不斷增加,嚴重時可危及生命。本文通過對不同類型抗菌藥物致肝臟毒性的機制及臨床特點等相關(guān)研究進行綜述,旨在深入了解抗菌藥物致肝臟毒性的機制,為加強抗菌藥物致肝損傷的防治及臨床安全合理應(yīng)用提供參考。

關(guān)鍵詞:抗菌藥物;肝臟毒性;發(fā)病機制;合理用藥;藥物性肝損傷;研究進展

中圖分類號:R978.1? ? ? ? ?文獻標志碼:A? ? ? ? ?文章編號:1001-8751(2023)01-0039-06

Research Progress of Antimicrobial Agents Induced Hepatotoxicity

Ling Ya-hao1,? ?Liao Le-le1,? ?Jin Hong-tao2,3,? ?Shi Tao1

(1 Department Department of Pharmacy, Peoples Hospital of Longhua,? ?Shenzhen 518109;

2 New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences,? ? Beijing 100050;

3 Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd.,? ?Beijing 100176)

Abstract: Drug-induced liver injury (DILI) is a clinical drug-induced disease induced by various drugs and drug metabolites and excipients. In DILI related studies, antibacterial drugs are the most common type of drugs. With the increasing use of antibacterial drugs in clinical practice, the incidence of liver injury related to antibacterial drugs is also increasing, which can endanger life in serious cases. This article reviews the mechanism and clinical characteristics of liver toxicity caused by different types of antibacterial drugs, aiming to deeply understand the mechanism of liver toxicity caused by antibacterial drugs, and provide reference for strengthening the prevention and treatment of liver injury caused by antibacterial drugs and clinical safe and reasonable application.

Key words: antimicrobial agents;? ?liver toxicity;? ?pathogenesis;? ?rational drug use;? drug-induced liver injury;? research progress

1 前言

肝臟作為人體最大的代謝器官,具有代謝、解毒、分泌和排泄膽汁及造血等重要功能。同時,肝臟也是機體進行藥物代謝、生物轉(zhuǎn)化和清除的重要場所??咕幬镏冈诘蜐舛葧r具有殺菌或抑菌活性的各種抗生素及化學(xué)合成藥物??咕幬镞M入機體后,會不同程度對肝臟功能產(chǎn)生影響。在藥物性肝損傷(Drug-induced liver injury,DILI)相關(guān)研究中,抗菌藥物是最為常見的藥物類型[1]。隨著抗菌藥物在臨床上日益廣泛應(yīng)用,抗菌藥物相關(guān)性肝損傷事件發(fā)生也不斷增加,嚴重時可導(dǎo)致急性肝衰竭甚至死亡[2-3]。大多數(shù)藥物引起的肝毒性以不可預(yù)測的方式發(fā)生,相關(guān)流行病學(xué)研究顯示藥物性肝損傷的發(fā)病率一般為1/10萬~20/10萬[4-6]。我國一項納入了25 927例藥物性肝損傷患者的回顧性研究顯示,一般人群的DILI發(fā)生率為23.80/10萬人[2]。

目前,DILI缺乏特異性、敏感性的診斷標志物。DILI的診斷方法基本上是通過追溯可疑用藥史,排除其他病因,因此DILI的診斷具有很大挑戰(zhàn)性。近年來,國內(nèi)外研究者對抗菌藥物致肝臟毒性的臨床特點、發(fā)病機制和防治等問題不斷進行研討以及制定了相關(guān)的診療指南[1, 7-10]。由于我國人口基數(shù)大,抗菌藥物種類繁多,臨床應(yīng)用抗菌藥物廣泛,因此抗菌藥物相關(guān)性肝損傷發(fā)病率有逐年升高趨勢[11]。關(guān)于抗菌藥物致肝臟毒性的機制尚未闡明。本文主要綜述抗菌藥物致肝臟毒性機制的研究進展,以期為加強抗菌藥物致肝損傷的防治及臨床安全合理應(yīng)用提供參考。

2 DILI的分類、影響因素及相關(guān)研究進展

根據(jù)發(fā)病機制,DILI可分為直接肝損傷、特異質(zhì)肝損傷和間接肝損傷,而抗菌藥物相關(guān)性肝損傷主要屬于特異質(zhì)型[8, 10]。特異質(zhì)肝損傷具有低發(fā)生率、不可預(yù)測性、不具有劑量依賴性,并且不可在動物模型中復(fù)制的特點[8]。特異質(zhì)肝損傷的表型一般為急性肝細胞型肝炎、混合型或淤膽型肝炎、單純性膽汁淤積、慢性肝炎和肝衰竭等[1]。

根據(jù)病程分型,DILI可分為急性和慢性[12]。急性藥物性肝損傷在臨床上占比較高,少數(shù)可發(fā)展為慢性。一般肝臟炎癥在6個月內(nèi)可以消退,肝功能恢復(fù)至正常水平。慢性藥物性肝損傷指肝臟炎癥發(fā)生6個月后,相關(guān)血液學(xué)指標仍然持續(xù)異?;虼嬖谟跋駥W(xué)和組織學(xué)門靜脈高壓或肝功能損傷證據(jù)[13]。

根據(jù)受損靶細胞,可將藥物性肝損傷劃分為肝細胞損傷型、膽汁淤積型和混合型[13]。(1)肝細胞損傷型:臨床表現(xiàn)類似急性病毒性肝炎[5],丙氨酸氨基轉(zhuǎn)移酶(Alanine aminotransferase,ALT)明顯升高,病情進展迅速,常出現(xiàn)乏力、精神萎靡、食欲減退、惡心嘔吐、黃疸進行性加重等癥狀,是急性肝衰竭的重要原因。主要組織學(xué)特征為肝細胞壞死、淋巴細胞和嗜酸性粒細胞浸潤。常見藥物為異煙肼、呋喃妥因、青霉素類、四環(huán)素類和喹諾酮類等[14]。(2)膽汁淤積型:臨床表現(xiàn)為明顯的黃疸和瘙癢,堿性磷酸酶(Alkaline phosphatase,ALP)水平升高,主要組織學(xué)特征為毛細膽管型膽汁淤積[15-16]。常見藥物為大環(huán)內(nèi)酯類、阿莫西林/克拉維酸鉀、頭孢菌素類和抗真菌類等[17-18]。(3)混合型:可由許多藥物引起肝細胞型或淤膽型肝炎,臨床表現(xiàn)常有黃疸,主要組織學(xué)特征為毛細膽管膽汁淤積伴肝細胞壞死和炎癥細胞浸潤[5]。常見藥物為磺胺類、氟喹諾酮類、大環(huán)內(nèi)酯類和阿莫西林/克拉維酸鉀等[19-20]。

與藥物性肝損傷相關(guān)因素主要有[10, 21-22]:(1)宿主因素(包括年齡、性別、種族、遺傳學(xué)、免疫狀態(tài)、代謝等)。一般而言,藥物性肝損傷發(fā)病率會隨著年齡的增長而增加,但這可能部分是由于隨著年齡的增長而使用更多的藥物所導(dǎo)致[4, 23]。據(jù)相關(guān)研究推測,藥代動力學(xué)的改變或累積的線粒體功能障礙可能與老年患者更頻繁地發(fā)生異煙肼相關(guān)的肝損傷有關(guān)[24-25]。高齡患者似乎對異煙肼和阿莫西林/克拉維酸鉀肝毒性的風險增加,而年輕患者更容易因米諾環(huán)素而發(fā)生DILI[24, 26]。除了增加特定藥物易感性之外,年齡似乎也對藥物性肝損傷的表型有影響,年輕患者更常發(fā)生肝細胞損傷,而老年患者更容易出現(xiàn)膽汁淤積型損傷[27-28]。女性對特定抗菌藥(如米諾環(huán)素和呋喃妥因)的易感性增加,且更易發(fā)生急性肝損傷[29]。研究表明女性患者在大環(huán)內(nèi)酯類、氟氯西林、呋喃妥因等所致肝毒性事件中占比較高,而男性患者在阿莫西林/克拉維酸鉀所致肝毒性事件中占比更高[24, 26, 30]。種族因素影響主要歸因于不同種族人群中單核苷酸多態(tài)性(Single nucleotide polymorphisms,SNPs)的差異。藥物性肝損傷網(wǎng)絡(luò)(Drug-induced liver injury network,DILIN))顯示,復(fù)方磺胺甲惡唑是非裔美國人發(fā)生肝損傷中最常見的可疑藥物,而阿莫西林/克拉維酸鉀是白人人群發(fā)生肝損傷的主要原因[31-32]。據(jù)研究報道[33],與藥物代謝酶和轉(zhuǎn)運蛋白相關(guān)的各種宿主遺傳因素會增加DILI易感性。(2)藥物(包括劑量和肝臟藥物代謝、脂溶性、藥物相互作用、特殊化學(xué)成分、線粒體危害、肝膽轉(zhuǎn)運抑制)。研究發(fā)現(xiàn)由每日劑量 ≥ 50 mg 的藥物誘發(fā)肝損傷的潛伏期明顯短于由較低劑量服用的藥物誘發(fā)的肝損傷[34]。除了劑量,肝臟藥物代謝被認為會影響藥物的肝毒性潛能[35]。關(guān)于藥物脂溶性,研究顯示較高的親脂性藥物可促進肝細胞的吸收,這可能導(dǎo)致反應(yīng)性代謝物的量增加,從而增加 DILI 的潛在風險[36]。藥物能夠通過誘導(dǎo)、抑制或底物競爭來調(diào)節(jié)其他藥物的代謝而影響 DILI 的易感性[37]。反應(yīng)性代謝物可以改變細胞蛋白質(zhì)的功能和結(jié)構(gòu),是DILI發(fā)病的已知風險因素[38]。(3)環(huán)境(酒精、飲食、咖啡、煙草、微生物)。經(jīng)常飲酒可能是促進異煙肼等特定藥物發(fā)生DILI 的潛在因素[10]。目前關(guān)于飲食因素、微生物因素、煙草使用和咖啡消費對DILI易感性的影響的研究數(shù)據(jù)有限,尚未被確定為人類 DILI 的真正危險因素[39-42]。

3 藥物性肝損傷的作用機制及常見抗菌藥代表

DILI的發(fā)病機制復(fù)雜,涉及宿主遺傳、免疫和代謝因素以及藥物和環(huán)境因素,是多種機制先后或共同作用的結(jié)果。根據(jù)抗菌藥物相關(guān)性肝損傷的發(fā)病機制,可分為藥物的直接肝毒性和特異質(zhì)肝毒性作用。直接肝毒性是指藥物對肝臟產(chǎn)生的直接損傷,具有發(fā)生率常見、劑量依賴性、可預(yù)測性、潛伏期短的特點。直接藥物性肝損傷最常見的臨床表型為急性肝壞死,表現(xiàn)為血清酶升高且不伴有黃疸。相關(guān)抗菌藥如大環(huán)內(nèi)酯類可能通過其在肝內(nèi)的代謝產(chǎn)物與肝細胞蛋白結(jié)合進一步引發(fā)其他炎癥反應(yīng)或免疫損傷。微泡型脂肪變性(Microvesicular steatosis)和肝功能障礙的乳酸性酸中毒是藥物直接肝毒性的另一表型,相關(guān)發(fā)病機制為線粒體毒性和有氧代謝衰竭,主要代表藥物有利奈唑胺[43]和四環(huán)素[44]。

特異質(zhì)肝毒性被認為是由宿主對藥物或其代謝物的異常適應(yīng)性免疫反應(yīng)引起的,影響發(fā)生機制的因素包括藥物代謝、遺傳差異、藥物介導(dǎo)免疫損傷等[9, 45]。(1)藥物代謝異常機制:大部分藥物進入機體后需要某種形式的生物轉(zhuǎn)化才能被消除,該過程通常會形成反應(yīng)性代謝物,這些代謝物可在易感細胞環(huán)境中導(dǎo)致共價結(jié)合半抗原或細胞應(yīng)激,這可能引發(fā)或共同刺激適應(yīng)性免疫反應(yīng)的發(fā)展,從而導(dǎo)致DILI。藥物在肝臟經(jīng)細胞色素P450(CYP450)酶系的代謝后與還原型谷胱甘肽等蛋白結(jié)合促進排泄,若相關(guān)蛋白含量不足時,可產(chǎn)生肝毒性。(2)抗菌藥物的肝毒性具有遺傳多態(tài)性和免疫特異質(zhì)性,個體間的基因差異可表現(xiàn)為藥物代謝的多態(tài)性。研究表明[8],通過全基因組關(guān)聯(lián)研究(Genome-wide association studies,GWAS)確定了DILI易感性相關(guān)的遺傳多態(tài)性大多位于主要組織相容性復(fù)合體(Major histocompatibility complex,MHC)區(qū)域內(nèi),并與人類白細胞抗原(Human leukocyte antigen,HLA)等位基因相關(guān)。如氟氯西林引起的DILI與HLA-B*57:01和HLA-B*57:03位點相關(guān)[46-47],特比萘芬與HLA-A*33:01位點相關(guān)[18]。與其他自身免疫性疾病相關(guān)的非受體蛋白質(zhì)酪氨酸磷酸酶22(Protein tyrosin phosphatase non-receptor 22,PTPN22)中的錯義變體 (rs2476601) 似乎是跨多個種族和群體的全因DILI的危險因素[39]。(3)藥物介導(dǎo)免疫損傷機制[48]:適應(yīng)性免疫系統(tǒng)在特異質(zhì) DILI 的發(fā)病機制中起主要作用。適應(yīng)性免疫系統(tǒng)可以被半抗原激活,導(dǎo)致 HLA 編碼的主要組織相容性復(fù)合物 (MHC) 蛋白限制多肽加合物的呈遞。在極少數(shù)情況下,藥物可能直接與某些 MHC 分子或 T 細胞受體結(jié)合并激活免疫反應(yīng),通過細胞毒作用損傷肝細胞和膽管上皮細胞?;蛟谀承┣闆r下,藥物或代謝物可能會改變 MHC 結(jié)合槽,從而導(dǎo)致多肽呈遞方向錯誤。此外,藥物介導(dǎo)的免疫反應(yīng)還可以促進CD8+細胞毒性T淋巴細胞反應(yīng)直接殺傷肝細胞或激活自然殺傷細胞(Natural killer cell,NK)及自然殺傷性T細胞(Natural killer T cells,NKT)介導(dǎo)抗體依賴細胞毒(Antibody-dependent cytotoxicity,ADCC)損傷肝細胞。

引起肝臟毒性的常見抗菌藥包括: 阿莫西林/克拉維酸鉀、呋喃妥因、異煙肼和磺胺類等。

3.1 阿莫西林/克拉維酸鉀

阿莫西林/克拉維酸鉀是目前在美國和歐洲引起臨床明顯性急性肝損傷的最常見藥物。阿莫西林/克拉維酸鉀引起的肝損傷通常是延遲性膽汁淤積型或混合型肝損傷,平均潛伏期為從治療開始后的幾天至長達8周,西班牙肝毒性登記處的一項研究顯示,年輕患者主要是肝細胞模式,而老年患者與膽汁淤積/混合模式有關(guān)[49]。阿莫西林/克拉維酸鉀致肝損傷相關(guān)的遺傳多態(tài)性與HLA-A*02:01和HLA-DRB1*15:01位點相關(guān)[50]。最近一項研究表明[51],克拉維酸鉀通過調(diào)節(jié)核因子紅細胞2相關(guān)因子2 (Nuclear factor erythroid 2-related factor 2,NRF2)和膽汁酸受體(Farnesoid x receptor,F(xiàn)XR)信號傳導(dǎo)下調(diào)了幾種關(guān)鍵的膽道轉(zhuǎn)運蛋白,從而可能促進肝內(nèi)膽汁淤積。最重要的是,阿莫西林/克拉維酸鉀通過增加的活性氧(Reactive oxygen species,ROS)生成和還原型谷胱甘肽(Reduced glutathione,GSH)的消耗可能會加重對膽汁淤積的肝損傷。

3.2 呋喃妥因

呋喃妥因是一種硝基呋喃類抗菌藥,臨床上可引起急性或慢性肝炎樣綜合征,嚴重并導(dǎo)致肝功能衰竭或肝硬化。呋喃妥因致肝損傷的模式通常是肝細胞性,可伴有黃疸、發(fā)燒、嘔吐和皮疹等癥狀,特點是血清丙氨酸氨基轉(zhuǎn)移酶(Alanine aminotransferase,ALT)和丙種球蛋白水平升高,并且抗核抗體(Antinuclear antibodies,ANA)和抗平滑抗體(Anti-smoothmuscle antibodies,ASMA)陽性。呋喃妥因的硝基還原代謝會產(chǎn)生有害的氧化自由基,從而損害肝細胞。呋喃妥因會導(dǎo)致藥物性自身免疫樣慢性肝損傷,相關(guān)研究表明與人類白細胞抗原相關(guān)基因位點(HLA-DR6 和HLA-DR2)相關(guān)[52-53]。

3.3 異煙肼

異煙肼目前仍是治療結(jié)核病最常用的藥物之一,盡管它會導(dǎo)致肝功能衰竭。異煙肼引起的肝毒性屬于特異質(zhì)肝損傷,常見的不良反應(yīng)包括腸胃不適、惡心、發(fā)燒和皮疹,血液學(xué)特征為示丙氨酸氨基轉(zhuǎn)移酶? (ALT) 和天冬氨酸氨基轉(zhuǎn)移酶 (Aspartate aminotransferase,AST)水平升高。異煙肼引起肝損傷的原因被認為是其代謝的有毒中間體的積累。由異煙肼本身的生物活化產(chǎn)生的反應(yīng)性代謝物已被證明可與肝臟大分子物質(zhì)形成共價加合物,該代謝物的共價結(jié)合很可能導(dǎo)致免疫反應(yīng)發(fā)生[54-55]。異煙肼致肝損傷相關(guān)的遺傳多態(tài)性與HLA-C*12:02、HLA-B*52:01和HLA-DQA1*03:01位點相關(guān)[56-57]。一項使用蛋白質(zhì)印跡和質(zhì)譜分析的研究表明[54-55],異煙肼的反應(yīng)性代謝物可以與肝蛋白上的多個賴氨酸殘基發(fā)生反應(yīng)。此外,異煙肼代謝中產(chǎn)生的肼可直接與肝細胞發(fā)生過氧化反應(yīng)而誘發(fā)肝毒性[55, 58]。

3.4 磺胺類

磺胺類藥物制劑包括磺胺嘧啶、磺胺多辛和磺胺異惡唑,以及包括柳氮磺胺吡啶和復(fù)方磺胺甲惡唑(TMP/SMZ,也稱為復(fù)方新諾明)的組合制劑?;前奉愃幬飼鹛禺愘|(zhì)肝損傷,損傷的模式可以是肝細胞型或膽汁淤積型。磺胺類藥物常見副作用包括腹瀉、惡心、皮疹、頭痛、關(guān)節(jié)痛和嗜酸性粒細胞增多或非典型淋巴細胞增多癥,嚴重時可導(dǎo)致急性肝功能衰竭。TMP/SMZ致肝損傷相關(guān)的遺傳多態(tài)性與HLA-A*34:02、HLA-B*14:01和HLA-B*27:02位點相關(guān)[59]。研究表明TMP/SMZ 引起特異質(zhì)肝損傷具有藥物過敏或超敏反應(yīng)的特征,可能是通過其代謝為毒性、反應(yīng)性或抗原性代謝物所引起[5, 32]。

3.5 米諾環(huán)素

米諾環(huán)素是一種四環(huán)素類抗生素,臨床上會引起特異質(zhì)、間接肝損傷,表型分為急性肝炎和慢性肝炎。米諾環(huán)素所致急性肝炎類似于急性病毒性肝炎,肝損傷通常是自限性的,具有免疫過敏特征,表現(xiàn)為發(fā)熱、皮疹、嗜酸性粒細胞增多和血清酶水平升高[60]。米諾環(huán)素所致慢性肝炎的潛伏期為數(shù)月至數(shù)年,常見的表現(xiàn)是自身免疫性肝炎樣綜合征,ALT升高伴膽紅素升高[61-62]。米諾環(huán)素引起的肝毒性可能與免疫學(xué)有關(guān),由肝細胞或肝臟中存在的米諾環(huán)素代謝產(chǎn)物的自身免疫反應(yīng)介導(dǎo)[14, 61-62]。此外,米諾環(huán)素致肝損傷相關(guān)的遺傳多態(tài)性與HLA-B*35:02位點相關(guān)[63]。

4 小結(jié)和展望

抗菌藥物相關(guān)性肝損傷是臨床上一種重要的肝病形式,其發(fā)生率有待進一步的研究。不同類型的抗菌藥物所致肝臟毒性的類型和表型也不一樣,這對于疾病的診斷尤其具有挑戰(zhàn)性。本文主要從藥物代謝、遺傳差異、藥物介導(dǎo)免疫損傷等方面對抗菌藥物相關(guān)性肝損傷發(fā)病機制進行總結(jié)。目前關(guān)于抗菌藥物相關(guān)性肝損傷發(fā)病機制尚未完全闡明。未來關(guān)于DILI發(fā)病機制相關(guān)問題還有待深究,包括遺傳多態(tài)性、藥物基因組學(xué)、人類白細胞抗原(HLA)、適應(yīng)性免疫攻擊、氧化應(yīng)激、細胞死亡、能量代謝、肝衍生細胞系與DILI研究等。

關(guān)于DILI的防治,及時停用可疑藥物,避免再次使用同類藥物仍是最重要的措施。目前我國研發(fā)的異甘草酸鎂注射液(天晴甘美)已被批準治療急性DILI,該藥主要成分是異甘草酸鎂,可顯著降低ALT和總膽紅素水平,改善病情[64]。研究表明基因檢測可用于排除 DILI 的診斷或者在多種藥物可能導(dǎo)致 DILI 的臨床情況下排除特定藥物作為致病因子[22]。未來在應(yīng)用抗菌藥物前,或許可以通過檢測該等位基因的位點,從而達到預(yù)防DILI發(fā)生。

綜上,本文主要對不同類型抗菌藥物致肝臟毒性的機制及臨床特點等相關(guān)研究進行綜述,警示大家重視抗菌藥物致肝臟毒性的風險,促進臨床安全合理用藥。

參 考 文 獻

Fontana R J, Liou I, Reuben A, et al. AASLD practice guidance on drug, herbal and dietary supplement induced liver injury [J]. Hepatology, 2022:1-29.

Shen T, Liu Y, Shang J, et al. Incidence and etiology of drug-induced liver injury in mainland China [J]. Gastroenterology, 2019, 156(8): 2230-2241.

Chalasani N P, Hayashi P H, Bonkovsky H L, et al. ACG clinical guideline: the diagnosis and management of idiosyncratic drug-induced liver injury [J]. Am J Gastroenterol, 2014, 109(7): 950-966.

Bj?rnsson E S, Bergmann O M, Bj?rnsson H K, et al. Incidence, presentation, and outcomes in patients with drug-induced liver injury in the general population of Iceland [J]. Gastroenterology, 2013, 144(7): 1419-1425.

Chalasani N, Bonkovsky H L, Fontana R, et al. Features and outcomes of 899 patients with drug-induced liver injury: the DILIN prospective study [J]. Gastroenterology, 2015, 148(7): 1340-1352.

雷曉紅, 李靜, 唐潔婷, 等. EASL臨床實踐指南簡介:藥物性肝損傷 [J]. 肝臟, 2019, 24(04): 339-348.

Chalasani N P, Maddur H, Russo M W, et al. ACG clinical guideline: diagnosis and management of idiosyncratic drug-induced liver injury [J]. Am J Gastroenterol, 2021, 116(5): 878-898.

Hoofnagle J H, Bj?rnsson E S. Drug-induced liver injury—types and phenotypes [J]. N Engl J Med, 2019, 381(3): 264-273.

Yu YC, Mao YM, Chen CW, et al. CSH guidelines for the diagnosis and treatment of drug-induced liver injury [J]. Hepatol Int, 2017, 11(3): 221-241.

Andrade R J, Aithal G P, Bj?rnsson E S, et al. EASL clinical practice guidelines: drug-induced liver injury [J]. J Hepatol, 2019, 70(6): 1222-1261.

宋芳嬌, 翟慶慧, 賀慶娟, 等. 2 820例藥物性肝損傷臨床分析 [J]. 中華肝臟病雜志, 2020, 28(11): 954-958.

Medina-Caliz I, Robles-Diaz M, Garcia-Mu?oz B, et al. Definition and risk factors for chronicity following acute idiosyncratic drug-induced liver injury [J]. J Hepatol, 2016, 65(3): 532-542.

中華醫(yī)學(xué)會, 中華醫(yī)學(xué)會雜志社, 中華醫(yī)學(xué)會消化病學(xué)分會, 等. 藥物性肝損傷基層診療指南(2019年) [J]. 中華全科醫(yī)師雜志, 2020, 19(10): 868-875.

de Boer Y S, Kosinski A S, Urban T J, et al. Features of autoimmune hepatitis in patients with drug-induced liver injury [J]. Clin Gastroenterol Hepatol, 2017, 15(1): 103-112.

Delemos A S, Ghabril M, Rockey D C, et al. Amoxicillin–clavulanate-induced liver injury [J]. Dig Dis Sci, 2016, 61(8): 2406-2416.

Bonkovsky H L, Kleiner D E, Gu J, et al. Clinical presentations and outcomes of bile duct loss caused by drugs and herbal and dietary supplements [J]. Hepatology, 2017, 65(4): 1267-1277.

Alqahtani S A, Kleiner D E, Ghabril M, et al. Identification and characterization of cefazolin-induced liver injury [J]. Clin Gastroenterol Hepatol, 2015, 13(7): 1328-1336.

Fontana R J, Cirulli E T, Gu J, et al. The role of HLA-A* 33: 01 in patients with cholestatic hepatitis attributed to terbinafine [J]. J Hepatol, 2018, 69(6): 1317-1325.

Orman E S, Conjeevaram H S, Vuppalanchi R, et al. Clinical and histopathologic features of fluoroquinolone-induced liver injury [J]. Clin Gastroenterol Hepatol, 2011, 9(6): 517-523.

Martinez M A, Vuppalanchi R, Fontana R J, et al. Clinical and histologic features of azithromycin-induced liver injury [J]. Clin Gastroenterol Hepatol, 2015, 13(2): 369-376.

Yeboah‐Korang A, Fontana R J. Drug‐induced liver injury [M]. Yamada's Textbook of Gastroenterology, 2022: 1878-1888.

Devarbhavi H, Aithal G, Treeprasertsuk S, et al. Drug-induced liver injury: asia pacific association of study of liver consensus guidelines [J]. Hepatol Int, 2021, 15(2): 258-282.

Hoofnagle J H, Navarro V J. Drug-induced liver injury: icelandic lessons [J]. Gastroenterology, 2013, 144(7): 1335-1336.

Fountain F F, Tolley E, Chrisman C R, et al. Isoniazid hepatotoxicity associated with treatment of latent tuberculosis infection: a 7-year evaluation from a public health tuberculosis clinic [J]. Chest, 2005, 128(1): 116-123.

Boelsterli U A, Lee K K. Mechanisms of isoniazid‐induced idiosyncratic liver injury: Emerging role of mitochondrial stress [J]. J Gastroenterol Hepatol, 2014, 29(4): 678-687.

George N, Chen M, Yuen N, et al. Interplay of gender, age and drug properties on reporting frequency of drug-induced liver injury [J]. Regul Toxicol Pharmacol, 2018, 94: 101-107.

Lucena M I, Andrade R J, Kaplowitz N, et al. Phenotypic characterization of idiosyncratic drug‐induced liver injury: the influence of age and sex [J]. Hepatology, 2009, 49(6): 2001-2009.

Hunt C M, Yuen N A, Stirnadel-Farrant H A, et al. Age-related differences in reporting of drug-associated liver injury: data-mining of WHO Safety Report Database [J]. Regul Toxicol Pharmacol, 2014, 70(2): 519-526.

deLemos A S, Foureau D M, Jacobs C, et al. Drug-induced liver injury with autoimmune features [J]. Semin Liver Dis, 2014, 34(2): 194-204.

Di Paola F, Molleston J P, Gu J, et al. Antimicrobials and anti-epileptics are the leading causes of idiosyncratic drug induced liver injury in American children [J]. J Pediatr Gastroenterol Nutr, 2019, 69(2): 152-159.

Fontana R J, Hayashi P H, Gu J, et al. Idiosyncratic drug-induced liver injury is associated with substantial morbidity and mortality within 6 months from onset [J]. Gastroenterology, 2014, 147(1): 96-108.

Chalasani N, Reddy K R K, Fontana R J, et al. Idiosyncratic drug induced liver injury in African-Americans is associated with greater morbidity and mortality compared to caucasians [J]. Am J Gastroenterol, 2017, 112(9): 1382-1388.

Khoury T, Rmeileh A A, Yosha L, et al. Drug induced liver injury: review with a focus on genetic factors, tissue diagnosis, and treatment options [J]. J Clin Transl Hepatol, 2015, 3(2): 99-108.

Vuppalanchi R, Gotur R, Reddy K R, et al. Relationship between characteristics of medications and drug-induced liver disease phenotype and outcome [J]. Clin Gastroenterol Hepatol, 2014, 12(9): 1550-1555.

Lammert C, Bjornsson E, Niklasson A, et al. Oral medications with significant hepatic metabolism at higher risk for hepatic adverse events [J]. Hepatology, 2010, 51(2): 615-620.

Chen M, Suzuki A, Borlak J, et al. Drug-induced liver injury: Interactions between drug properties and host factors [J]. J Hepatol, 2015, 63(2): 503-514.

Suzuki A, Yuen N A, Ilic K, et al. Comedications alter drug-induced liver injury reporting frequency: Data mining in the WHO VigiBase? [J]. Regul Toxicol Pharmacol, 2015, 72(3): 481-490.

Weaver R J, Betts C, Blomme E A, et al. Test systems in drug discovery for hazard identification and risk assessment of human drug-induced liver injury: Industry-led perspective from EFPIA members of the EU innovative medicines initiative drug liver injury project, MIP DILI [J]. Expert Opin Drug Met, 2017, 13(7): 767-782.

Cirulli E T, Nicoletti P, Abramson K, et al. A missense variant in PTPN22 is a risk factor for drug-induced liver injury [J]. Gastroenterology, 2019, 156(6): 1707-1716.

Chomchai S, Chomchai C. Being overweight or obese as a risk factor for acute liver injury secondary to acute acetaminophen overdose [J]. Pharmacoepidem Dr S, 2018, 27(1): 19-24.

Schr?der T, Schmidt K J, Olsen V, et al. Liver steatosis is a risk factor for hepatotoxicity in patients with inflammatory bowel disease under immunosuppressive treatment [J]. Eur J Gastroenterol Hepatol, 2015, 27(6): 698-704.

Fontana R J. Pathogenesis of idiosyncratic drug-induced liver injury and clinical perspectives [J]. Gastroenterology, 2014, 146(4): 914-928.

Su E, Crowley K, Carcillo J A, et al. Linezolid and lactic acidosis: a role for lactate monitoring with long-term linezolid use in children [J]. Pediatr Infect Dis J, 2011, 30(9): 804-806.

Tujios S, Fontana R J. Mechanisms of drug-induced liver injury: from bedside to bench [J]. Nat Rev Gastroenterol Hepatol, 2011, 8(4): 202-211.

Mosedale M, Watkins P B. Understanding idiosyncratic toxicity: lessons learned from drug-induced liver injury [J]. J Med Chem, 2020, 63(12): 6436-6461.

Daly A K, Donaldson P T, Bhatnagar P, et al. HLA-B* 5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin [J]. Nat Genet, 2009, 41(7): 816-819.

Nicoletti P, Aithal G P, Chamberlain T C, et al. Drug‐induced liver injury due to flucloxacillin: relevance of multiple human leukocyte antigen alleles [J]. Clin Pharmacol Ther, 2019, 106(1): 245-253.

Andrade R J, Chalasani N, Bj?rnsson E S, et al. Drug-induced liver injury [J]. Nat Rev Dis Primers, 2019, 5(1): 1-22.

Lucena M I, Andrade R J, Fernández M C, et al. Determinants of the clinical expression of amoxicillin‐clavulanate hepatotoxicity: a prospective series from Spain [J]. Hepatology, 2006, 44(4): 850-856.

Lucena M I, Molokhia M, Shen Y, et al. Susceptibility to amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class I and Ⅱ alleles [J]. Gastroenterology, 2011, 141(1): 338-347.

Petrov P D, Soluyanova P, Sánchez-Campos S, et al. Molecular mechanisms of hepatotoxic cholestasis by clavulanic acid: role of NRF2 and FXR pathways [J]. Food Chem Toxicol, 2021, 158: 112664.

Sakaan S A, Twilla J D, Usery J B, et al. Nitrofurantoin-induced hepatotoxicity: a rare yet serious complication [J]. South Med J, 2014, 107(2): 107-113.

Stine J G, Northup P G. Autoimmune-like drug-induced liver injury: a review and update for the clinician [J]. Expert Opin Drug Metab Toxicol, 2016, 12(11): 1291-1301.

Metushi I G, Nakagawa T, Uetrecht J. Direct oxidation and covalent binding of isoniazid to rodent liver and human hepatic microsomes: humans are more like mice than rats [J]. Chem Res Toxicol, 2012, 25(11): 2567-2576.

Meng X, Maggs J L, Usui T, et al. Auto-oxidation of isoniazid leads to isonicotinic-lysine adducts on human serum albumin [J]. Chem Res Toxicol, 2015, 28(1): 51-58.

Nicoletti P, Aithal G P, Bjornsson E S, et al. Association of liver injury from specific drugs, or groups of drugs, with polymorphisms in HLA and other genes in a genome-wide association study [J]. Gastroenterology, 2017, 152(5): 1078-1089.

Nicoletti P, Devarbhavi H, Goel A, et al. Genetic risk factors in drug‐induced liver injury due to isoniazid‐containing antituberculosis drug regimens [J]. Clin Pharmacol Ther, 2021, 109(4): 1125-1135.

Metushi I, Uetrecht J, Phillips E. Mechanism of isoniazid‐induced hepatotoxicity: then and now [J]. Br J Clin Pharmacol, 2016, 81(6): 1030-1036.

Li Y J, Phillips E J, Dellinger A, et al. Human Leukocyte Antigen B* 14: 01 and B* 35: 01 Are Associated with Trimethoprim‐Sulfamethoxazole Induced Liver Injury [J]. Hepatology, 2021, 73(1): 268-281.

Casella G, Villanacci V, Di Bella C, et al. Acute hepatitis caused by minocycline [J]. Rev Esp Enferm Dig, 2010, 102(11): 667-668.

Harmon E G, McConnie R, Kesavan A. Minocycline-induced autoimmune hepatitis: a rare but important cause of drug-induced autoimmune hepatitis [J]. Pediatr Gastroenterol Hepatol Nutr, 2018, 21(4): 347-350.

Shah J, Shahidullah A, Liu Y. Drug-induced autoimmune hepatitis in a patient treated with minocycline: a rare adverse effect [J]. Case Rep Gastroenterol, 2018, 12(2): 447-452.

Urban T J, Nicoletti P, Chalasani N, et al. Minocycline hepatotoxicity: clinical characterization and identification of HLA-B* 35: 02 as a risk factor [J]. J Hepatol, 2017, 67(1): 137-144.

Wang Y, Wang Z, Gao M, et al. Efficacy and safety of magnesium isoglycyrrhizinate injection in patients with acute drug‐induced liver injury: a phase Ⅱ trial [J]. Liver Int, 2019, 39(11): 2102-2111.

猜你喜歡
發(fā)病機制抗菌藥物合理用藥
微量激素聯(lián)合抗菌藥物治療細菌性角膜炎的療效觀察
肝性心肌病研究進展
糖尿病腎病治療的研究進展
痛風免疫遺傳學(xué)機制研究進展
淺析中醫(yī)中風病的病因病機
金秀| 隆昌县| 延寿县| 深圳市| 青阳县| 西和县| 毕节市| 庄河市| 德江县| 金坛市| 岑溪市| 台中市| 乌拉特后旗| 南和县| 塔河县| 颍上县| 济宁市| 德州市| 芦溪县| 双辽市| 林西县| 达日县| 涿鹿县| 玛沁县| 榕江县| 高台县| 攀枝花市| 红安县| 扶余县| 建水县| 岳西县| 灵武市| 平顺县| 玉山县| 水城县| 广宗县| 永丰县| 江陵县| 旌德县| 延寿县| 云和县|