何 慶,楊俊玲,王有棟,3,張海倫,章學(xué)來,張振濤,李曉瓊
適用于不同農(nóng)產(chǎn)品貯藏的CO2多溫區(qū)復(fù)疊制冷系統(tǒng)性能分析
何 慶1,2,楊俊玲2,王有棟2,3,張海倫2,章學(xué)來1,張振濤2,李曉瓊2※
(1. 上海海事大學(xué)商船學(xué)院,上海 201306;2. 中國科學(xué)院理化技術(shù)研究所,北京 100190;3. 天津科技大學(xué)機(jī)械工程學(xué)院,天津 300222)
為評估多溫區(qū)制冷系統(tǒng)性能,探究其在農(nóng)產(chǎn)品冷庫貯藏中應(yīng)用的可行性,設(shè)計(jì)了低碳環(huán)保型多溫區(qū)復(fù)疊制冷系統(tǒng)。該研究以CO2雙溫區(qū)與三溫區(qū)復(fù)疊制冷系統(tǒng)為研究對象,通過設(shè)置壓力調(diào)節(jié)閥(簡稱節(jié)流系統(tǒng))和增壓壓縮機(jī)(簡稱增壓系統(tǒng))解決不同并聯(lián)溫區(qū)間的壓差問題,建立兩類制冷系統(tǒng)的熱力學(xué)模型,分析了雙溫區(qū)和三溫區(qū)復(fù)疊制冷系統(tǒng)運(yùn)行參數(shù)對其性能系數(shù)(coefficient of performance,OP)與?效率的影響,并在參考工況下對雙溫區(qū)和三溫區(qū)復(fù)疊制冷系統(tǒng)的兩種運(yùn)行模式進(jìn)行了對比。結(jié)果表明:增壓系統(tǒng)性能系數(shù)與?效率均高于節(jié)流系統(tǒng),參考工況下雙溫區(qū)與三溫區(qū)增壓系統(tǒng)相對于節(jié)流系統(tǒng)性能系數(shù)分別提升30.4%和23.4%;雙溫區(qū)與三溫區(qū)復(fù)疊制冷系統(tǒng)各部件中,冷凝器具有最大的?損,采用壓力調(diào)節(jié)閥給節(jié)流系統(tǒng)帶來了更大的能量損失;同工況下,該研究所設(shè)計(jì)的雙溫區(qū)和三溫區(qū)增壓系統(tǒng)性能系數(shù)是CO2/R134a單溫區(qū)復(fù)疊系統(tǒng)的1.5和2.3倍;經(jīng)濟(jì)性對比發(fā)現(xiàn),雙溫區(qū)與三溫區(qū)復(fù)疊制冷循環(huán)增壓系統(tǒng)年度總成本比節(jié)流系統(tǒng)分別節(jié)省6 554和8 156美元。因此,多溫區(qū)增壓系統(tǒng)在熱力性能與經(jīng)濟(jì)性上均優(yōu)于節(jié)流系統(tǒng),研究結(jié)果可為CO2多溫區(qū)復(fù)疊制冷系統(tǒng)的開發(fā)與應(yīng)用提供理論基礎(chǔ)。
農(nóng)產(chǎn)品;貯藏;CO2多溫區(qū)復(fù)疊制冷;節(jié)流系統(tǒng);增壓系統(tǒng);熱力性能;經(jīng)濟(jì)分析
中國作為農(nóng)業(yè)大國,每年生鮮農(nóng)產(chǎn)品腐損率高,冷鏈物流需求日益旺盛[1]。2021年國務(wù)院辦公廳印發(fā)《“十四五”冷鏈物流發(fā)展規(guī)劃的通知》,在國家碳達(dá)峰碳中和戰(zhàn)略目標(biāo)背景下,對冷鏈物流低碳發(fā)展提出了新任務(wù),要加快推進(jìn)低碳冷鏈技術(shù)發(fā)展,促進(jìn)冷鏈設(shè)備減排降耗[2]。冷庫作為農(nóng)產(chǎn)品冷鏈物流中的重要貯藏場所,對保持農(nóng)產(chǎn)品新鮮度、延長其保質(zhì)期具有重要意義[3]。制冷系統(tǒng)作為冷庫的核心,為冷庫提供冷量,當(dāng)前國內(nèi)大多數(shù)冷庫系統(tǒng)仍采用人工合成的氟利昂制冷劑,制冷運(yùn)行能耗及制冷劑泄漏會帶來大量碳排放[4]。為助力實(shí)現(xiàn)國家雙碳目標(biāo),《冷庫低碳評價指標(biāo)》團(tuán)體標(biāo)準(zhǔn)明確表示將在2025年國內(nèi)冷庫實(shí)現(xiàn)碳減排20%左右,力爭到2030年減碳約70%。冷庫系統(tǒng)減碳面臨巨大壓力,目前主要通過提升系統(tǒng)能效或采用環(huán)保型制冷劑來降低冷庫碳排放。自然工質(zhì)CO2被稱為雙碳目標(biāo)下制冷技術(shù)發(fā)展的最優(yōu)途徑,該工質(zhì)對臭氧層沒有破壞作用、還能緩解溫室效應(yīng),因其優(yōu)良的流動和傳熱特性、安全性及化學(xué)穩(wěn)定性等特性被廣泛應(yīng)用于制冷循環(huán)系統(tǒng)中[5-6]。由于核心部件的限制,國內(nèi)CO2制冷技術(shù)發(fā)展起步較晚,當(dāng)前主要集中在理論和試驗(yàn)研究方面[7-8]。在國家雙碳目標(biāo)下,加快推進(jìn)CO2制冷應(yīng)用,對低碳冷鏈技術(shù)的發(fā)展具有顯著意義。
此外,針對不同種類農(nóng)產(chǎn)品,其保鮮貯藏過程品質(zhì)受溫度影響較大,農(nóng)產(chǎn)品在其最佳貯藏條件下能夠有效延長保質(zhì)期[9-10]。當(dāng)前的冷庫設(shè)計(jì)大多數(shù)僅提供單一的溫度環(huán)境,只能滿足相同貯藏環(huán)境的農(nóng)產(chǎn)品保鮮需求[11]。隨著冷鏈技術(shù)的發(fā)展,多溫區(qū)制冷系統(tǒng)也有著廣泛需求。目前,多溫區(qū)制冷系統(tǒng)的研究主要集中在CO2跨臨界增壓系統(tǒng),通常為雙溫區(qū)模式,并在低溫級蒸發(fā)器后設(shè)置壓縮機(jī)以提升低壓壓力,其應(yīng)用場合主要為商超領(lǐng)域中的冷柜。GULLO[12]采用?分析方法對比了CO2跨臨界常規(guī)模式和帶有平行壓縮兩種結(jié)構(gòu)的增壓系統(tǒng)的不可逆性,并通過?效率與?損進(jìn)行了量化。曹鋒等[13]采用熱力學(xué)方法評估了傳統(tǒng)CO2跨臨界制冷系統(tǒng)和雙溫區(qū)增壓系統(tǒng)性能,研究表明增壓系統(tǒng)較傳統(tǒng)跨臨界系統(tǒng)能夠有效提升效率10%以上。LIU等[14-15]對帶有雙蒸發(fā)溫度的超市CO2跨臨界增壓系統(tǒng)進(jìn)行了熱力學(xué)分析,通過建立數(shù)值模型對比了常規(guī)增壓系統(tǒng)和帶有回?zé)崞鞯脑鰤合到y(tǒng)的熱力學(xué)性能,并評估了系統(tǒng)在中國不同氣候區(qū)的全年性能。CO2雙溫區(qū)增壓系統(tǒng)主要以跨臨界方式運(yùn)行,高壓側(cè)運(yùn)行壓力高,蒸發(fā)溫度較低時,壓縮機(jī)較高的壓比會使系統(tǒng)運(yùn)行效率下降。復(fù)疊制冷系統(tǒng)由2個單級制冷循環(huán)耦合而成,克服了單級循環(huán)高壓縮比時系統(tǒng)性能惡化的問題,且CO2在亞臨界條件下運(yùn)行,在農(nóng)產(chǎn)品冷庫貯藏方面具有良好的應(yīng)用前景。但在復(fù)疊制冷系統(tǒng)中采用多溫區(qū)運(yùn)行模式的研究鮮有報道,多溫區(qū)復(fù)疊制冷系統(tǒng)運(yùn)行特性尚不清楚。
基于此,本文根據(jù)復(fù)疊制冷系統(tǒng)寬溫區(qū)特性設(shè)計(jì)了雙溫區(qū)和三溫區(qū)復(fù)疊制冷循環(huán),通過一個制冷系統(tǒng)便可提供多種農(nóng)產(chǎn)品適宜的冷卻環(huán)境。由于制冷工況的差異,分別在高蒸發(fā)溫度蒸發(fā)器后設(shè)置壓力調(diào)節(jié)閥(簡稱節(jié)流系統(tǒng))和低蒸發(fā)溫度蒸發(fā)器出口設(shè)置壓縮機(jī)(簡稱增壓系統(tǒng))調(diào)節(jié)不同溫區(qū)間的壓差,對比分析多溫區(qū)復(fù)疊制冷兩種系統(tǒng)的熱力學(xué)性能與經(jīng)濟(jì)特性,并與常規(guī)的單溫區(qū)CO2復(fù)疊制冷系統(tǒng)性能進(jìn)行比較,為CO2多溫區(qū)復(fù)疊制冷系統(tǒng)在農(nóng)產(chǎn)品冷凍、冷藏中的應(yīng)用可行性提供理論研究基礎(chǔ)。
針對所研究的多溫區(qū)復(fù)疊制冷系統(tǒng),低溫級以自然工質(zhì)CO2作為制冷劑,高溫級采用環(huán)保型過渡工質(zhì)HFC/HFO混合物R513A為制冷劑,表1為2種制冷劑的熱物性參數(shù)[16-17]。
表1 制冷劑物性參數(shù)
圖1為雙溫區(qū)復(fù)疊制冷系統(tǒng)示意圖,兩并聯(lián)蒸發(fā)器經(jīng)其前的膨脹閥Ⅰ和膨脹閥Ⅱ調(diào)節(jié)至不同的蒸發(fā)溫度。假設(shè)蒸發(fā)器Ⅰ蒸發(fā)溫度低于蒸發(fā)器Ⅱ,節(jié)流系統(tǒng)中,如圖1a所示,流過蒸發(fā)器Ⅱ的制冷劑經(jīng)壓力調(diào)節(jié)閥降壓至蒸發(fā)器Ⅰ的壓力水平,與蒸發(fā)器Ⅰ出來的制冷劑混合進(jìn)入低溫級壓縮機(jī),壓縮后的高壓蒸汽在冷凝蒸發(fā)器中被冷凝成液體進(jìn)入儲液器,通過膨脹閥分配至各回路的蒸發(fā)器進(jìn)行制冷。高溫級制冷劑在冷凝蒸發(fā)器中吸收低溫級釋放的冷凝熱,經(jīng)高溫級壓縮機(jī)壓縮后在冷凝器中排放熱量,節(jié)流后再次回到冷凝蒸發(fā)器,完成一個循環(huán)。增壓系統(tǒng)高溫級與節(jié)流系統(tǒng)高溫級循環(huán)過程相同,而低溫級則是利用增壓壓縮機(jī)將蒸發(fā)器Ⅰ流出的制冷劑壓力提升至蒸發(fā)器Ⅱ所處壓力水平,雙溫區(qū)復(fù)疊制冷增壓系統(tǒng)如圖1b所示。
注:1~8為雙溫區(qū)復(fù)疊制冷系統(tǒng)低溫循環(huán)對應(yīng)位置狀態(tài)點(diǎn),1'~4'為雙溫區(qū)復(fù)疊制冷系統(tǒng)高溫循環(huán)對應(yīng)位置狀態(tài)點(diǎn)。
Note: 1-8 are the corresponding position status points of the low temperature cycle and 1'-4' are the corresponding position status points of the high temperature cycle of the double temperature zone cascade refrigeration system.
圖1 雙溫區(qū)復(fù)疊制冷系統(tǒng)流程圖
Fig.1 Flow charts of double temperature zone cascade refrigeration system
三溫區(qū)復(fù)疊制冷系統(tǒng)流程見圖2所示,其同樣在CO2低溫級設(shè)置了2個溫區(qū),分別提供農(nóng)產(chǎn)品冷凍與凍藏所需溫度,與雙溫區(qū)有所不同的是在R513A高溫級增設(shè)一個冷藏溫區(qū),新增的蒸發(fā)器Ⅲ與冷凝蒸發(fā)器并聯(lián),用于提供農(nóng)產(chǎn)品冷藏所需冷量。圖2a所示為三溫區(qū)節(jié)流系統(tǒng),在高溫級與低溫級均設(shè)置壓力調(diào)節(jié)閥,分別使高溫級與低溫級蒸發(fā)壓力高的一側(cè)節(jié)流至低蒸發(fā)壓力,在同等壓力下混合后進(jìn)入壓縮機(jī)。增壓系統(tǒng)流程如圖2b所示,高低溫級均在低蒸發(fā)溫度的蒸發(fā)器出口設(shè)置壓縮機(jī),使低蒸發(fā)壓力側(cè)經(jīng)壓縮后升至高蒸發(fā)壓力。
注:1~8為三溫區(qū)復(fù)疊制冷系統(tǒng)低溫循環(huán)對應(yīng)位置狀態(tài)點(diǎn),1'~8'為三溫區(qū)復(fù)疊制冷系統(tǒng)高溫循環(huán)對應(yīng)位置狀態(tài)點(diǎn)。
Note: 1-8 are the corresponding position status points of the low temperature cycle and 1'-8' are the corresponding position status points of the high temperature cycle of the three temperature zone cascade refrigeration system.
圖2 三溫區(qū)復(fù)疊制冷系統(tǒng)流程圖
Fig.2 Flow charts of three temperature zone cascade refrigeration system
根據(jù)CO2制冷劑特性,其蒸發(fā)溫度可達(dá)-55 ℃,能滿足大多數(shù)果蔬、食用菌和肉類等農(nóng)產(chǎn)品的貯藏溫度范圍。制冷系統(tǒng)采用多溫區(qū)的運(yùn)行模式,通過在冷庫中設(shè)置不同的隔間,并聯(lián)蒸發(fā)器冷風(fēng)機(jī)依次置于隔間內(nèi),其溫度可通過蒸發(fā)器前的膨脹閥進(jìn)行調(diào)節(jié),其優(yōu)勢在于根據(jù)溫區(qū)數(shù)量,多種農(nóng)產(chǎn)品可同時進(jìn)行低溫速凍、凍藏和冷藏,表2給出了多溫區(qū)復(fù)疊制冷系統(tǒng)中不同農(nóng)產(chǎn)品的適宜貯藏溫區(qū)。
表2 不同農(nóng)產(chǎn)品適宜貯藏溫區(qū)
針對并聯(lián)溫區(qū),節(jié)流系統(tǒng)通過執(zhí)行壓力調(diào)節(jié)閥的PID控制或其他控制方式,以低溫側(cè)蒸發(fā)壓力為目標(biāo)壓力,調(diào)節(jié)閥后壓力為反饋壓力,實(shí)時調(diào)控閥門開度實(shí)現(xiàn)反饋壓力達(dá)到目標(biāo)壓力。增壓系統(tǒng)通過執(zhí)行增壓壓縮機(jī)的PID控制或其他控制方式,以高溫側(cè)蒸發(fā)壓力為目標(biāo)壓力,增壓壓縮機(jī)后的壓力為反饋壓力,實(shí)時調(diào)控壓縮機(jī)運(yùn)行頻率實(shí)現(xiàn)反饋壓力達(dá)到目標(biāo)壓力。
為簡化研究過程,在進(jìn)行熱力學(xué)循環(huán)特性分析前,對系統(tǒng)作如下假設(shè)[26-27]:
1)系統(tǒng)處于穩(wěn)定流動狀態(tài),各部件及管道中的壓損忽略不計(jì);
2)高低循環(huán)中節(jié)流過程為等焓節(jié)流;
3)壓縮過程為絕熱壓縮,系統(tǒng)循環(huán)無過冷。
表3為雙溫區(qū)和三溫區(qū)復(fù)疊制冷系統(tǒng)熱力計(jì)算參考工況。
圖3和圖4分別為雙溫區(qū)和三溫區(qū)復(fù)疊制冷循環(huán)壓焓圖,圖中的狀態(tài)點(diǎn)與圖1和圖2中流程圖的狀態(tài)點(diǎn)一一對應(yīng)?;跓崃W(xué)第一定律和熱力學(xué)第二定律,采用能量分析方法和?分析方法對系統(tǒng)熱力性能進(jìn)行評估,其中能量分析能夠有效反映系統(tǒng)能量在轉(zhuǎn)換、傳遞和利用過程中的數(shù)量變化,而?分析方法能夠表現(xiàn)出該過程能量質(zhì)量的變化情況[28]。系統(tǒng)的?主要由物理?、化學(xué)?、動能?和勢能?組成,在制冷系統(tǒng)中,速度和高度的變化可忽略不計(jì),系統(tǒng)不存在化學(xué)反應(yīng),因此在進(jìn)行?分析時僅需考慮物理?的變化。狀態(tài)點(diǎn)的比物理?可表示為
式中e為狀態(tài)點(diǎn)的比物理?,kJ/kg;h為狀態(tài)點(diǎn)的比焓,kJ/kg;s為狀態(tài)點(diǎn)的比熵,kJ/(kg·K);0為環(huán)境溫度,℃;0為工質(zhì)在環(huán)境狀態(tài)下的比焓,kJ/kg;0為工質(zhì)在環(huán)境狀態(tài)下的比熵,kJ/(kg·K)。
雙溫區(qū)和三溫區(qū)復(fù)疊制冷系統(tǒng)熱力學(xué)分析過程所涉及的能量平衡及?平衡方程分別見表4和表5。
表3 雙溫區(qū)和三溫區(qū)復(fù)疊制冷系統(tǒng)計(jì)算參考工況
注:ΔTcas為冷凝蒸發(fā)器中的傳熱溫差,℃;圖中數(shù)字含義同圖1。
注:ΔTcas為冷凝蒸發(fā)器中的傳熱溫差,℃;圖中數(shù)字含義同圖2。
復(fù)疊制冷系統(tǒng)評價指標(biāo)主要有性能系數(shù)(coefficient of performance,OP)和?效率(exergy efficiency,η),性能系數(shù)為系統(tǒng)制冷量與壓縮機(jī)耗功的比值,反應(yīng)能量利用在數(shù)量上的變化;?效率是指系統(tǒng)的有效利用?與輸入?的比值,體現(xiàn)了系統(tǒng)能量轉(zhuǎn)換效果與有效利用程度。
基于表3中雙溫區(qū)系統(tǒng)參數(shù)設(shè)定值與表4中熱力學(xué)分析模型,計(jì)算雙溫區(qū)復(fù)疊制冷循環(huán)節(jié)流系統(tǒng)和增壓系統(tǒng)性能系數(shù)與?效率。
節(jié)流系統(tǒng)性能系數(shù)和?效率為:
增壓系統(tǒng)性能系數(shù)和?效率為:
式中OP,dt為雙溫區(qū)復(fù)疊制冷循環(huán)節(jié)流系統(tǒng)性能系數(shù);e,dt為節(jié)流系統(tǒng)?效率,%;OP,db為雙溫區(qū)復(fù)疊制冷循環(huán)增壓系統(tǒng)性能系數(shù);e,db為增壓系統(tǒng)?效率,%;D,total為總?損(相應(yīng)系統(tǒng)所有部件?損之和),kW。
表4 雙溫區(qū)復(fù)疊制冷系統(tǒng)能量與?平衡方程
表5 三溫區(qū)復(fù)疊制冷系統(tǒng)部件能量與?平衡方程
注:表4和表5中,L1、L2和H2分別為蒸發(fā)器Ⅰ、蒸發(fā)器Ⅱ和蒸發(fā)器Ⅲ的制冷量,kW;LTC,comp、HTC,comp、LTC,zy和HTC,zy分別為低溫級壓縮機(jī)、高溫級壓縮機(jī)、低溫級增壓壓縮機(jī)和高溫級增壓壓縮機(jī)的耗功,kW;h為狀態(tài)點(diǎn)的比焓,kJ·kg-1;e為狀態(tài)點(diǎn)的比物理?,kJ·kg-1;Ex為表4和表5中對應(yīng)部件的?損,kW;L1、L2、H1和H2分別為流經(jīng)蒸發(fā)器I、蒸發(fā)器Ⅱ、冷凝蒸發(fā)器和蒸發(fā)器Ⅲ的質(zhì)量流量,kg·s-1;Q為系統(tǒng)高溫級冷凝熱,kW;ev1、ev2和ev3分別為蒸發(fā)器I、蒸發(fā)器Ⅱ和蒸發(fā)器Ⅲ的蒸發(fā)溫度,℃;cas為冷凝蒸發(fā)器換熱效率,%;0為環(huán)境溫度,℃;Δ0為蒸發(fā)器換熱溫差,℃。
Note: in the table 4 and table 5,L1,L2andH2are the cooling capacity of evaporator I, evaporator Ⅱ and evaporator Ⅲrespectively, kW;LTC,comp、HTC,comp、LTC,zyandHTC,zyare the power consumption of low temperature stage compressor, high temperature stage compressor, low temperature stage booster compressor and high temperature stage booster compressor respectively, kW;his the specific enthalpy of state point, kJ·kg-1;eis the specific physical exergy of state point, kJ·kg-1;Dis the exergy destruction rate of corresponding parts in the table 4 and table 5, kW;L1、L2、H1andH2are the mass flow through evaporator I, evaporator Ⅱ, condensation evaporator and evaporator Ⅲ respectively, kg·s-1;Qis the condensation heat at the high temperature stage of the system, kW;ev1、ev2和ev3are the evaporation temperature of evaporator Ⅰ, evaporator Ⅱ and evaporator Ⅲ respectively, ℃;casis the heat exchange efficiency of condensation evaporator, %;0is the ambient temperature, ℃; Δ0is the evaporator heat transfer temperature difference, ℃.
基于表3中三溫區(qū)系統(tǒng)參數(shù)設(shè)定值與表5中熱力學(xué)分析模型,計(jì)算三溫區(qū)復(fù)疊制冷循環(huán)節(jié)流系統(tǒng)和增壓系統(tǒng)性能系數(shù)與?效率。
節(jié)流系統(tǒng)性能系數(shù)和?效率為
增壓系統(tǒng)性能系數(shù)和?效率為
式中OP,tt為三溫區(qū)復(fù)疊制冷循環(huán)節(jié)流系統(tǒng)性能系數(shù);e,tt為節(jié)流系統(tǒng)?效率,%;OP,tb為三溫區(qū)復(fù)疊制冷循環(huán)增壓系統(tǒng)性能系數(shù);e,tb為增壓系統(tǒng)?效率,%。
為了探究多溫區(qū)復(fù)疊制冷系統(tǒng)的運(yùn)行特性,獲得最佳的設(shè)計(jì)與運(yùn)行參數(shù),分別研究雙溫區(qū)和三溫區(qū)復(fù)疊制冷系統(tǒng)在節(jié)流和增壓模式下低溫級冷凝溫度、冷凝蒸發(fā)器內(nèi)2種工質(zhì)傳熱溫差及高溫級冷凝溫度對系統(tǒng)熱力學(xué)性能的影響。
雙溫區(qū)復(fù)疊制冷循環(huán)節(jié)流模式和增壓模式的性能系數(shù)和?效率對比結(jié)果如圖5所示。圖5a為CO2低溫級冷凝溫度對雙溫區(qū)制冷系統(tǒng)性能系數(shù)與?效率的影響,節(jié)流系統(tǒng)和增壓系統(tǒng)的性能系數(shù)和?效率均先增大后減小,而增壓系統(tǒng)性能系數(shù)和?效率大于節(jié)流系統(tǒng),這是因?yàn)樵鰤簤嚎s機(jī)提高了低溫級CO2壓縮機(jī)的吸氣壓力,減小了壓縮比。在表3所示雙溫區(qū)參考工況下,節(jié)流系統(tǒng)和增壓系統(tǒng)性能系數(shù)分別為1.25和1.63,增壓系統(tǒng)相較于節(jié)流系統(tǒng)性能系數(shù)提高了30.4%。兩類系統(tǒng)的性能系數(shù)和?效率隨低溫級冷凝溫度升高變化幅度較小,節(jié)流系統(tǒng)與增壓系統(tǒng)性能系數(shù)變化率分別為1.5%和1.7%。
圖5b和圖5c分別為冷凝蒸發(fā)器傳熱溫差及高溫級冷凝溫度對雙溫區(qū)制冷系統(tǒng)的影響。從圖中可以看出,傳熱溫差和冷凝溫度增大均會造成系統(tǒng)性能系數(shù)和?效率下降,當(dāng)冷凝蒸發(fā)器傳熱溫差從2 ℃增大到10 ℃時,增壓系統(tǒng)性能系數(shù)從1.72降至1.49,?效率從35.9%下降到30.9%。高溫級冷凝溫度對雙溫區(qū)復(fù)疊制冷系統(tǒng)的影響也較大。
圖5d描述了蒸發(fā)溫度對雙溫區(qū)制冷系統(tǒng)的影響,隨著蒸發(fā)溫度ev1增大,節(jié)流系統(tǒng)和增壓系統(tǒng)的性能系數(shù)都有所提高。ev1相同時,蒸發(fā)溫度ev2增大對節(jié)流系統(tǒng)性能系數(shù)幾乎無影響,但其?效率下降,這是因?yàn)椴捎霉?jié)流模式后蒸發(fā)溫度ev2的增大增加了蒸發(fā)器Ⅱ出口壓力調(diào)節(jié)閥的節(jié)流損失;蒸發(fā)溫度ev2對增壓系統(tǒng)性能系數(shù)與?效率的影響相反,ev2增大會使增壓系統(tǒng)性能系數(shù)增大,而?效率反而下降。根據(jù)系統(tǒng)根據(jù)分析結(jié)果,在進(jìn)行雙溫區(qū)復(fù)疊制冷系統(tǒng)設(shè)計(jì)時,應(yīng)盡可能減小冷凝蒸發(fā)器內(nèi)換熱溫差和高溫級冷凝溫度,適當(dāng)提升系統(tǒng)蒸發(fā)溫度,以此改善系統(tǒng)性能,減小系統(tǒng)的不可逆損失。
圖5 運(yùn)行參數(shù)對雙溫區(qū)復(fù)疊制冷系統(tǒng)性能的影響
圖6反映了三溫區(qū)復(fù)疊制冷系統(tǒng)性能系數(shù)和?效率隨循環(huán)參數(shù)的變化規(guī)律,該系統(tǒng)不僅在低溫級設(shè)置了兩個溫區(qū),在高溫級也設(shè)置了一個同冷凝蒸發(fā)器并聯(lián)的溫區(qū),同時提供3個不同的蒸發(fā)溫度。隨著循環(huán)參數(shù)的變化,增壓系統(tǒng)性能系數(shù)和?效率始終高于節(jié)流系統(tǒng),對于三溫區(qū)復(fù)疊制冷循環(huán),采用增壓形式也體現(xiàn)了性能的優(yōu)越性。在表3所示三溫區(qū)系統(tǒng)計(jì)算工況下,三溫區(qū)復(fù)疊制冷循環(huán)節(jié)流系統(tǒng)與增壓系統(tǒng)性能系數(shù)分別為1.88和2.32,采用增壓形式系統(tǒng)性能系數(shù)提升了23.4%。如圖6a所示,低溫級冷凝溫度在-9~5 ℃范圍變化時,增壓系統(tǒng)性能系數(shù)和?效率與雙溫區(qū)復(fù)疊系統(tǒng)變化趨勢一致,低溫級冷凝溫度為-5 ℃時性能系數(shù)和?效率同時達(dá)到最大值,分別為2.33和28.9%,其性能系數(shù)變化范圍不超過0.02,?效率波動范圍不超過0.26%。而對于三溫區(qū)復(fù)疊制冷節(jié)流系統(tǒng)卻有不同的變化情況,性能系數(shù)和?效率隨著CO2低溫級冷凝溫度的升高均增大,意味著在該系統(tǒng)中,若要提升系統(tǒng)性能,則盡可能增大低溫級冷凝溫度。
冷凝蒸發(fā)器傳熱溫差與高溫級冷凝溫度對三溫區(qū)復(fù)疊制冷系統(tǒng)的性能系數(shù)和?效率的影響如圖6b和6c所示,傳熱溫差和冷凝溫度增大同樣導(dǎo)致了兩種系統(tǒng)性能下降,高溫級冷凝溫度為40 ℃時性能系數(shù)最大,此時兩系統(tǒng)性能系數(shù)相差0.63。傳熱溫差增大和高溫級冷凝溫度越遠(yuǎn)離環(huán)境溫度水平,均會增大系統(tǒng)的不可逆性損失,造成?效率下降。對于三溫區(qū)復(fù)疊制冷循環(huán),各溫區(qū)蒸發(fā)溫度的變化對系統(tǒng)性能系數(shù)均有影響,分析結(jié)果發(fā)現(xiàn)蒸發(fā)溫度ev1和ev2對三溫區(qū)復(fù)疊制冷循環(huán)節(jié)流和增壓系統(tǒng)性能系數(shù)和?效率的影響與雙溫區(qū)復(fù)疊制冷循的影響趨勢一致,因此在此僅研究蒸發(fā)溫度ev3對三溫區(qū)復(fù)疊制冷循環(huán)的影響,結(jié)果如圖6d所示。蒸發(fā)溫度ev3增大使三溫區(qū)增壓系統(tǒng)性能系數(shù)快速增大,而節(jié)流系統(tǒng)因制冷劑在壓力調(diào)節(jié)閥中節(jié)流后溫度與冷凝蒸發(fā)器出口溫度接近,所以系統(tǒng)性能系數(shù)基本保持不變,而壓力調(diào)節(jié)閥節(jié)流損失增大導(dǎo)致節(jié)流系統(tǒng)?效率急劇下降。
圖6 運(yùn)行參數(shù)對三溫區(qū)復(fù)疊制冷系統(tǒng)性能的影響
根據(jù)上述研究結(jié)果,雙溫區(qū)和三溫區(qū)復(fù)疊制冷循環(huán)的增壓系統(tǒng)在性能上具有較大優(yōu)勢,表6對本文所研究的雙溫區(qū)和三溫區(qū)復(fù)疊制冷循環(huán)增壓系統(tǒng)同常規(guī)的CO2單溫區(qū)復(fù)疊制冷系統(tǒng)性能系數(shù)進(jìn)行了比較,多溫區(qū)復(fù)疊制冷系統(tǒng)的蒸發(fā)溫度以最低蒸發(fā)溫度為對比工況。結(jié)果發(fā)現(xiàn)本文所研究的增壓系統(tǒng)在相同工況下具有較高的性能,在蒸發(fā)溫度為-50 ℃、冷凝溫度為40 ℃時,雙溫區(qū)和三溫區(qū)增壓系統(tǒng)性能系數(shù)為CO2/R134a復(fù)疊制冷系統(tǒng)的1.5和2.3倍,增壓系統(tǒng)利用增壓壓縮機(jī)提升了并聯(lián)蒸發(fā)器中蒸發(fā)壓力低的一側(cè)制冷劑回氣壓力,降低了壓縮功率,因此系統(tǒng)性能得到改善。
表6 本研究的多溫區(qū)復(fù)疊制冷系統(tǒng)性能系數(shù)同其他文獻(xiàn)對比結(jié)果
為減小系統(tǒng)各部件的不可逆損失,提高?效率,在特定工況下對雙溫區(qū)和三溫區(qū)復(fù)疊制冷循環(huán)的節(jié)流系統(tǒng)和增壓系統(tǒng)各部件進(jìn)行?損(Ex)分析,為系統(tǒng)節(jié)能優(yōu)化提供指導(dǎo)。圖7和圖8分別反映了雙溫區(qū)和三溫區(qū)復(fù)疊制冷兩類系統(tǒng)在表3所示工況下各部件的?損。
圖7 雙溫區(qū)復(fù)疊制冷系統(tǒng)各部件?損
在雙溫區(qū)和三溫區(qū)復(fù)疊制冷系統(tǒng)中,冷凝器都具有最高?損,雙溫區(qū)節(jié)流系統(tǒng)、增壓系統(tǒng)、三溫區(qū)節(jié)流系統(tǒng)和增壓系統(tǒng)冷凝器?損分別為3.65、3.28、8.53和7.92 kW。對比節(jié)流系統(tǒng)和增壓系統(tǒng),壓力調(diào)節(jié)閥的?損遠(yuǎn)高于增壓壓縮機(jī),就復(fù)疊系統(tǒng)低溫級而言,壓力調(diào)節(jié)閥與增壓壓縮機(jī)的?損分別為2.86和0.15 kW,采用壓力調(diào)節(jié)閥的節(jié)流系統(tǒng)帶來了更大的能量損失,因此節(jié)流系統(tǒng)性能系數(shù)低于增壓系統(tǒng)。此外,各系統(tǒng)中R513A壓縮機(jī)也具有較高的?損。從性能角度考慮,對于雙溫區(qū)和三溫區(qū)復(fù)疊制冷循環(huán),采用增壓系統(tǒng)具有明顯優(yōu)越性。
圖8 三溫區(qū)復(fù)疊制冷系統(tǒng)各部件?損
通過上述的研究發(fā)現(xiàn)增壓系統(tǒng)比節(jié)流系統(tǒng)在性能上更有優(yōu)勢,但增壓系統(tǒng)采用增壓壓縮機(jī)的成本遠(yuǎn)大于壓力調(diào)節(jié)閥,此外,增壓壓縮機(jī)在運(yùn)行過程中還會產(chǎn)生額外的功耗,增加運(yùn)行成本。因此,對雙溫區(qū)和三溫區(qū)復(fù)疊制冷的兩類系統(tǒng)分別進(jìn)行經(jīng)濟(jì)性分析,主要包括初投資與維護(hù)成本、運(yùn)行成本以及環(huán)境成本(電能消耗產(chǎn)生的CO2排放導(dǎo)致的罰款),膨脹閥和壓力調(diào)節(jié)閥等節(jié)流裝置由于成本遠(yuǎn)低于其他主要設(shè)備,可忽略其投資成本。
設(shè)備的投資成本可由以下公式進(jìn)行計(jì)算[33-34]:
式中ev、cas和c分別為蒸發(fā)器、冷凝蒸發(fā)器和冷凝器的換熱面積,m2;ev、LTC,comp、cas、HTC,comp、Z、LTC,zy,comp和HTC,zy,comp分別蒸發(fā)器、低溫級壓縮機(jī)、冷凝蒸發(fā)器、高溫級壓縮機(jī)、冷凝器、低溫級增壓壓縮機(jī)與高溫級增壓壓縮機(jī)的初投資,美元。
系統(tǒng)換熱器換熱面積由下式計(jì)算:
式中為換熱量,kW;代表換熱器換熱面積,m2;為換熱器傳熱系數(shù),W/(m2·K);ΔT為換熱器傳熱溫差,℃。
本文所研究的多溫區(qū)冷庫制冷系統(tǒng)冷凝器側(cè)采用風(fēng)冷式換熱器,總結(jié)參考文獻(xiàn),相應(yīng)的換熱器傳熱系數(shù)見表7。
表7 系統(tǒng)換熱器傳熱系數(shù)
系統(tǒng)總的初投資成本為各部件初投資成本之和:
式中total為系統(tǒng)總的初投資,美元;Z為上述部件初投資,美元。
資本成本的評估選取的時間間隔為1 a,設(shè)備的年度資本成本可由資本回收系數(shù)(capital recovery factor,RF)獲得:
式中和分別代表年利率和系統(tǒng)運(yùn)行壽命,根據(jù)參考文獻(xiàn),=10%,=15 a[37-38]。
考慮系統(tǒng)維護(hù)成本,并將資本成本換算成年度成本
系統(tǒng)的運(yùn)行成本主要為高低溫級的壓縮機(jī)所消耗的電能,對于增壓壓縮系統(tǒng),還需要考慮增壓壓縮機(jī)所輸入功耗,運(yùn)行總成本:
溫室氣體的大量排放導(dǎo)致全球變暖,環(huán)境問題變得越來越嚴(yán)重。目前全球大多數(shù)國家已出臺有關(guān)CO2排放的罰款政策[40]。制冷系統(tǒng)的環(huán)境成本主要包括制冷劑泄漏以及系統(tǒng)運(yùn)行電力消耗所產(chǎn)生的CO2排放,對于環(huán)保型制冷工質(zhì),制冷劑泄漏所產(chǎn)生的CO2排放遠(yuǎn)小于電力消耗產(chǎn)生的間接排放,因此可忽略制冷劑泄漏產(chǎn)生環(huán)境成本[27]。
式中CO2為電力碳排放因子,取0.581 kg/(kW·h)[41];CO2為單位間內(nèi)CO2排放量,kg/h;env為系統(tǒng)環(huán)境成本,美元;CO2為單位CO2排放成本,取90美元/t[37]。
圖9a和9b分別為雙溫區(qū)和三溫區(qū)復(fù)疊制冷循環(huán)節(jié)流系統(tǒng)與增壓系統(tǒng)在表3所示工況下的年度成本對比。對比節(jié)流系統(tǒng)和增壓系統(tǒng)的初投資及維護(hù)成本、系統(tǒng)運(yùn)行成本、環(huán)境成本及系統(tǒng)年度總成本,結(jié)果發(fā)現(xiàn)雙溫區(qū)復(fù)疊制冷循環(huán)增壓系統(tǒng)的投資成本、運(yùn)行成本及環(huán)境成本均低于節(jié)流系統(tǒng),其原因是增壓系統(tǒng)性能系數(shù)高于節(jié)流系統(tǒng),相同制冷量下能耗更少,可有效減少壓縮機(jī)投資成本、系統(tǒng)運(yùn)行成本以及CO2排放量。
圖9 多溫區(qū)復(fù)疊制冷系統(tǒng)經(jīng)濟(jì)性對比
而三溫區(qū)復(fù)疊制冷循環(huán)增壓系統(tǒng)的年度初投資及維護(hù)成本雖然略高于節(jié)流系統(tǒng),但系統(tǒng)年度總成本仍小于節(jié)流系統(tǒng)。盡管增壓系統(tǒng)相對于節(jié)流系統(tǒng)增加了增壓壓縮機(jī)設(shè)備,但性能上的優(yōu)勢地彌補(bǔ)了這部分成本,雙溫區(qū)與三溫區(qū)節(jié)流系統(tǒng)比增壓系統(tǒng)年度總成本分別增加了6 554和8 156美元,由此可見,增壓系統(tǒng)相較于節(jié)流系統(tǒng)體現(xiàn)了更好的經(jīng)濟(jì)性。
1)本文設(shè)計(jì)了應(yīng)用于農(nóng)產(chǎn)品貯藏的CO2/R513A多溫區(qū)復(fù)疊制冷系統(tǒng),該系統(tǒng)可同時提供多個貯藏溫度,其溫區(qū)可滿足農(nóng)產(chǎn)品在-50~15 ℃的貯藏溫度范圍。對比多溫區(qū)兩種系統(tǒng)的性能,增壓系統(tǒng)性能系數(shù)和?效率均高于節(jié)流系統(tǒng),參考工況下雙溫區(qū)和三溫區(qū)的增壓系統(tǒng)比節(jié)流系統(tǒng)性能系數(shù)分別提升了30.4%和23.4%。
2)低溫級冷凝溫度升高,雙溫區(qū)和三溫區(qū)復(fù)疊制冷循環(huán)增壓系統(tǒng)性能系數(shù)與?效率先增大后減??;三溫區(qū)節(jié)流系統(tǒng)性能系數(shù)與?效率隨低溫級冷凝溫度升高而增大。冷凝蒸發(fā)器傳熱溫差和高溫級冷凝溫度升高會導(dǎo)致雙溫區(qū)和三溫區(qū)復(fù)疊制冷循環(huán)兩種系統(tǒng)性能系數(shù)與?效率下降。增壓系統(tǒng)中蒸發(fā)溫度增大有利于提升系統(tǒng)性能系數(shù),而在節(jié)流系統(tǒng)中,蒸發(fā)溫度ev2和ev3增大對系統(tǒng)性能系數(shù)無明顯影響。
3)節(jié)流系統(tǒng)采用壓力調(diào)節(jié)閥造成了更大的能量損失,因此其性能不如增壓系統(tǒng);同文獻(xiàn)中的CO2/R134a單溫區(qū)復(fù)疊制冷系統(tǒng)相比,雙溫區(qū)和三溫區(qū)增壓系統(tǒng)性能系數(shù)為CO2/R134a系統(tǒng)的1.5和2.3倍。
4)對比節(jié)流系統(tǒng)和增壓系統(tǒng)年度成本,由于性能上的優(yōu)勢,增壓系統(tǒng)的年度總成本低于節(jié)流系統(tǒng),雙溫區(qū)與三溫區(qū)復(fù)疊制冷循環(huán)節(jié)流系統(tǒng)比增壓系統(tǒng)年度總成本分別增加了6 554和8 156美元。
本文研究的CO2多溫區(qū)復(fù)疊制冷循環(huán)增壓系統(tǒng)有較高的性能,運(yùn)用于冷鏈裝備時對農(nóng)產(chǎn)品多溫區(qū)貯藏和實(shí)現(xiàn)節(jié)能減碳具有重要意義,但裝置的運(yùn)行特性還有待研究,后續(xù)將對多溫區(qū)復(fù)疊制冷循環(huán)增壓系統(tǒng)開展試驗(yàn)研究,進(jìn)一步探索該系統(tǒng)在農(nóng)產(chǎn)品貯藏中應(yīng)用的可行性。
[1] 劉廣海,李慶庭,謝如鶴,等. 基于輻射制冷技術(shù)的冷鏈保溫箱隔熱性能測試與能耗分析[J]. 農(nóng)業(yè)工程學(xué)報,2022,38(11):318-325. LIU Guanghai, LI Qingting, XIE Ruhe, et al. Thermal insulation performance test and energy consumption of the cold chain incubator with radiative cooling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(11): 318-325. (in Chinese with English abstract)
[2] 中華人民共和國中央人民政府. 國務(wù)院辦公廳關(guān)于印發(fā)“十四五”冷鏈物流發(fā)展規(guī)劃的通知[EB/OL]. (2021-11-26). [2023-03-05]. http: //www. gov. cn/zhengce/ content/2021-12/12/content_5660244. htm.
[3] 付煥森,王郭全,夏華鳳,等. 農(nóng)產(chǎn)品保鮮冷庫的PLC控制與關(guān)鍵技術(shù)研究[J]. 江蘇農(nóng)業(yè)科學(xué),2017,45(18):233-236. FU Huansen, WANG Guoquan, XIA Huafeng, et al. Study on PLC control and key technology of cold storage for agricultural products[J]. Jiangsu Agricultural Sciences, 2017, 45(18): 233-236. (in Chinese with English abstract)
[4] GAO E, CUI Q, JING H, et al. A review of application status and replacement progress of refrigerants in the Chinese cold chain industry[J]. International Journal of Refrigeration, 2021, 128: 104-117.
[5] BRUNO F, BELUSKO M, HALAWA E. CO2refrigeration and heat pump systems: A comprehensive review[J]. Energies, 2019, 12(15): 2959.
[6] 王長江,李麗娜,韓爽,等. 二氧化碳在冷凍冷藏系統(tǒng)中循環(huán)方式的分析[J]. 制冷技術(shù),2020,40(5):73-76. WANG Changjiang, LI Lina, HAN Shuang. Analysis of circulation type of CO2in freezing and cold storage system[J]. Chinese Journal of Refrigeration Technology, 2020, 40(5): 73-76. (in Chinese with English abstract)
[7] 周成君,申江,楊建國,等. 新型CO2冷庫制冷系統(tǒng)的理論和實(shí)驗(yàn)分析[J]. 低溫與超導(dǎo),2017,45(4):51-54。 71. ZHOU Chengjun, SHEN Jiang, YANG Jianguo, et al. Theoretical and experiment analysis of a novel CO2cold storage refrigeration system[J]. Cryogenics & Superconductivity, 2017, 45(4): 51-54, 71. (in Chinese with English abstract)
[8] 張犇,胡開永,吳冬夏,等. 亞臨界CO2冷庫制冷系統(tǒng)性能實(shí)驗(yàn)研究[J]. 低溫與超導(dǎo),2022,50(2):65-70,93. ZHANG Ben, HU Kaiyong, WU Dongxia, et al. Experimental research on performance of subcritical CO2cold storage refrigeration system[J]. Cryogenics & Superconductivity, 2022, 50(2): 65-70, 93. (in Chinese with English abstract)
[9] 劉金光,劉玉茜,王世清,等. 無氟制冷劑HCR22熱管低溫儲糧溫度動態(tài)特征[J]. 農(nóng)業(yè)工程學(xué)報,2022,38(20):286-292. LIU Jinguang, LIU Yuqian, WANG Shiqing, et al. Temperature dynamics of the heat-pipe low-temperature grain storage with fluorine-free refrigerant HCR22[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(20): 286-292. (in Chinese with English abstract)
[10] 辜雪冬,孫術(shù)國,楊飛艷,等. 冰溫或冷藏對牦牛肉貯藏品質(zhì)及水分遷移的影響[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(16):343-350. GU Xuedong, SUN Shuguo, YANG Feiyan, et al. Effects of ice temperature or chilled storage on quality of yak meat and moisture migration[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(16): 343-350. (in Chinese with English abstract)
[11] ZHAO H, LIU S, TIAN C, et al. An overview of current status of cold chain in China[J]. International Journal of Refrigeration, 2018, 88: 483-495.
[12] GULLO P. Impact and quantification of various individual thermodynamic improvements for transcritical R744 supermarket refrigeration systems based on advanced exergy analysis[J]. Energy Conversion and Management, 2021, 229: 113684.
[13] 曹鋒,葉祖樑. 商超跨臨界CO2增壓制冷系統(tǒng)及技術(shù)應(yīng)用現(xiàn)狀[J]. 制冷與空調(diào),2017,17(9):68-75. CAO Feng, YE Zuliang. Commercial transcritical CO2booster refrigeration system and technology application status[J]. Refrigeration and Air-conditioning, 2017, 17(9): 68-75. (in Chinese with English abstract)
[14] LIU S, WANG J, DAI B, et al. Alternative positions of internal heat exchanger for CO2booster refrigeration system: Thermodynamic analysis and annual thermal performance evaluation[J]. International Journal of Refrigeration, 2021, 131: 1016-1028.
[15] 劉圣春,劉坤,王嘉豪,等. 帶內(nèi)部熱交換器的CO2增壓制冷系統(tǒng)熱力學(xué)分析[J]. 流體機(jī)械,2022,50(2):64-70. LIU Shengchun, LIU Kun, WANG Jiahao. Thermodynamic analysis of transcritical CO2booster refrigeration system with an internal heat exchanger[J]. Fluid Machinery, 2022, 50(2): 64-70. (in Chinese with English abstract)
[16] ABAS N, KALAIR A R, KHAN N, et al. Natural and synthetic refrigerants, global warming: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 90: 557-569.
[17] SUN J, LI W, CUI B. Energy and exergy analyses of R513a as a R134a drop-in replacement in a vapor compression refrigeration system[J]. International Journal of Refrigeration, 2020, 112: 348-356.
[18] 張鵬,袁興鈴,薛友林,等. 精準(zhǔn)溫度控制對枸杞鮮果貯藏品質(zhì)和香氣成分的影響[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(18):322-330. ZHANG Peng, YUAN Xingling, XUE Youlin, et al. Effects of precise temperature control on the storage quality and aromacomponents of fresh goji fruit[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(18): 322-330. (in Chinese with English abstract)
[19] 任浩,于官楚,孫炳新,等. 食用菌貯藏保鮮技術(shù)研究進(jìn)展[J]. 包裝工程,2019,40(13):1-11. REN Hao, YU Guanchu, SUN Bingxin, et al. Research advances on the storage and preservation of edible fungi[J]. Packaging Engineering, 2019, 40(13): 1-11. (in Chinese with English abstract)
[20] 孫靜,陳全,王萍,等. 乙二醇蓄冷庫性能及其在黃冠梨保鮮上的應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(8):276-282. SUN Jing, CHEN Quan, WANG Ping, et al. Performance of cold storage with ethylene glycol as secondary refrigerant and its application on preservation of ‘Huangguan’ pear[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(8): 276-282. (in Chinese with English abstract)
[21] WANG F, LIANG R, ZHANG Y, et al. Effects of packaging methods combined with frozen temperature on the color of frozen beef rolls[J]. Meat Science, 2021, 171: 108292.
[22] 梁紅,宋曉燕,劉寶林. 冷藏期間溫度波動對牛肉冰晶增長的影響[J]. 食品與發(fā)酵工業(yè),2016,42(6):193-196. LIANG Hong, SONG Xiaoyan, LIU Baolin. Effect of temperature on ice-crystal growth in frozen beef in cold-chain transportation[J]. Food and Fermentation Industries, 2016, 42(6): 193-196. (in Chinese with English abstract)
[23] 寧靜紅,趙延峰,孫朝陽. 草莓干冰噴射速凍過程的數(shù)值模擬與優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(1):306-314. NING Jinghong, ZHAO Yanfeng, SUN Zhaoyang. Numerical simulation and optimization of quick freezing process of strawberry by dry ice spray[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 306-314. (in Chinese with English abstract)
[24] 伍志權(quán),李唯正,何鑫平,等. 荔枝速凍保鮮技術(shù)研究進(jìn)展[J]. 食品研究與開發(fā),2017,38(9):206-212. WU Zhiquan, LI Weizheng, HE Xinping, et al. Research advances in quick-freezing preservation technique of litchi[J]. Food Research and Development, 2017, 38(9): 206-212. (in Chinese with English abstract)
[25] 朱文慧,宦海珍,步營,等. 低溫貯藏和解凍過程對魷魚品質(zhì)的影響研究進(jìn)展[J]. 食品科學(xué),2017,38(17):279-285. ZHU Wenhui, HUAN Haizhen, BU Ying, et al. Progress in the effects of low-temperature storage and thawing on squid quality[J]. Food Science, 2017, 38(17): 279-285. (in Chinese with English abstract)
[26] 賈明正. R1270/CO2超市復(fù)疊制冷系統(tǒng)的性能研究[D]. 鄭州:鄭州輕工業(yè)學(xué)院,2018. JIA Mingzheng. Performance Study of R1270/CO2Cascade Supermarket Refrigeration System[D]. Zhengzhou: Zhengzhou University of Light Industry. 2018. (in Chinese with English abstract)
[27] BELLOS E, TZIVANIDIS C. A theoretical comparative study of CO2cascade refrigeration systems[J]. Applied Sciences, 2019, 9(4): 790.
[28] 宋衛(wèi)堂,耿若,王平智,等. 表冷器-熱泵聯(lián)合集熱系統(tǒng)的優(yōu)化及可用能分析[J]. 農(nóng)業(yè)工程學(xué)報,2022,38(15):241-248. SONG Weitang, GENG Ruo, WANG Pingzhi, et al. Optimization and exergy analysis of fan-coil units-heat pump combined heat collection system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(15): 241-248. (in Chinese with English abstract)
[29] YILMAZ B, MANCUHAN E, ERDONMEZ N. A parametric study on a subcritical CO2/NH3cascade refrigeration system for low temperature applications[J]. Journal of Energy Resources Technology, 2018, 140(9): 092004.
[30] 吳磊. R507/CO2復(fù)疊式制冷系統(tǒng)設(shè)計(jì)及循環(huán)特性研究[D]. 哈爾濱:哈爾濱商業(yè)大學(xué),2015. WU Lei. Design and Research on the Cycle Performance of R507/CO2Cascade Refrigeration System[D]. Harbin: Harbin University of Commerce, 2015. (in Chinese with English abstract)
[31] DEYMI-DASHTEBAYAZ M, SULIN A, RYABOVA T, et al. Energy, exergoeconomic and environmental optimization of a cascade refrigeration system using different low GWP refrigerants[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106473.
[32] ADEBAYO V, ABID M, ADEDEJI M, et al. Comparative thermodynamic performance analysis of a cascade refrigeration system with new refrigerants paired with CO2[J]. Applied Thermal Engineering, 2021, 184: 116286.
[33] KESHTKAR M M. Multi-objective optimization of a R744/R134a cascade refrigeration system: Exergetic, economic, environmental, and sensitive analysis (3ES)[J]. Journal of Thermal Engineering, 2019, 5(4): 237-250.
[34] ROY R, MANDAL B K. Thermo-economic analysis and multi-objective optimization of vapour cascade refrigeration system using different refrigerant combinations[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(5): 3247-3261.
[35] 申江,邊煜竣,黃冰. CO2冷風(fēng)機(jī)換熱性能仿真及實(shí)驗(yàn)研究[J]. 制冷學(xué)報,2017,38(5):51-56. SHEN Jiang, BIAN Yujun, HUANG Bing. Simulation and experimental study on heat transfer performance of CO2air cooler[J]. Journal of Refrigeration, 2017, 38(5): 51-56. (in Chinese with English abstract)
[36] 王軍. R134a/R744復(fù)疊式制冷系統(tǒng)設(shè)計(jì)研究[D]. 合肥:合肥工業(yè)大學(xué),2015. WANG Jun. Design and Study on R134a/R744 Cascade Refrigeration System[D]. Hefei: Hefei University of Technology, 2015. (in Chinese with English abstract)
[37] 韓小龍,李見波,孔祥強(qiáng),等. 余熱驅(qū)動的吸收-壓縮復(fù)疊制冷循環(huán)性能及經(jīng)濟(jì)性分析[J]. 制冷學(xué)報,2021,42(6):28-35. HAN Xiaolong, LI Jianbo, KONG Xiangqiang, et al. Performance and economic analysis of absorption-compression cascade refrigeration cycle driven by waste heat[J]. Journal of Refrigeration, 2021, 42(6): 28-35. (in Chinese with English abstract)
[38] FAZELPOUR F, MOROSUK T. Exergoeconomic analysis of carbon dioxide transcritical refrigeration machines[J]. International Journal of Refrigeration, 2014, 38: 128-139.
[39] CUI Q, GAO E, ZHANG Z, et al. Preliminary study on the feasibility assessment of CO2booster refrigeration systems for supermarket application in China: An energetic, economic, and environmental analysis[J]. Energy Conversion and Management, 2020, 225: 113422.
[40] 黃卓. 一種R744超市雙溫制冷系統(tǒng)的優(yōu)化及3E評估[D]. 濟(jì)南:山東大學(xué),2019. HUANG Zhuo. Optimization and 3E Evaluation of a R744 Two-temperature Supermarket Refrigeration System[D]. Ji’nan: Shandong University, 2019. (in Chinese with English abstract)
[41] 中華人民共和國生態(tài)環(huán)境部. 《關(guān)于做好2022年企業(yè)溫室氣體排放報告管理相關(guān)重點(diǎn)工作的通知》解讀[EB/OL]. (2022-03-15). [2023-03-05]. https: //www. mee. gov. cn/zcwj/zcjd/202203/t20220315_971493. shtml.
Performance analysis of CO2multi-temperature zone cascade refrigeration system for the storage of different agricultural products
HE Qing1,2, YANG Junling2, WANG Youdong2,3, ZHANG Hailun2, ZHANG Xuelai1, ZHANG Zhentao2, LI Xiaoqiong2※
(1.,,,201306,;2.,,100190,;3.,,300222,)
Low-carbon refrigeration is a promising trend in cold chain logistics under carbon peaking and carbon neutrality. Among them, CO2refrigeration has offered broad application prospects in freezing and cold storage of agricultural products. In addition, the different agricultural products vary greatly in the temperature requirement of the storage. The single temperature zone in the current storage systems cannot fully meet the high-quality storage in the various agricultural products. Fortunately, the cascade refrigeration system can be expected to utilize in cold storage, due to the wide temperature range and high performance. Different temperature zones can be set in the high and low-temperature cycle of the cascade refrigeration system, in order to achieve accurate temperature control of materials, according to the storage characteristics of different agricultural products. In this study, the double- and three-temperature zones were applied to the cascade refrigeration system in cold storage. The natural CO2was selected as the refrigerant in the low-temperature cycle, while the potential environment-friendly fluid R513A was used in the high-temperature cycle of the systems. The pressure difference was reduced in the different temperature zones, where a booster compressor (booster system for short) was set behind the evaporator with the low evaporation temperature, and a pressure regulating valve (throttling system for short) behind the evaporator with the high evaporation temperature. Furthermore, a thermodynamic model was established for the double- and three-temperature zone cascade refrigeration system, and then to carry out the energy and exergy analysis. A systematic investigation was made to clarify the effects of condensation temperature in the low and high-temperature cycle, temperature difference of cascade heat transfer on the coefficient of performance (OP) and exergy efficiency (η) of cascade refrigeration systems. TheOPand exergy efficiency of the multi-temperature zone refrigeration system decreased both in the booster and throttling mode, particularly with the increase of the condensation temperature in the high-temperature cycle and the temperature difference of the cascade heat exchanger. The performance of the double-temperature zone cascade refrigeration and the booster system of the three-temperature zone cascade refrigeration cycle increased firstly and then decreased with the increase of the condensation temperature in the low-temperature cycle. The performance of the throttling system increased gradually for three temperature zone. The results also showed that the coefficient of performance and exergy efficiency of the booster system was higher than those of the throttling system, at the reference working conditions, the coefficient of performance of double temperature zone and three temperature zone booster system was increased by 30.4% and 23.4% respectively. The exergy destruction analysis found that the condenser had the largest exergy destruction, and the exergy destruction of the pressure regulating valve was much higher than that of the booster compressor. Under the same operating conditions, coefficients of performance of the double and three temperature zone booster systems designed in this study institute are 1.5 and 2.3 times that of the CO2/R134a single temperature zone cascade system. A higher performance was achieved in the multi-temperature cascade refrigeration system. The initial investment and maintenance cost, system operation cost, and environmental cost were lower in the double temperature zone cascade refrigeration cycle booster system, compared with the throttling system. The total annual cost of the system was still far less than that of the throttling system, even the initial investment and maintenance cost was higher in the three-temperature zone cascade refrigeration cycle booster system. Although the initial investment and maintenance cost of the three temperature zone cascade refrigeration cycle booster system was higher, the annual total cost of the double- and three-temperature zone cascade refrigeration cycle throttling system was 6 554 and 8 156 $ higher than that of the booster system, respectively. The total annual cost of the booster system was lower than that of the throttling system, due to the performance advantages.Therefore, the multi-temperature zone booster system was superior to the throttling system in terms of thermal performance and economy.
agricultural products; storage; CO2multi-temperature zone cascade refrigeration; throttling system; booster system; thermodynamic performance; economic analysis
10.11975/j.issn.1002-6819.202211106
S218
A
1002-6819(2023)-06-0247-12
何慶,楊俊玲,王有棟,等. 適用于不同農(nóng)產(chǎn)品貯藏的CO2多溫區(qū)復(fù)疊制冷系統(tǒng)性能分析[J]. 農(nóng)業(yè)工程學(xué)報,2023,39(6):247-258.doi:10.11975/j.issn.1002-6819.202211106 http://www.tcsae.org
HE Qing, YANG Junling, WANG Youdong, et al. Performance analysis of CO2multi-temperature zone cascade refrigeration system for the storage of different agricultural products[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(6): 247-258. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202211106 http://www.tcsae.org
2022-11-11
2023-03-12
國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFD0401305)
何慶,研究方向?yàn)槭称防鋬隼洳丶夹g(shù)。Email:307837820@qq.com
李曉瓊,博士,助理研究員,研究方向?yàn)檗r(nóng)產(chǎn)品低碳貯藏加工技術(shù)。Email:lixiaoqiong@mail.ipc.ac.cn