国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

固相應(yīng)力在腫瘤中的研究進(jìn)展

2023-05-30 10:48:04金嘉成王銳王士銘藍(lán)蘭王建伯
新醫(yī)學(xué) 2023年3期
關(guān)鍵詞:生物力學(xué)

金嘉成?王銳?王士銘?藍(lán)蘭?王建伯

【摘要】近幾十年來,腫瘤微環(huán)境(TME)作為腫瘤發(fā)生、發(fā)展、免疫逃避和治療反應(yīng)的關(guān)鍵而成為腫瘤研究的熱點。而作為腫瘤微環(huán)境中的物理特性,“固相應(yīng)力”可由周圍正常組織從腫瘤外部施加產(chǎn)生,也可由腫瘤本身生長而引起。隨著腫瘤的生長,固相應(yīng)力會通過生化-物理機制破壞周圍組織的結(jié)構(gòu)和功能,并促進(jìn)腫瘤的發(fā)生和腫瘤治療的抗性。該文針對固相應(yīng)力在腫瘤中的發(fā)生機制及相關(guān)進(jìn)展進(jìn)行綜述,探討惡性腫瘤生物學(xué)和物理學(xué)之間的聯(lián)系,為新型藥物研發(fā)和腫瘤治療策略制定提供參考。

【關(guān)鍵詞】固相應(yīng)力;腫瘤微環(huán)境;生物力學(xué);力學(xué)刺激;力學(xué)信號轉(zhuǎn)導(dǎo)

Research progress on solid stress in tumors Jin Jiacheng, Wang Rui, Wang Shiming, Lan Lan, Wang Jianbo. Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China

Corresponding author, Wang Jianbo, E-mail: wangjianbo@dlmedu.edu.cn

【Abstract】In recent decades, tumor microenvironment (TME) plays a significant role in tumorigenesis, progression, immune evasion, and therapeutic response, which has become a hot topic in tumor research. As a physical feature of TME, “solid stress” can be applied from the outside by surrounding normal tissues or caused by the tumor itself due to its growth. As the tumor grows, solid stress will destroy the structure and function of surrounding tissues through biochemical-physical mechanisms and promote tumor occurrence and treatment resistance. In this article, the mechanism and related progress on solid stress in tumors were reviewed and the association between cancer biology and physics was investigated, aiming to provide reference for the research and development of new drugs and treatment strategies for cancer.

【Key words】Solid stress; Tumor microenvironment; Biomechanics; Mechanical stimulation; Mechanical signal transduction

固相應(yīng)力是包含在細(xì)胞和細(xì)胞外基質(zhì)(ECM)中的機械力,可通過細(xì)胞和ECM的固體及彈性元件傳遞[1]。作為腫瘤微環(huán)境機械特性之一,它既可由周圍正常組織從外部施加,又可由腫瘤本身生長誘導(dǎo)而產(chǎn)生,并隨著腫瘤生長對周圍組織的壓迫而升高[2]。目前可檢測出人體的應(yīng)力大小范圍從膠質(zhì)母細(xì)胞瘤的<100 Pa(0.7 mmHg)到胰腺導(dǎo)管腺癌(PDAC)的10 000 Pa(75 mmHg)[3]。在腫瘤微環(huán)境中,固相應(yīng)力扮演著重要的角色。一方面,固相應(yīng)力會改變癌細(xì)胞的行為,如增殖、侵襲和凋亡,并且是影響惡性腫瘤發(fā)展過程的重要因素之一;另一方面,固相應(yīng)力使附近血管和淋巴管塌陷,導(dǎo)致相應(yīng)組織缺氧并且阻礙藥物在細(xì)胞外液中的運輸[4]。該文就腫瘤固相應(yīng)力的起源、發(fā)展及臨床價值進(jìn)行綜述,為實體瘤的臨床治療提供新思路。

一、固相應(yīng)力的產(chǎn)生機制與性質(zhì)

1. 外部施加的固相應(yīng)力

在腫瘤微環(huán)境中浸潤、增殖和基質(zhì)沉積會引起組織體積增加,在有限空間內(nèi)擠壓腫瘤和周圍組織中的彈性結(jié)構(gòu)而產(chǎn)生固相應(yīng)力[5]。當(dāng)腫瘤患者經(jīng)過治療后,實體瘤體積減小,導(dǎo)致固相應(yīng)力下降。與以邊界清楚的結(jié)節(jié)狀生長的腫瘤相比,其他內(nèi)聚性較低而呈現(xiàn)浸潤式生長的腫瘤,通過尋找阻力較小的路徑,或通過細(xì)胞毒性和蛋白酶活性創(chuàng)造空間,來穿透正常組織的方式生長往往具有相對較小應(yīng)力的特點[5-6]。

2. 生長誘導(dǎo)的固相應(yīng)力

腫瘤生長過程中內(nèi)部實質(zhì)與基質(zhì)相互作用而產(chǎn)生生長誘導(dǎo)應(yīng)力[4]。將腫瘤從活體中完整地分離出來,由內(nèi)部生長產(chǎn)生的固相應(yīng)力仍然存在,所以又稱為生長誘導(dǎo)的殘余應(yīng)力,占腫瘤總固相應(yīng)力低于30%[7]。ECM成分,如膠原蛋白和透明質(zhì)酸,會根據(jù)其機械性能而儲存和傳遞固相應(yīng)力[8]。此外,當(dāng)成纖維細(xì)胞、免疫細(xì)胞和腫瘤細(xì)胞移動及試圖修復(fù)結(jié)構(gòu)損傷時,可通過肌動蛋白收縮胞內(nèi)成分,細(xì)胞收縮產(chǎn)生的張力使ECM成分收縮,從而在腫瘤相應(yīng)的部分產(chǎn)生張力通過其他成分的壓縮來平衡[2]。

3. 固相應(yīng)力的性質(zhì)

實體腫瘤切開后被用于測量儲存的彈性能量,由差異生長產(chǎn)生的固相應(yīng)力導(dǎo)致內(nèi)部組織的各向同性壓縮與腫瘤塊相切的張力增加,腫瘤的平面切割顯示外圍收縮和中央組織凸出的形狀[9]??傊?,這些研究證實固相應(yīng)力的積累是實體瘤中的常見現(xiàn)象,并表明腫瘤中的差異性生長及其固相應(yīng)力分布的不均一性。

二、固相應(yīng)力對腫瘤細(xì)胞的影響

1. 固相應(yīng)力對腫瘤細(xì)胞增殖與凋亡的影響

1997年Helmlinger等(Jain教授團(tuán)隊)[1]首次認(rèn)識到固相應(yīng)力對腫瘤細(xì)胞的影響,發(fā)現(xiàn)累積的固相應(yīng)力會抑制腫瘤球體的生長,而在細(xì)胞水平上僅觀察到凋亡率的輕微下降,并未發(fā)現(xiàn)對增殖的影響。Cheng等(2009年)在隨后的一項研究中發(fā)現(xiàn),腫瘤球體中高固相應(yīng)力區(qū)域的細(xì)胞增殖受到抑制、凋亡率增加,并且證明了限制組織的力學(xué)性質(zhì)的不均一性可通過誘導(dǎo)高應(yīng)力區(qū)域的細(xì)胞凋亡,以及允許低應(yīng)力區(qū)域的細(xì)胞增殖的方式來引導(dǎo)腫瘤生長的形態(tài)變化,而非依賴于細(xì)胞遷移。固相應(yīng)力導(dǎo)致人體腦腫瘤細(xì)胞和結(jié)腸癌細(xì)胞的增殖能力下降[10]。影響增殖與凋亡的機制可能是由于腫瘤細(xì)胞有絲分裂受到抑制。因為HCT116結(jié)直腸癌細(xì)胞在空間限制施壓下由于雙極紡錘體異常而在腫瘤球體中停滯分裂[11]。但具體機制尚不清楚,有待進(jìn)一步探索。總而言之,腫瘤球體的機械限制會導(dǎo)致固相應(yīng)力增加,從而抑制細(xì)胞增殖并促進(jìn)細(xì)胞凋亡。

2. 固相應(yīng)力對腫瘤細(xì)胞遷移與侵襲的影響

除了調(diào)節(jié)腫瘤細(xì)胞的增殖和凋亡外,固相應(yīng)力還影響細(xì)胞遷移與侵襲。施加于乳腺癌細(xì)胞的固相應(yīng)力促進(jìn)了先導(dǎo)細(xì)胞的形成[12]。而先導(dǎo)細(xì)胞通過創(chuàng)造侵襲軌跡、感知環(huán)境以及在生物化學(xué)和生物力學(xué)上與跟隨細(xì)胞協(xié)調(diào)來促進(jìn)惡性腫瘤的侵襲[13]。此外,Kalli等[10, 14-15]在膠質(zhì)瘤細(xì)胞和胰腺癌細(xì)胞中也證明了在固相應(yīng)力的作用下細(xì)胞遷移能力提高。但這些影響取決于不同的細(xì)胞類型,因為非腫瘤細(xì)胞和非浸潤性腫瘤細(xì)胞不具備良好的遷移能力[16]。有學(xué)者認(rèn)為,腫瘤細(xì)胞在組織微環(huán)境形成的固體界面的限制下遷移時往往會消耗更大的能量,而能量需求與細(xì)胞和基質(zhì)的剛度相關(guān)[17]。因此,腫瘤細(xì)胞在固相應(yīng)力下遷移的方式更為靈活,并受到諸多因素的影響。

3. 固相應(yīng)力對腫瘤代謝的影響

腫瘤的發(fā)生依賴于細(xì)胞代謝的重編程,這是致癌基因突變的直接和間接結(jié)果。細(xì)胞可以通過整合素受體感知ECM的力學(xué)性質(zhì),并通過調(diào)節(jié)肌動蛋白細(xì)胞骨架的收縮性來測量固相應(yīng)力等力學(xué)特性,進(jìn)而通過調(diào)節(jié)細(xì)胞內(nèi)信號通路完成細(xì)胞代謝的重編程[18]。在較為堅硬的ECM上,泛素連接酶TRIM21被應(yīng)力纖維捕獲導(dǎo)致磷酸果糖激酶(PFK)無法降解;而在硬度較低的ECM上,TRIM21能夠通過靶向PFK進(jìn)而減少腫瘤細(xì)胞的糖酵解[19]。不同細(xì)胞骨架張力的脂質(zhì)組學(xué)也表明,在硬度較低的ECM上,SREBP介導(dǎo)的脂肪生成程序更傾向于中性脂質(zhì)(甘油二酯和甘油三酯)及膽固醇的積累,最終導(dǎo)致脂滴形成增加[18, 20]。由于腫瘤會增加ECM的硬度,進(jìn)而改變惡性腫瘤細(xì)胞的生物學(xué)功能,這使固相應(yīng)力調(diào)節(jié)細(xì)胞新陳代謝的假設(shè)成為現(xiàn)實。

近年Hanahan[21]在“Hallmarks of cancer”先前版本的基礎(chǔ)上新引入4個腫瘤標(biāo)志性特征,為腫瘤學(xué)研究提供了新維度。但目前腫瘤固相應(yīng)力的相關(guān)研究僅僅涉及為數(shù)不多的腫瘤表型,還需將生物力學(xué)的研究拓展到更多表型。此外,目前尚不清楚在組織微環(huán)境中什么條件下會觸發(fā)實體腫瘤的表型改變,這值得進(jìn)一步研究。

三、固相應(yīng)力在臨床中的應(yīng)用

如今,研究者已經(jīng)在各種腫瘤中觀察到腫瘤生物力學(xué)特性的不利影響。固相應(yīng)力的增加可以壓垮附近的血管和淋巴管[22-23]。異常的脈管系統(tǒng)不僅阻礙藥物輸送,而且由此產(chǎn)生的缺氧環(huán)境也促使腫瘤侵襲、轉(zhuǎn)移、免疫抑制、炎癥、纖維化和治療抵抗[24]。人們對物理微環(huán)境在惡性腫瘤中的作用日益重視,從而為患者帶來了新的靶點和治療策略。

目前的治療策略可分為兩種:調(diào)節(jié)腫瘤的機械環(huán)境;調(diào)節(jié)機械應(yīng)力相關(guān)通路。首先,可通過靶向消除腫瘤細(xì)胞使細(xì)胞密度降低或降解基質(zhì)成分及減少纖維化,從而使腫瘤受到施加的壓力得以釋放,進(jìn)而改善了藥物傳遞和療效[22, 25]。異常的腫瘤微環(huán)境已被確定為對免疫檢查點阻滯劑產(chǎn)生抗性的原因之一[26]。通過應(yīng)用抗血管內(nèi)皮生長因子(VEGF)抗體和腎素-血管緊張素系統(tǒng)抑制劑使血管正常化來靶向腫瘤微環(huán)境的非免疫成分,代表了一種克服免疫檢查點阻滯劑耐藥性的臨床轉(zhuǎn)化策略[26-30]?!澳[瘤基質(zhì)的正?;笔且环N新興治療策略,已在局部晚期(即非轉(zhuǎn)移性)促纖維增生性胰腺癌的Ⅱ期試驗中成功地應(yīng)用,成為“潛在治愈性”治療(圖1)[31]。使用“機械療法”來誘導(dǎo)基質(zhì)正?;?,涉及靶向腫瘤相關(guān)的成纖維細(xì)胞、細(xì)胞外膠原蛋白和透明質(zhì)酸,這反過來減輕腫瘤內(nèi)應(yīng)力、減輕腫瘤血管的壓迫、改善灌注以及藥物的全身輸送。Mpekris等[32]還將“機械療法”應(yīng)用于納米免疫治療乳腺癌的策略中,為血管減壓,改善腫瘤的機械環(huán)境。此外,可通過調(diào)節(jié)機械應(yīng)力相關(guān)通路控制腫瘤細(xì)胞的惡性行為。Moreno等[33]研究表明,EGFR/ERK通路是通過抑制促凋亡基因“hid”來調(diào)節(jié)果蠅蛹中細(xì)胞存活的中樞調(diào)節(jié)因子,而異位組織拉伸或壓縮可以瞬時上調(diào)或下調(diào)ERK活性[33-34]。因此,在鄰近腫瘤前細(xì)胞中輕度激活EGFR/ERK通路可以顯著減緩克隆擴增[34]。

四、小結(jié)與展望

固相應(yīng)力在腫瘤發(fā)生進(jìn)程中起到重要的調(diào)節(jié)作用,并影響化學(xué)治療或靶向藥物的作用效果,進(jìn)而改變腫瘤患者的預(yù)后。由于腫瘤的物理性質(zhì)相比于其他生物學(xué)標(biāo)志物,受到的關(guān)注較少,從宏觀到微觀的固相應(yīng)力,如何通過控制基因表達(dá)來調(diào)節(jié)細(xì)胞命運仍然缺乏實驗基礎(chǔ)。因此,需要多學(xué)科密切合作研發(fā)更多先進(jìn)的體內(nèi)、外模型來概括和研究腫瘤物理特性的異常。此外,還需要更簡化、更精準(zhǔn)的測量工具來量化固相應(yīng)力以及探索其產(chǎn)生的不同原因。固相應(yīng)力有望作為生物學(xué)標(biāo)志物,在各種腫瘤的診斷、預(yù)后評價和靶向治療中發(fā)揮巨大的作用。

參 考 文 獻(xiàn)

[1] Helmlinger G, Netti P A, Lichtenbeld H C, et al. Solid stress inhibits the growth of multicellular tumor spheroids. Nat Biotechnol, 1997, 15(8): 778-783.

[2] Nia H T, Munn L L, Jain R K. Physical traits of cancer. Science, 2020, 370(6516): eaaz0868.

[3] Purkayastha P, Jaiswal M K, Lele T P. Molecular cancer cell responses to solid compressive stress and interstitial fluid pressure. Cytoskeleton (Hoboken), 2021, 78(6): 312-322.

[4] Deng B, Zhao Z, Kong W, et al. Biological role of matrix stiffness in tumor growth and treatment. J Transl Med, 2022, 20(1): 540.

[5] Seano G, Nia H T, Emblem K E, et al. Solid stress in brain tumours causes neuronal loss and neurological dysfunction and can be reversed by lithium. Nat Biomed Eng, 2019, 3(3): 230-245.

[6] Fernández Moro C, Bozóky B, Gerling M. Growth patterns of colorectal cancer liver metastases and their impact on prognosis: a systematic review. BMJ Open Gastroenterol, 2018, 5(1): e000217.

[7] Mierke C T. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells. Rep Prog Phys, 2019, 82(6): 064602.

[8] Ferruzzi J, Sun M, Gkousioudi A, et al. Compressive remodeling alters fluid transport properties of collagen networks - implications for tumor growth. Sci Rep, 2019, 9(1): 17151.

[9] Chen Q, Yang D, Zong H, et al. Growth-induced stress enhances epithelial-mesenchymal transition induced by IL-6 in clear cell renal cell carcinoma via the Akt/GSK-3β/β-catenin signaling pathway. Oncogenesis, 2017, 6(8): e375.

[10] Kalli M, Stylianopoulos T. Defining the role of solid stress and matrix stiffness in cancer cell proliferation and metastasis. Front Oncol, 2018, 8: 55.

[11] Desmaison A, Frongia C, Grenier K, et al. Mechanical stress impairs mitosis progression in multi-cellular tumor spheroids. PLoS One, 2013, 8(12): e80447.

[12] Chen B J, Wu J S, Tang Y J, et al. What makes leader cells arise: intrinsic properties and support from neighboring cells. J Cell Physiol, 2020, 235(12): 8983-8995.

[13] Vilchez Mercedes S A, Bocci F, Levine H, et al. Decoding leader cells in collective cancer invasion. Nat Rev Cancer, 2021, 21(9): 592-604.

[14] Kalli M, Minia A, Pliaka V, et al. Solid stress-induced migration is mediated by GDF15 through Akt pathway activation in pancreatic cancer cells. Sci Rep, 2019, 9(1): 978.

[15] Kalli M, Voutouri C, Minia A, et al. Mechanical compression regulates brain cancer cell migration through MEK1/Erk1 pathway activation and GDF15 expression. Front Oncol, 2019, 9: 992.

[16] Tse J M, Cheng G, Tyrrell J A, et al. Mechanical compression drives cancer cells toward invasive phenotype. Proc Natl Acad Sci USA, 2012, 109(3): 911-916.

[17] Zanotelli M R, Rahman-Zaman A, VanderBurgh J A, et al. Energetic costs regulated by cell mechanics and confinement are predictive of migration path during decision-making. Nat Commun, 2019, 10(1): 4185.

[18] Romani P, Brian I, Santinon G, et al. Extracellular matrix mechanical cues regulate lipid metabolism through Lipin-1 and SREBP. Nat Cell Biol, 2019, 21(3): 338-347.

[19] Park J S, Burckhardt C J, Lazcano R, et al. Mechanical regulation of glycolysis via cytoskeleton architecture. Nature, 2020, 578(7796): 621-626.

[20] Bertolio R, Napoletano F, Mano M, et al. Sterol regulatory element binding protein 1 couples mechanical cues and lipid metabolism. Nat Commun, 2019, 10(1): 1326.

[21] Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov, 2022, 12(1): 31-46.

[22] Zhao X, Pan J, Li W, et al. Gold nanoparticles enhance cisplatin delivery and potentiate chemotherapy by decompressing colorectal cancer vessels. Int J Nanomedicine, 2018, 13: 6207-6221.

[23] Zanotelli M R, Reinhart-King C A. Mechanical forces in tumor angiogenesis. Adv Exp Med Biol, 2018, 1092: 91-112.

[24] Stylianopoulos T, Munn L L, Jain R K. Reengineering the tumor vasculature: improving drug delivery and efficacy. Trends Cancer, 2018, 4(4): 258-259.

[25] Munn L L, Stylianopoulos T, Jain N K, et al. Vascular normalization to improve treatment of COVID-19: lessons from treatment of cancer. Clin Cancer Res, 2021, 27(10): 2706-2711.

[26] Datta M, Coussens L M, Nishikawa H, et al. Reprogramming the tumor microenvironment to improve immunotherapy: emerging strategies and combination therapies. Am Soc Clin Oncol Educ Book, 2019, 39: 165-174.

[27] Pinter M, Jain R K, Duda D G. The current landscape of immune checkpoint blockade in hepatocellular carcinoma: a review. JAMA Oncol, 2021, 7(1): 113-123.

[28] Pinter M, Jain R K. Targeting the renin-angiotensin system to improve cancer treatment: implications for immunotherapy. Sci Transl Med, 2017, 9(410): eaan5616.

[29] Huang Q, Lei Y, Li X, et al. A highlight of the mechanisms of immune checkpoint blocker resistance. Front Cell Dev Biol, 2020, 8: 580140.

[30] 張金華, 田園, 楊曉萍. 腫瘤血管新生及中醫(yī)藥抗腫瘤血管新生的研究進(jìn)展. 新醫(yī)學(xué), 2022, 53(1): 18-21.

[31] Murphy J E, Wo J Y, Ryan D P, et al. Total neoadjuvant therapy with FOLFIRINOX in combination with losartan followed by chemoradiotherapy for locally advanced pancreatic cancer: a phase 2 clinical trial. JAMA Oncol, 2019, 5(7): 1020-1027.

[32] Mpekris F, Panagi M, Voutouri C, et al. Normalizing the microenvironment overcomes vessel compression and resistance to nano-immunotherapy in breast cancer lung metastasis. Adv Sci (Weinh), 2020, 8(3): 2001917.

[33] Moreno E, Valon L, Levillayer F, et al. Competition for space induces cell elimination through compaction-driven ERK downregulation. Curr Biol, 2019, 29(1): 23-34.e8.

[34] Gudipaty S A, Lindblom J, Loftus P D, et al. Mechanical stretch triggers rapid epithelial cell division through piezo1. Nature, 2017, 543(7643): 118-121.

(收稿日期:2022-12-01)

(本文編輯:林燕薇)

猜你喜歡
生物力學(xué)
位點保存引導(dǎo)骨再生術(shù)后不同階段生物力學(xué)及臨床特點
獨活寄生湯聯(lián)合運動療法治療膝骨關(guān)節(jié)炎臨床觀察
自由式輪滑鞋的研究
行人下肢高精度數(shù)值模型與損傷參數(shù)研究
后碰撞中乘員頸部肌肉有限元模型的建立與驗證
3歲兒童C4—C5頸椎有限元建模方法研究
健美操在生物力學(xué)領(lǐng)域的研究現(xiàn)狀
不同樁核材料對下頜第一磨牙殘根及樁核冠的生物力學(xué)影響
有限元法在手部的運用
可注射性磷酸鈣骨水泥對骨質(zhì)疏松椎體壓縮骨折的生物力學(xué)研究
新昌县| 通辽市| 大余县| 乐平市| 海门市| 晋中市| 綦江县| 保德县| 六枝特区| 桐柏县| 英吉沙县| 梁山县| 桑日县| 鄂尔多斯市| 泸定县| 普定县| 晋城| 昌乐县| 江山市| 卓资县| 苏州市| 陵川县| 祁连县| 吴堡县| 青川县| 重庆市| 博罗县| 玉山县| 鄯善县| 通州市| 砚山县| 通辽市| 西平县| 巨鹿县| 沅江市| 依兰县| 正安县| 唐海县| 柏乡县| 迁安市| 徐水县|