国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于網(wǎng)絡(luò)藥理學(xué)和實(shí)驗(yàn)驗(yàn)證探討補(bǔ)氣通絡(luò)顆粒治療腦梗死的作用機(jī)制

2023-05-30 01:54姚堯堯薛冰潔武藝超高穎
關(guān)鍵詞:網(wǎng)絡(luò)藥理學(xué)腦梗死

姚堯堯 薛冰潔 武藝超 高穎

〔摘要〕 目的 本研究采用網(wǎng)絡(luò)藥理學(xué)與實(shí)驗(yàn)驗(yàn)證探討補(bǔ)氣通絡(luò)顆粒(以下簡(jiǎn)稱“BQTL”)治療腦梗死的潛在靶點(diǎn)、作用機(jī)制及物質(zhì)基礎(chǔ)。方法 通過(guò)TCMSP數(shù)據(jù)庫(kù)及文獻(xiàn)檢索獲得BQTL活性成分及靶點(diǎn);利用GeneCards和OMIM數(shù)據(jù)庫(kù)獲取腦梗死的疾病靶點(diǎn),將疾病靶點(diǎn)與BQTL成分靶點(diǎn)取交集得到潛在靶點(diǎn),使用Cytoscape 3.9.0構(gòu)建“藥物-活性成分-潛在靶點(diǎn)”網(wǎng)絡(luò);通過(guò)STRING 11.0數(shù)據(jù)庫(kù)構(gòu)建蛋白質(zhì)-蛋白質(zhì)相互作用網(wǎng)絡(luò);利用Metascape平臺(tái)對(duì)潛在靶點(diǎn)進(jìn)行富集分析。根據(jù)網(wǎng)絡(luò)藥理學(xué)結(jié)果進(jìn)行實(shí)驗(yàn)驗(yàn)證,組別設(shè)置為正常組、模型組、BQTL低劑量組、BQTL中劑量組、BQTL高劑量組,除正常組外,其余組制備短暫性大腦中動(dòng)脈閉塞(transient middle cerebral artery occlusion, tMCAO)模型。正常組和模型組予以生理鹽水灌胃,BQTL低、中、高劑量組分別以1.35、2.7、5.4 g/kg濃度的中藥灌胃,每天灌胃1次,連續(xù)7 d。通過(guò)HE染色觀察大鼠神經(jīng)元形態(tài)及數(shù)目,使用ELISA試劑盒檢測(cè)大鼠血漿中TNF-α和ICAM1的含量。結(jié)果 篩選后得到BQTL活性成分91個(gè),主要包括柚皮素、芒柄花素、原兒茶酸等;治療腦梗死的潛在靶點(diǎn)259個(gè),主要包括ICAM1、TNF、EGFR、TP53、VCAM1、IL-6等;調(diào)控這些核心靶點(diǎn)的信號(hào)通路主要富集在PI3K-AKT、MAPK、HIF-1等多條信號(hào)通路中。動(dòng)物實(shí)驗(yàn)結(jié)果顯示,BQTL能夠改善腦梗死后神經(jīng)元死亡及丟失,同時(shí)能下調(diào)炎癥因子TNF-α及ICAM1的表達(dá)。結(jié)論 BQTL通過(guò)多靶點(diǎn)、多途徑抑制炎癥反應(yīng)和細(xì)胞凋亡,揭示了BQTL治療腦梗死的潛在靶點(diǎn)、作用機(jī)制及物質(zhì)基礎(chǔ),為臨床應(yīng)用提供參考。

〔關(guān)鍵詞〕 補(bǔ)氣通絡(luò)顆粒;腦梗死;網(wǎng)絡(luò)藥理學(xué);實(shí)驗(yàn)驗(yàn)證

〔中圖分類號(hào)〕R285.5 ? ? ? ? ? 〔文獻(xiàn)標(biāo)志碼〕A ? ? ? ? 〔文章編號(hào)〕doi:10.3969/j.issn.1674-070X.2023.04.018

Mechanisms of Buqi Tongluo Granule in treating cerebral infarction based on

network pharmacology and experimental verification

YAO Yaoyao1,2, XUE Bingjie2,3, WU Yichao1,2, GAO Ying2,3*

1. Beijing University of Chinese Medicine, Beijing 100029, China; 2. Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; 3. Key Laboratory of TCM Treatment of Encephalopathy, State Administration of Chinese Medicine, Beijing 100700, China

〔Abstract〕 Objective To investigate the potential targets, mechanism and material basis of Buqi Tongluo Granule (BQTL) in treating cerebral infarction by network pharmacology and experimental verification. Methods Active constituents and targets of BQTL were identified by TCMSP database and literature search. Disease targets of cerebral infarction were obtained by using GeneCards and OMIM databases, and the intersection of disease targets and BQTL constituent targets was used to verify the potential targets. Then, the "drug-active constituent-potential target" network was constructed by Cytoscape 3.9.0. The protein-protein interaction network was established through STRING 11.0 database. The Metascape platform was used to enrich potential targets. Based on the network pharmacological results, the experimental verification was performed. Normal group, model group, low-, medium- and high-dose BQTL groups were set. Transient middle cerebral artery occlusion (tMCAO) model was prepared in all groups except normal group. Normal group and model group were given normal saline intragastrically, while low-, medium- and high-dose BQTL groups received 1.35, 2.7 and 5.4 g/kg Chinese medicine intragastrically, once a day, for consecutive 7 d. The morphology and number of rat neurons were observed by HE staining, and the content of TNF-α and ICAM1 in rat plasma were detected by ELISA kit. Results After screening, 91 active ingredients of BQTL were obtained, including naringenin, formononetin, protocatechuic acid, and others. There were 259 potential targets to treat cerebral infarction, including ICAM1, TNF, EGFR, TP53, VCAM1, IL-6, and others. The signaling pathways regulating these core targets were mainly concentrated in PI3K-AKT, MAPK, HIF-1 and other signaling pathways. Animal experiments showed that BQTL could reduce neuronal death and loss after cerebral infarction, and down-regulate the inflammatory cytokines, of TNF-α and ICAM1. Conclusion BQTL inhibits inflammation and apoptosis through multiple targets and multiple pathways. The study reveals the potential target, mechanisms of action and material basis of BQTL for cerebral infarction, providing reference for clinical application.

〔Keywords〕 Buqi Tongluo Granule; cerebral infarction; network pharmacology; experimental verification

腦梗死又稱缺血性中風(fēng),是世界上導(dǎo)致人類死亡的第二大原因,也是引起成人殘疾的關(guān)鍵原因[1]。2020年《中國(guó)腦卒中防治報(bào)告》指出,中風(fēng)是我國(guó)居民致殘、致死的首要原因,近10年中風(fēng)的發(fā)病增長(zhǎng)率超過(guò)11%,由于腦組織在缺血后數(shù)小時(shí)內(nèi)發(fā)生神經(jīng)細(xì)胞死亡,因此,通過(guò)溶栓治療盡快恢復(fù)血流可挽救患者的半暗帶損傷,降低中風(fēng)后遺癥和死亡率[2]。然而,目前的溶栓藥物有嚴(yán)格的時(shí)間窗限制,故只有少數(shù)患者能從中獲益。現(xiàn)代醫(yī)學(xué)對(duì)于缺血性腦卒中患者的臨床治療在不斷地完善,但其實(shí)際的臨床治療效果仍有待提高[3]。

補(bǔ)氣通絡(luò)顆粒(以下簡(jiǎn)稱“BQTL”)由紅芪、三七、澤瀉、當(dāng)歸、川芎、蟬蛻、郁金、桂枝組成,是對(duì)王永炎院士多年臨床經(jīng)驗(yàn)的總結(jié)。此復(fù)方中,紅芪、當(dāng)歸補(bǔ)氣養(yǎng)血,川芎行氣活血,桂枝、蟬蛻通絡(luò),三七、郁金、澤瀉既化瘀又通絡(luò)。與傳統(tǒng)的益氣活血方相比,此經(jīng)驗(yàn)方引入紅芪代替?zhèn)鹘y(tǒng)黃芪,是因?yàn)榧t芪在免疫調(diào)節(jié)、抗凋亡等方面作用優(yōu)于黃芪[4]。研究發(fā)現(xiàn),紅芪含有黃芪中沒(méi)有的成分,如柚皮素、大豆皂苷類等,且芒柄花素的含量更高[5]。研究表明,BQTL在臨床上能夠明顯改善氣虛血瘀證,同時(shí)降低神經(jīng)功能缺損程度[6],目前已完成Ⅱ期臨床試驗(yàn)[7]。

1 方法

1.1 ?BQTL活性成分及靶點(diǎn)篩選

基于中藥藥理信息挖掘平臺(tái)TCMSP(https://tcmspw.com/tcmsp.php)及文獻(xiàn)查閱,對(duì)BQTL的活性成分進(jìn)行檢索,依據(jù)各成分的毒藥物動(dòng)力學(xué)具體參數(shù),類藥性(DL)≥0.18,口服生物利用度(OB)值≥30%對(duì)檢索結(jié)果進(jìn)行篩選,并獲得其相應(yīng)的靶點(diǎn)名。依據(jù)蛋白序列和功能信息資源數(shù)據(jù)庫(kù)UniProt(https://www.uniprot.org),獲得靶點(diǎn)對(duì)應(yīng)的基因名。

1.2 ?疾病靶點(diǎn)的獲取與篩選

以“腦梗死”(cerebralin farction)為關(guān)鍵詞通過(guò)OMIM、GeneCards疾病數(shù)據(jù)庫(kù)檢索靶點(diǎn),其中通過(guò)GeneCards數(shù)據(jù)庫(kù),篩選出腦梗死relevance score≥3的靶點(diǎn),去除不符合條件的靶點(diǎn),最后得到腦梗死的相關(guān)靶點(diǎn)。

1.3 ?“藥物-活性成分-潛在靶點(diǎn)”網(wǎng)絡(luò)構(gòu)建

以藥物、活性成分與治療腦梗死的潛在靶點(diǎn),建立“藥物-活性成分-潛在靶點(diǎn)”Excel文件,并導(dǎo)入Cytoscape 3.9.0構(gòu)建“藥物-活性成分-潛在靶點(diǎn)”網(wǎng)絡(luò)圖,以展示其交互作用關(guān)系。

1.4 ?GO功能及KEGG通路的富集分析

將BQTL治療腦梗死的潛在靶點(diǎn)上傳至Metascape平臺(tái),設(shè)定P<0.01,開(kāi)展GO功能分析及KEGG信號(hào)通路的富集分析,并對(duì)其結(jié)果進(jìn)行可視化分析。

1.5 ?動(dòng)物實(shí)驗(yàn)驗(yàn)證

1.5.1 ?實(shí)驗(yàn)動(dòng)物及藥物 ?8周齡雄性SD大鼠50只,體質(zhì)量220 g左右,由北京華阜康生物科技股份公司提供,動(dòng)物許可證號(hào):SYXK(京)2020-0013,于北京中醫(yī)藥大學(xué)東直門醫(yī)院SPF級(jí)動(dòng)物房飼養(yǎng),溫度24 ℃,相對(duì)濕度為50%~60%,清潔飲水,自由攝食,24 h光暗循環(huán)條件下飼養(yǎng)。BQTL由步長(zhǎng)制藥股份有限公司提供,批號(hào)200501,由紅芪、三七、澤瀉、當(dāng)歸、川芎、蟬蛻、郁金、桂枝組成。

1.5.2 ?主要試劑及儀器 ?病理切片機(jī)(德國(guó)徠卡公司,型號(hào):RM2016);正置顯微鏡(日本尼康公司,型號(hào):Eclipse E100);TNF-α(北京Proteintech有限公司,批號(hào):KE20001);ICAM1含量檢測(cè)試劑盒(北京Proteintech有限公司,批號(hào):KE20013)。

1.5.3 ?實(shí)驗(yàn)分組、模型制備和給藥 ?隨機(jī)將大鼠分為正常組(生理鹽水)、模型組(生理鹽水)、BQTL低劑量組(1.35 g/kg)、BQTL中劑量組(2.7 g/kg)及BQTL高劑量組(5.4 g/kg)(按照體表面積藥物劑量換算公式計(jì)算,分別相當(dāng)于70 kg成人劑量的0.5、1、2倍),每組10只。大鼠預(yù)灌胃給藥7 d后,除正常組,其余大鼠均使用戊巴比妥注射麻醉,仰臥固定于手術(shù)臺(tái)上。切開(kāi)右側(cè)頸部皮膚,分離后結(jié)扎右側(cè)頸總動(dòng)脈、頸外動(dòng)脈及其分支動(dòng)脈。結(jié)扎頸總動(dòng)脈(活扣),在頸內(nèi)動(dòng)脈近端備線、遠(yuǎn)端放置動(dòng)脈夾,在頸外動(dòng)脈處備線、切口,插入直徑為0.165 mm的尼龍線9~10 mm;栓線進(jìn)入頸內(nèi)動(dòng)脈、穿過(guò)大腦中動(dòng)脈起始端至大腦前動(dòng)脈近端,阻斷腦中動(dòng)脈的所有血流來(lái)源。扎緊備線,1.5 h后,拔出尼龍線,解除頸總動(dòng)脈結(jié)扎線,使其血流再通,結(jié)扎備線并縫合皮膚,將手術(shù)動(dòng)物放回籠內(nèi)飼養(yǎng)。

1.5.4 ?大鼠腦梗死半暗帶區(qū)病理切片 ?動(dòng)物造模24 h麻醉后取腦浸泡在福爾馬林溶液中,后用石蠟進(jìn)行包埋切片,依次經(jīng)過(guò)不同濃度的二甲苯以及乙醇,自來(lái)水沖洗后,使用蘇木素以及伊紅染液進(jìn)行染色,再經(jīng)過(guò)不同濃度的乙醇以及二甲苯進(jìn)行脫水透明后,用中性樹(shù)膠進(jìn)行封片,顯微鏡下進(jìn)行圖像采集分析。

1.5.5 ?炎癥因子TNF-α及ICAM1的含量檢測(cè) ?使用ELISA試劑盒檢測(cè)不同大鼠血漿中TNF-α及ICAM1的含量,操作方法按照商家提供的試劑盒說(shuō)明書(shū)進(jìn)行。

1.5.6 ?數(shù)據(jù)分析 ?使用Graphpad Prism軟件進(jìn)行分析,采用單因素方差分析,比較各組間的顯著性差異,如果滿足方差齊性,采用Tukey的HSD進(jìn)行事后檢驗(yàn),否則采用Games-Howell進(jìn)行檢驗(yàn),以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。相關(guān)結(jié)果以柱形圖的形式呈現(xiàn)。

2 結(jié)果

2.1 ?BQTL活性成分與預(yù)測(cè)靶點(diǎn)

通過(guò)TCMSP數(shù)據(jù)庫(kù)及文獻(xiàn)調(diào)研篩選中藥的活性成分,匯總?cè)ブ睾蟮玫紹QTL活性成分91個(gè),其中紅芪20個(gè)、三七10個(gè)、澤瀉12個(gè)、當(dāng)歸10個(gè)、蟬蛻8個(gè)、郁金25個(gè)、桂枝10個(gè)、川芎9個(gè)。主要成分有源于紅芪的柚皮素、芒柄花素和毛蕊異黃酮,源于蟬蛻的原兒茶酸,源于三七和紅芪的甘草素,源于桂枝的二氫槲皮素,源于當(dāng)歸的洋川芎內(nèi)酯,源于當(dāng)歸的木犀草素-7-O-β-D-葡萄糖醛酸苷以及源于澤瀉的澤瀉醇等。依據(jù)蛋白序列和功能信息資源數(shù)據(jù)庫(kù)UniProt,獲得靶點(diǎn)對(duì)應(yīng)的基因名,去重后最終得到活性成分對(duì)應(yīng)靶點(diǎn)697個(gè)。

2.2 ?疾病靶點(diǎn)的預(yù)測(cè)

通過(guò)OMIM和GeneCards疾病數(shù)據(jù)庫(kù)搜集腦梗死疾病的相關(guān)靶點(diǎn)。以relevance score為篩選條件,去除不符合條件的靶點(diǎn),篩選出腦梗死相關(guān)靶點(diǎn)1415個(gè)。將疾病的靶點(diǎn)與BQTL活性成分靶點(diǎn)進(jìn)行匹配,最終得到BQTL治療腦梗死的潛在靶點(diǎn)259個(gè),通過(guò)韋恩圖可視化展示。詳見(jiàn)圖1。

2.3 ?“藥物-活性成分-潛在靶點(diǎn)”網(wǎng)絡(luò)構(gòu)建

通過(guò)Cytoscape 3.9.0軟件,構(gòu)建BQTL治療腦梗死的“藥物-活性成分-潛在靶點(diǎn)”網(wǎng)絡(luò)圖。分析可知,網(wǎng)絡(luò)中有319個(gè)節(jié)點(diǎn),623條邊,結(jié)果顯示,BQTL發(fā)揮作用可能通過(guò)多個(gè)成分作用于多個(gè)靶點(diǎn)。通過(guò)對(duì)BQTL成分分析,柚皮素、芒柄花素、原兒茶醛、甘草素、二氫槲皮素結(jié)合靶點(diǎn)較多,可能是BQTL發(fā)揮藥效作用的物質(zhì)基礎(chǔ);BQTL活性成分和腦梗死靶點(diǎn)連線排名靠前的有ICAM1、TNF、EGFR、TP53、VCAM1、IL6、AKT1、IL-1β、STAT3、VEGFA。詳見(jiàn)圖2。

2.4 ?靶點(diǎn)富集生物分析

通過(guò)Metascape平臺(tái),將BQTL治療腦梗死的潛在靶點(diǎn)進(jìn)行GO富集分析,主要分析其參與的生物過(guò)程。結(jié)果顯示,BQTL治療腦梗死的潛在靶點(diǎn)主要富集在細(xì)胞遷移的正向調(diào)控、蛋白磷酸化的正向調(diào)節(jié)、炎癥反應(yīng)、對(duì)氧氣水平下降的反應(yīng)、對(duì)生長(zhǎng)因子刺激的反應(yīng)、對(duì)凋亡過(guò)程的調(diào)控、對(duì)脂多糖的反應(yīng)、對(duì)激素的反應(yīng)等生物過(guò)程。詳見(jiàn)圖3。

2.5 ?靶點(diǎn)富集通路分析

利用Metascape平臺(tái)將BQTL治療腦梗死的潛在靶點(diǎn)進(jìn)行KEGG通路分析,共獲得229條信號(hào)通路,根據(jù)P值排序靠前的通路有流體剪切應(yīng)力和動(dòng)脈粥樣硬化、PI3K-Akt信號(hào)通路、MAPK信號(hào)通路、HIF-1信號(hào)通路等信號(hào)通路,主要參與調(diào)控炎癥反應(yīng)和細(xì)胞凋亡等相關(guān)過(guò)程。詳見(jiàn)圖4。

2.6 ?BQTL對(duì)腦梗死大鼠的影響

2.6.1 ?BQTL對(duì)腦梗死大鼠半暗帶區(qū)神經(jīng)元的影響

通過(guò)HE染色發(fā)現(xiàn),正常組大鼠腦皮質(zhì)、髓質(zhì)神經(jīng)元細(xì)胞及神經(jīng)膠質(zhì)細(xì)胞排列有序,神經(jīng)元細(xì)胞核大,染色質(zhì)分布均勻,核仁清晰,未見(jiàn)變性、壞死等病變,神經(jīng)元數(shù)量較多;模型組皮質(zhì)、髓質(zhì)神經(jīng)元見(jiàn)多梗死灶區(qū),為液化性壞死,呈篩網(wǎng)狀結(jié)構(gòu),神經(jīng)細(xì)胞大片消失,壞死區(qū)內(nèi)可見(jiàn)小膠質(zhì)細(xì)胞增生,壞死邊緣(半暗帶)較窄,神經(jīng)細(xì)胞變性,可見(jiàn)中性粒細(xì)胞浸潤(rùn),同時(shí)觀察到神經(jīng)元數(shù)量變少,與正常組相比,差異顯著(P<0.0001)。在BQTL低、中、高劑量作用后,以上情況均得以緩解,其中BQTL中劑量及高劑量組與模型組相比,有顯著差異(BQTL中劑量組與模型組相比,P=0.011 9;BQTL高劑量組與模型組相比,P=0.000 5)。詳見(jiàn)圖5。

2.6.2 ?BQTL對(duì)炎癥因子TNF-α和ICAM1的影響 ?與正常組相比,模型組的炎癥因子TNF-α及ICAM1含量顯著升高,說(shuō)明腦梗死后,神經(jīng)元因缺氧導(dǎo)致TNF-α及ICAM1的產(chǎn)生。在使用BQTL處理后,炎癥因子TNF-α及ICAM1含量顯著降低,其中對(duì)于TNF-α,BQTL中劑量及高劑量組與模型組相比,差異具有顯著性(BQTL中劑量組與模型組相比,P=0.007 7;BQTL高劑量組與模型組相比,P=0.006 8);對(duì)于ICAM1,BQTL中劑量及高劑量組與模型組相比,差異具有顯著性(BQTL中劑量與模型組相比,P=0.008 5;BQTL高劑量組與模型組相比,P=0.005 3)。詳見(jiàn)圖6。

3 討論

隨著經(jīng)濟(jì)發(fā)展,生活節(jié)奏加快,腦梗死的發(fā)病率逐年升高,且發(fā)病群體逐漸呈現(xiàn)年輕化趨勢(shì)。因此,對(duì)腦梗死的防治具有十分重要的意義。本研究通過(guò)網(wǎng)絡(luò)藥理學(xué)篩選活性成分并預(yù)測(cè)靶點(diǎn)蛋白[8],在此基礎(chǔ)上進(jìn)行實(shí)驗(yàn)驗(yàn)證。結(jié)果顯示,BQTL中柚皮素、芒柄花素、原兒茶酸、甘草素、二氫槲皮素等活性成分作用于ICAM1、TNF、EGFR、TP53、VCAM1、IL-6、AKT1、IL-1β、STAT3、VEGFA等信號(hào)靶點(diǎn),通過(guò)抗炎、減少細(xì)胞凋亡等機(jī)制,改善神經(jīng)功能障礙。研究表明,炎癥反應(yīng)是血瘀證的一個(gè)典型表現(xiàn)[9]?,F(xiàn)代藥理學(xué)研究認(rèn)為,腦梗死的發(fā)病與血管炎癥有關(guān)[10]。炎癥因子通過(guò)招募白細(xì)胞,促進(jìn)其與血小板以及內(nèi)皮細(xì)胞之間的黏附,造成血管的局部瘀堵,誘發(fā)血栓[11-12];凋亡是氣虛血瘀腦梗大鼠半暗帶細(xì)胞死亡的主要方式[13]。氣虛血瘀導(dǎo)致神經(jīng)元凋亡,補(bǔ)氣活血方通過(guò)調(diào)控Bcl-2、Fas-L、Mc-2等凋亡相關(guān)蛋白表達(dá)抑制神經(jīng)細(xì)胞的凋亡[14-16]。研究證明,柚皮素能降低低密度脂蛋白和甘油三酯水平,具有抗動(dòng)脈粥樣硬化的作用[17]。芒柄花素可改善大鼠腦缺血再灌注后神經(jīng)功能缺損程度,減小腦梗死體積[18]。原兒茶醛抑制ICAM1及VCAM1表達(dá),對(duì)大腦神經(jīng)元具有保護(hù)作用[19]。甘草素可以預(yù)防中風(fēng)引起的腦損傷,減輕神經(jīng)炎癥[20]。二氫槲皮素抗炎、抗氧化及促進(jìn)血管生成[21]。洋川芎內(nèi)酯可抗炎、抗血小板聚集[22]。

TNF、IL-6、IL-1β是典型的炎性細(xì)胞因子,缺血狀態(tài)下在血液中的含量可達(dá)正常水平的40~60倍[23];這些炎癥因子能提高巨噬細(xì)胞對(duì)脂質(zhì)沉積物的敏感性,并增強(qiáng)局部炎癥和斑塊不穩(wěn)定,增加腦血管疾病風(fēng)險(xiǎn)[24]。腦梗死后,血管內(nèi)皮細(xì)胞黏附分子ICAM-1和VCAM-1表達(dá)顯著增強(qiáng),其與白細(xì)胞相互作用促進(jìn)了炎癥細(xì)胞黏附和遷移[25]。AKT1激酶參與調(diào)節(jié)代謝、細(xì)胞凋亡、血管生成,是PI3K/AKT信號(hào)通路中的核心成分[26]。轉(zhuǎn)錄因子STAT3參與慢性炎癥、細(xì)胞生長(zhǎng)、凋亡等多種生命活動(dòng)[27]。受到JAK激酶的調(diào)控,STAT3被磷酸化后,轉(zhuǎn)錄合成Bcl-2等[28]。TP53作為經(jīng)典的凋亡基因,同時(shí)能夠抑制星形膠質(zhì)細(xì)胞衰老并介導(dǎo)神經(jīng)炎癥反應(yīng)[29]。VEGFA是一種促血管內(nèi)皮細(xì)胞生長(zhǎng)因子,在缺血性大腦的神經(jīng)血管重塑中起著至關(guān)重要的作用[30]。

從信號(hào)通路KEGG富集顯示分析,BQTL治療腦梗死主要涉及PI3K/AKT信號(hào)通路、MAPK信號(hào)通路以及HIF-1信號(hào)通路等。HIF-1由HIF-1α和HIF-1β組成,在缺血性卒中過(guò)程中,早期通過(guò)抑制HIF-1α可減輕腦水腫和細(xì)胞凋亡;恢復(fù)期抑制HIF-1α則導(dǎo)致神經(jīng)元損傷[31]。

在網(wǎng)絡(luò)藥理學(xué)分析的基礎(chǔ)上進(jìn)行實(shí)驗(yàn)驗(yàn)證,發(fā)現(xiàn)BQTL能減少腦梗死后神經(jīng)元壞死的數(shù)量,使血液中TNF-α及ICAM1等炎性因子數(shù)量降低,減輕腦損傷,有利于腦梗死的恢復(fù)。

綜上所述,BQTL中的有效活性成分可通過(guò)多靶點(diǎn)、多途徑發(fā)揮抑制炎癥反應(yīng)、降低細(xì)胞凋亡水平等作用,改善腦梗死。本研究為對(duì)癥治療的藥物開(kāi)發(fā)提供初步的理論基礎(chǔ),并為后續(xù)進(jìn)一步的實(shí)驗(yàn)研究及臨床應(yīng)用提供依據(jù)。

參考文獻(xiàn)

[1] ORELLANA-URZUA S, ROJAS I, LIBANO L, et al. Pathophysiology of ischemic stroke: Role of oxidative stress[J]. Current pharmaceutical design, 2020, 26(34): 4246-4260.

[2] 王隴德,彭 ?斌,張鴻祺,等.《中國(guó)腦卒中防治報(bào)告2020》概要[J]. 中國(guó)腦血管病雜志,2022,19(2):136-144.

[3] 惠小珊,袁書(shū)章,張金生,等.基于量表等級(jí)化法對(duì)缺血性中風(fēng)證候要素及治法的研究[J].中國(guó)中西醫(yī)結(jié)合志,2021,41(3):338-342.

[4] 徐靜汶.補(bǔ)中益氣湯中用紅芪替換黃芪的免疫調(diào)節(jié)作用比較及紅芪多糖的抗免疫老化機(jī)制研究[D].蘭州:蘭州大學(xué),2020.

[5] 白海英,張凱雪,包 ?芳,等.黃芪和紅芪對(duì)比研究進(jìn)展[J].西北藥學(xué)雜志,2020,35(3):460-466.

[6] 王永炎,趙 ?濤,王 ?忠,等.一種治療氣虛血瘀證的中藥制劑及其制備方法:CN108066702A[P].2018-05-25.

[7] LIU W, ZHOU L, FENG L, et al. BuqiTongluo Granule for ischemic stroke, stable angina pectoris, diabetic peripheral neuropathy with qi deficiency and blood stasis syndrome: Rationale and novel basket design[J]. Frontiers in pharmacology, 2021, 12: 764669.

[8] 世界中醫(yī)藥學(xué)會(huì)聯(lián)合會(huì).網(wǎng)絡(luò)藥理學(xué)評(píng)價(jià)方法指南[J].世界中醫(yī)藥,2021,16(4):527-532.

[9] 肖 ?雪,王樂(lè)琪,謝志茹,等.炎癥介質(zhì):探討血瘀證生物學(xué)基礎(chǔ)新思路[J].中華中醫(yī)藥雜志,2021,36(1):32-36.

[10] RIDKER P M. Inflammatory biomarkers and risks of myocardial Infarction, stroke, diabetes, and total mortality: Implications for longevity[J]. Nutrition Reviews, 2007, 65(suppl 3): S253-S259.

[11] ISHIKAWA M, COOPER D, ARUMUGAM T V, et al. Platelet-leukocyte-endothelial cell interactions after middle cerebral artery occlusion and reperfusion[J]. Journal of Cerebral Blood Flow and Metabolish, 2004, 24(8): 907-915.

[12] GERDES N, SEIJKENS T, LIEVENS D, et al. Platelet CD40 exacerbates atherosclerosis by transcellular activation of endothelial cells and leukocytes[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36(3): 482-490.

[13] UZDENSKY A B. Apoptosis regulation in the penumbra after ische?鄄mic stroke: Expression of pro-and antiapoptotic proteins[J]. Apoptosis, 2019, 24(9): 687-702.

[14] 陳根成,胡金城,朱成全,等.益氣活血片對(duì)腦缺血神經(jīng)細(xì)胞凋亡及相關(guān)基因表達(dá)的影響[J].廣州中醫(yī)藥大學(xué)學(xué)報(bào),2003,20(2):147-149.

[15] 占天為,郭書(shū)文,陳 ?曦,等.益氣活血方對(duì)心肌梗死大鼠心肌細(xì)胞凋亡影響的研究[J].環(huán)球中醫(yī)藥,2020,13(4):540-545.

[16] 吳 ?培,胡小勤.氣虛血瘀證與細(xì)胞凋亡相關(guān)性研究進(jìn)展[J].遼寧中醫(yī)雜志,2017,44(2):439-441.

[17] SCH?譈LTKE E, KENDALL E, KAMENCIC H, et al. Quercetin promotes functional recovery following acute spinal cord injury[J]. Journal of Neurotrauma, 2003, 20(6): 583-591.

[18] CASTALDO, NARV?魣EZ, IZZO, et al. Red wine consumption and cardiovascular health[J]. Molecules, 2019, 24(19): 3626.

[19] QU L, LIANG X, GU B, et al. Quercetin alleviates high glucose-induced Schwann cell damage by autophagy[J]. Neural Regeneration Research, 2014, 9(12): 1195-1203.

[20] ZHANG Y, LIU X, LONG J, et al. Exploring active compounds and mechanisms of Angong Niuhuang Wan on ischemic stroke based on network pharmacology and molecular docking[J]. Evidence-Based Complementary and Alternative Medicine, 2022, 2022: 2443615.

[21] PATCH C S, TAPSELL L C, WILLIAMS P G, et al. Plant sterols as dietary adjuvants in the reduction of cardiovascular risk: Theory and evidence[J]. Vascular Health and Risk Management, 2006, 2(2): 157-162.

[22] PONNULAKSHMI R, SHYAMALADEVI B, VIJAYALAKSHMI P, et al. In silico and in vivo analysis to identify the antidiabetic activity of beta sitosterol in adipose tissue of high fat diet and sucrose induced type-2 diabetic experimental rats[J]. Toxicology Mechanisms and Methods, 2019, 29(4): 276-290.

[23] BABU S, KRISHNAN M, RAJAGOPAL P, et al. Beta-sitosterol attenuates insulin resistance in adipose tissue via IRS-1/Akt mediated insulin signaling in high fat diet and sucrose induced type-2 diabetic rats[J]. European Journal of Pharmacology, 2020, 873: 173004.

[24] VINCIGUERRA M, ROMITI S, FATTOUCH K, et al. Atherosclerosis as pathogenetic substrate for sars-Cov2 cytokine storm[J]. Journal of Clinical Medicine, 2020, 9(7): E2095.

[25] CHEN J, JIANG L, YU X H, et al. Endocan: A key player of cardiovascular disease[J]. Frontiers in Cardiovascular Medicine, 2021, 8: 798699.

[26] 潘 ?曄,殷 ?佳,蔡雪朦,等.基于PI3K/Akt信號(hào)通路探討中醫(yī)藥治療冠心病的研究進(jìn)展[J].中草藥,2017,48(19):4100-4104.

[27] 楊 ?丹,樊 ?迪,楊 ?政,等. STAT3與心血管疾病的研究進(jìn)展[J]. 中華心血管病雜志,2020,48(7):616-620.

[28] 梁艷盆,馬 ?捷.阻斷JAK/STAT通道對(duì)大鼠缺血再灌注心肌細(xì)胞凋亡及Bcl-2/Bax表達(dá)的影響[J].中國(guó)藥物與臨床,2010,10(4): 424-426.

[29] TURNQUIST C, BECK J A, HORIKAWA I, et al. Radiation-induced astrocyte senescence is rescued by Δ133p53[J]. Neuro-Oncology, 2019, 21(4): 474-485.

[30] CHEN B, ZHANG Y, CHEN S, et al. The role of vascular endothelial growth factor in ischemic stroke[J]. Die Pharmazie, 2021, 76(4): 127-131.

[31] PAN Z R, MA G D, KONG L L, et al. Hypoxia-inducible factor-1: Regulatory mechanisms and drug development in stroke[J]. Pharmacological Research, 2021, 170: 105742.

〔收稿日期〕2022-07-19

〔基金項(xiàng)目〕中醫(yī)藥傳承與創(chuàng)新“百千萬(wàn)”人才工程(岐黃工程)(國(guó)中醫(yī)藥人教發(fā)〔2018〕12號(hào))。

〔第一作者〕姚堯堯,女,碩士研究生,研究方向:中醫(yī)藥防治腦血管疾病。

〔通信作者〕*高 ?穎,女,教授,主任醫(yī)師,博士研究生導(dǎo)師,E-mail:gaoying973@126.com。

猜你喜歡
網(wǎng)絡(luò)藥理學(xué)腦梗死
磁共振彌散加權(quán)成像對(duì)急性腦梗死的診斷作用探討
中藥整合藥理學(xué)計(jì)算平臺(tái)的開(kāi)發(fā)與應(yīng)用
基于網(wǎng)絡(luò)藥理學(xué)方法分析中藥臨床治療胸痹的作用機(jī)制
從網(wǎng)絡(luò)藥理學(xué)角度研究白芍治療類風(fēng)濕關(guān)節(jié)炎的作用
基于網(wǎng)絡(luò)藥理學(xué)的沙棘總黃酮治療心肌缺血的作用機(jī)制研究
基于網(wǎng)絡(luò)藥理學(xué)分析丹參山楂組分配伍抗動(dòng)脈粥樣硬化的作用機(jī)制研究
急性腦梗死的CT腦灌注成像分析
神經(jīng)血管單元與網(wǎng)絡(luò)藥理學(xué)
脈血康膠囊治療老年恢復(fù)期腦梗死30例
參芎龍蝎湯治療腦梗死臨床研究