喬陽陽 劉明雪 劉瓊溪 周嵐 邵建中
摘要:磁控濺射技術(shù)作為一種生態(tài)環(huán)保的薄膜沉積技術(shù),在紡織領(lǐng)域得到廣泛的關(guān)注。本文綜述了磁控濺射技術(shù)在紡織品功能化、紡織品仿生結(jié)構(gòu)生色以及膜-基結(jié)合穩(wěn)定性方面的研究進展,概述了磁控濺射技術(shù)在紡織基材上的沉積原理和特點,靶材分類及常見靶材的應(yīng)用特點,并指出磁控濺射技術(shù)目前存在的不足及相應(yīng)的改善策略。該技術(shù)的應(yīng)用有利于紡織染整業(yè)的可持續(xù)發(fā)展。
關(guān)鍵詞:磁控濺射;紡織品;功能整理;結(jié)構(gòu)生色;薄膜干涉;結(jié)合牢度
中圖分類號:TS195.5
文獻標志碼:A
文章編號:1009-265X(2023)02-0204-14
磁控濺射技術(shù)是指利用高能粒子轟擊固體陰極靶材,陰極靶表面的原子被激發(fā)出來,并沉積在基材表面形成薄膜的技術(shù)[1]。1852年,Grove首次發(fā)現(xiàn)了濺射這一現(xiàn)象,因沉積率低等問題未得到廣泛應(yīng)用[2];1974年,Chapin[3]發(fā)明了平衡磁控濺射,實現(xiàn)了高速低溫濺射,自此磁控濺射技術(shù)得到了發(fā)展,但平衡磁控濺射因離子轟擊不足以改變薄膜結(jié)構(gòu),難以得到高質(zhì)量薄膜,并且薄膜與基材結(jié)合牢度差;1985年,Window等[4]和Savvides等[5]提出了非平衡磁控濺射,調(diào)整了磁場分布,使得薄膜與基材牢度得到了提高。1996年,提出了中頻交流磁控濺射技術(shù),提高了磁控濺射技術(shù)的穩(wěn)定性以及靶材利用率,為磁控濺射薄膜工業(yè)化生產(chǎn)提供了有利條件[6]。隨著磁控濺射技術(shù)的迅速發(fā)展,該技術(shù)作為一種常用的有效手段應(yīng)用到諸多產(chǎn)品的制備中,在新材料及紡織領(lǐng)域受到了廣泛關(guān)注。
薄膜的制備方法通常分為干式鍍膜和濕式鍍膜兩種。干式鍍膜包括化學(xué)氣相沉積(CVD)和物理氣相沉積(PVD),物理氣相沉積又包括真空蒸鍍、離子鍍膜及濺射鍍膜等。濺射鍍膜最常用的方法有二極濺射、三極(或四極)濺射及磁控濺射等。通過化學(xué)氣相沉積法制備的薄膜較為穩(wěn)定致密,但原料的化學(xué)性質(zhì)不穩(wěn)定,如CH4、H2等,鍍膜過程中易產(chǎn)生有毒物質(zhì),如CO、Cl2等,且成本較高不適合工業(yè)化生產(chǎn)。物理氣相沉積中真空蒸鍍膜法簡單、高效,易獲得純度較高的薄膜,但薄膜的厚度不易控制,且制備過程中也會產(chǎn)生有毒物質(zhì)。離子鍍膜法可通過改變工藝參數(shù)調(diào)控薄膜厚度,相較于前者可獲得更為均勻致密、厚度可控的膜層,并且由于高能粒子的轟擊、注入,使得膜層致密,與基材結(jié)合牢度較好,但成本較高,鍍膜時基材溫度高,不適合鍍覆紡織品。濺射鍍膜中二極濺射方法簡單,但放電不穩(wěn)定、沉積速率低;三極濺射相對于二極濺射,濺射速率及膜層質(zhì)量得到提高,但也存在放電不穩(wěn)定的問題,容易導(dǎo)致薄膜厚度不均勻[7-11]。磁控濺射技術(shù)與上述鍍膜技術(shù)相比,主要有以下幾個顯著特征[12-14]:a)沉積速率高、基材升溫低、對膜層的損傷?。籦)靶材的使用范圍更廣;c)薄膜與基材結(jié)合牢度較好;d)薄膜純度高、致密性好,且成膜較為均勻;e)重演性好,具有在基材上大面積工業(yè)化鍍膜的潛能;f)能通過工藝參數(shù)精確控制,從而獲得目標厚度的薄膜;g)生態(tài)節(jié)水,環(huán)境友好。
磁控濺射技術(shù)作為一種“干法”鍍膜技術(shù),在織物表面鍍覆功能性薄膜,可以制備各種功能性紡織品,如抗菌型紡織品、抗紫外線型紡織品等,成為“干法”整理的重要途徑;另一方面,也可通過薄膜干涉結(jié)構(gòu)生色原理,對織物進行“干法”著色,制備仿生結(jié)構(gòu)生色紡織品。
傳統(tǒng)染整行業(yè)是典型的高碳行業(yè),存在耗水耗能大,廢水處理負擔(dān)重等問題。磁控濺射作為一種“干法”處理技術(shù),環(huán)境友好,符合“雙碳”目標的需求。本文將綜述介紹磁控濺射技術(shù)在功能性紡織品開發(fā)、仿生結(jié)構(gòu)生色紡織品制備及膜-基穩(wěn)定性方面的應(yīng)用研究進展。
1磁控濺射鍍膜的基本原理
目前大多數(shù)人所接受的磁控濺射鍍膜機理是Sigmund[15]提出的級聯(lián)碰撞理論。電子在外加電場E的作用下,加速向外飛出,飛向基材的過程中與Ar原子碰撞,使Ar原子電離成Ar+和二次電子,并且把大部分的能量傳遞給Ar+,Ar+獲得能量后在電場的作用下高速轟擊靶材,將部分能量傳遞給靶材表面的晶格原子,引起靶材原子的運動。其中具有克服表面勢能能量的原子可以直接脫離靶材濺射出去;有的原子獲得的能量較低不能脫離晶格的束縛,只能在原位震動并波及周圍原子,使靶材溫度升高;還有的原子獲得了足夠多的能量發(fā)生了一次反沖,使其臨近原子受到碰撞發(fā)生移動,繼續(xù)反沖下去,這一過程成為級聯(lián)碰撞。級聯(lián)碰撞后部分原子克服表面勢能脫離靶材,形成級聯(lián)濺射,沉積在基材表面形成薄膜[16]。此外,二次電子在電場和磁場的共同作用下被束縛在靶材表面特定范圍內(nèi)做擺線運動,不斷與Ar原子發(fā)生碰撞,使這個特定范圍內(nèi)氣體分子的離化率增加,轟擊靶材的高能粒子數(shù)量增多,從而實現(xiàn)高速低溫的濺射特點[17-19]。磁控濺射原理圖如圖1所示。
磁控濺射技術(shù)可以控制濺射工藝(濺射功率、濺射時間和濺射壓強等)和不同靶材等,在紡織基材表面沉積金屬或非金屬薄膜。其中濺射靶材的可選范圍較為廣泛,例如Cu、Ti、Ag、Al、Pt等金屬靶材;Si、石墨等非金屬靶材;TiO2、Fe2O3、ZnO等金屬氧化物靶材;SiO2等非金屬氧化物靶材;還可以沉積鎳鉻合金、鈦鋁合金等合金靶材和聚四氟乙烯等聚合物靶材[20-25]。
2磁控濺射技術(shù)在功能性紡織品制備中的應(yīng)用
功能整理的方法有物理整理、化學(xué)整理和生物生態(tài)整理等,但這些方法一般都會存在織物手感變化或技術(shù)要求高、難度大、有污染等問題。磁控濺射技術(shù)主要是通過在織物表面沉積薄膜,實現(xiàn)織物的表面改性,操作較簡單,不僅能夠賦予紡織品各種功能,還能基本保持織物原有的風(fēng)格。
2.1防水透濕性能
磁控濺射制備防水透濕織物是在織物表面沉積一層低表面能的薄膜,可以使織物孔隙減小到一定程度,但不致所有孔隙封閉,從而使織物具有良好的防水透濕性和一定的透氣性[26]。
聚四氟乙烯是由氟和碳組成的高分子化合物,不含親水性基團,具有很強的疏水性。于磊等[27]將靜電紡絲技術(shù)和磁控濺射技術(shù)相結(jié)合,先利用靜電紡絲技術(shù)制備聚氨酯(PU)納米纖維膜,再利用磁控濺射技術(shù)在PU膜上鍍覆聚四氟乙烯(PTFE)薄膜獲得防水性能。PU纖維膜最初接觸角為121.1°,靜置后水幾乎完全滲入;鍍膜后最初接觸角為128.6°,靜置5 min后接觸角變化不大;透濕性與原樣相差不大。Huang等[25]以聚四氟乙烯為靶材,在聚酯(PET)織物上鍍覆氟碳薄膜。當(dāng)濺射時間為60 min時,織物的防水性能較好,透濕性變化不大。王東等[28]利用磁控濺射技術(shù)在聚酯織物表面鍍覆聚四氟乙烯薄膜。鍍膜織物防水性能顯著提高,從完全滲入到接觸角提高至138.8°,透濕量稍有下降,但變化不大。Huang等[29]利用磁控濺射技術(shù)在絲織物上鍍覆聚四氟乙烯薄膜,織物表面粗糙度得到提高,接觸角從68°增加到138°,防水性能提高。但聚四氟乙烯靶材制備工藝復(fù)雜、價格昂貴,所以它的廣泛應(yīng)用受到限制。
在織物上沉積金屬薄膜也可以得到良好的防水透濕性能,并且金屬靶材比聚四氟乙烯靶材的制備簡單。Jiang等[30]在滌綸織物表面鍍覆了摻雜鋁的氧化鋅(AZO)薄膜,濺射時間為30、60 min和90 min 時,鍍膜織物的接觸角分別為140°、142°和146°,濺射時間越長,織物表面越粗糙,織物的防水性能越好。Miao等[31]利用磁控濺射技術(shù)在聚酯(PET)織物上制備了AZO/Ag/AZO和AZO/Cu/AZO多層膜。未鍍膜滌綸織物接觸角為50°;AZO/Ag/AZO鍍膜織物的接觸角隨Ag膜厚度不同有所差別,分別為92.51°(Ag 15 nm)和93.51°(Ag 20 nm);AZO/Cu/AZO鍍膜織物的接觸角分別為88°(Cu 15 nm)和88.51°(Cu 20 nm),鍍膜前后樣品CA圖像如圖2所示,金屬層不同對防水性能也有一定的影響,但比未鍍膜織物防水性能得到顯著提高。Lee等[32]利用磁控濺射技術(shù)在化學(xué)回收滌綸(CR-PET)織物上鍍覆Al膜,隨著沉積膜層變厚,織物接觸角增大,防水性能顯著提高。滌綸織物和Al膜都具有高度疏水性;此外,CR-PET織物是由紗線組成的,纖維之間有許多孔洞,但濺射處理后,纖維間的孔洞被納米粒子填充,使織物防水性能增強。以上方法雖然都得到了較好的防水透濕性能,但薄膜與基材結(jié)合牢度較差,防水透濕性能會隨著薄膜發(fā)生脫落而消失,有待開發(fā)出耐久性的防水透濕織物。
2.2抗菌性能
磁控濺射技術(shù)制備抗菌織物是利用濺射到織物上的金屬納米粒子破壞細菌的細胞壁、蛋白質(zhì)或酶等達到抗菌效果,相比于傳統(tǒng)抗菌劑的抗菌活性更高、抑菌持久性更好[33-34]。
磁控濺射制備抗菌織物常使用的靶材是銀和銅,銀的抗菌活性大于銅,抗菌率可達到99%左右,但由于銀價格較昂貴,不斷積累對身體也有一定的危害性,所以銅使用較多。Irfan等[35]采用射頻磁控濺射技術(shù)在棉織物上制備了不同厚度Ag/SiO2復(fù)合薄膜。鍍膜織物相比于原織物對金黃色葡萄球菌、大腸桿菌和白色念珠菌的抑菌性能得到了一定程度的提高,出現(xiàn)了明顯的抑菌圈。其中鍍膜前后對白色念珠菌抗菌效果如圖3所示。Scholz等[22]采用磁控濺射技術(shù)對由SiO2纖維組成的織物進行磁控濺射薄膜的鍍覆,對銀、銅、鉑、鉑/銠和金膜的抗菌效果進行測試。鍍覆銅膜和銀膜的織物對抵抗金黃色葡萄球菌最有效,鍍銀和鍍銅織物周圍出現(xiàn)3 mm的抑菌帶;鉑/銠僅對一種真菌有效,其余金屬膜層未顯示出抗菌效果。
高秋瑾等[36]利用磁控濺射技術(shù)在蠶絲織物表面鍍覆Ag膜,薄膜厚度為1 nm時,鍍膜織物對金黃色葡萄球菌抑菌率高達99.89%;繼續(xù)提高薄膜厚度為5 nm時,反而導(dǎo)致抗菌性能下降,可能是由于銀粒子活性降低或納米粒子出現(xiàn)團聚。Rani等[37]在滌綸真絲混紡織物上鍍覆Cu膜,沉積膜層越厚,對大腸桿菌以及金黃色葡萄球菌的抑菌圈越大,抗菌效果效果越好。利用TiO2的光催化性能及抗菌性能還可以制備光催化型抗菌織物,但TiO2的抗菌活性不如Ag和Cu。例如,Huang等[23]利用磁控濺射技術(shù)在聚丙烯非織造布表面鍍覆TiO2膜,鍍膜織物抑菌率為26.2%。以上雖然鍍膜織物抗菌率很高,但由于薄膜和基材結(jié)合力較弱,經(jīng)多次水洗或摩擦等機械力作用會導(dǎo)致薄膜脫落,抗菌持久性及循環(huán)使用性較差,所以膜-基結(jié)合牢度需要進一步研究。
由于新冠疫情的影響,口罩成為人們生活極其重要的一部分,磁控濺射鍍膜織物憑借其優(yōu)異的抗菌性能被用來制備口罩等防護用品。He等[38]利用磁控濺射技術(shù)將Ag膜和Zn膜分別沉積在棉織物兩面制備抗菌層,夾在無紡布之間制備抗菌口罩,顯現(xiàn)出較高的抑菌性能,并且納米顆粒的穩(wěn)定性良好,可重復(fù)利用?;葜菔薪馨蹆艋邢薰竞蛷V東碩源科技股份有限公司利用磁控濺射技術(shù)合作研發(fā)了一款防塵除菌、可反復(fù)利用的抗菌口罩,相較于現(xiàn)有的磁控濺射納米膜口罩,該口罩不僅有較高的抗菌率,可以防止吸入灰塵,而且提高了口罩的利用率[39]。利用磁控濺射技術(shù)還可以用于制備防護服、工作服等,在醫(yī)用方面具有較好的發(fā)展前景。
2.3抗紫外線性能
磁控濺射鍍覆的薄膜粒子尺寸極小、比表面積大,由于其特有的量子尺寸效應(yīng),導(dǎo)致紫外線吸收量顯著提高;還有一部分紫外線被納米薄膜反射,隨著薄膜厚度的增加,紫外線反射率提高、透過率降低,抗紫外線性能提高。相比于傳統(tǒng)制備方法,磁控濺射技術(shù)不影響織物手感,并且具有生態(tài)環(huán)保的特點[40-41]。
利用磁控濺射技術(shù)在織物表面沉積Ag、Cu、TiO2、ZnO等都可以達到良好的抗紫外性能,鍍Ag膜織物最優(yōu)的紫外線透過率可達到0。李超榮等[42]采用直流磁控濺射方法在醋酯纖維(CA)表面沉積Ag膜。隨著濺射功率的增加,紫外線透過率從52.75%降到0,抗紫外性能提高。Jiang等[43]利用磁控濺射技術(shù)在聚酯纖維表面鍍覆Ag膜。未處理聚酯織物UPF值為89.21;當(dāng)濺射時間為10、30 min時,織物的UPF值分別為108.18、302.15;濺射時間增加,增強了織物對紫外線的反射作用。鍍膜前后織物的抗紫外性能如圖4所示。Kudzin等[44]利用磁控濺射技術(shù)在聚乳酸纖維上沉積Cu膜。原織物、濺射10 min和30 min所對應(yīng)的UPF值分別為9.36、44.83、49.32,與原織物相比,抗紫外性能顯著提高。
在織物表面沉積復(fù)合膜織物相比于沉積單層膜,抗紫外性能更加優(yōu)越。例如,Jin等[24]在利用磁控濺射技術(shù)制備的ZnO薄膜上,通過離子濺射和熱處理,制備了不同濺射時間的Au納米顆粒。與未添加Au納米顆粒的ZnO相比,Au/ZnO納米復(fù)合材料的紫外吸收增強,這主要是因為ZnO的能帶間激發(fā)和Au納米顆粒的局域表面等離子體共振。Yuan等[45]采用直流磁控濺射和射頻磁控反應(yīng)濺射技術(shù),在滌綸織物上沉積了Ag/TiO2復(fù)合薄膜、TiO2單層膜和Ag單層膜。原織物的UPF值為9.62,其次是鍍覆了TiO2膜的織物UPF值為14.68,鍍覆Ag膜織物UPF值為23.01,鍍覆Ag/TiO2復(fù)合膜的織物的UPF值在30左右。孟靈靈等[46]利用磁控濺射技術(shù)在滌綸非織造布、機織布、針織布上鍍覆Ag/ZnO復(fù)合膜。其中非織造布孔徑最小,納米薄膜可以使紫外光發(fā)生散射,紫外線透過率低,抗紫外性能較好;相反,針織布孔徑較大,紫外線透過率較高,不同鍍膜滌綸織物紫外透射率曲線如圖5所示;紡織品自身結(jié)構(gòu)對功能性有一定的影響。無論沉積單層膜還是多層膜,織物的抗紫外性能都得到了顯著提高,但膜-基結(jié)合力較弱,薄膜易脫落,導(dǎo)致抗紫外性能下降,因而需要提高膜-基結(jié)合牢度,得到長效持久的抗紫外織物。
2.4抗靜電性能
磁控濺射抗靜電技術(shù)是在織物表面沉積一層具有導(dǎo)電性能的薄膜,能阻止靜電在織物表面存留,并將靜電快速傳導(dǎo)出去,從而達到良好的抗靜電效果。相較于常規(guī)抗靜電方法,操作簡單,屬于物理加工方法,不產(chǎn)生污染,并且耐久性好[47]。
在制備抗靜電織物時需要選擇導(dǎo)電性強的金屬,所以常用Ag靶和Cu靶,前文提到Ag的導(dǎo)電性大于Cu,理論上最優(yōu)半衰期可以達到0 s,但由于Ag價格昂貴,所以使用Cu靶的較多。彭靈慧等[48]采用磁控濺射技術(shù)在芳綸織物表面沉積Cu膜。芳綸原織物半衰期為42.7 s;鍍覆Cu膜后,當(dāng)濺射時間為50 min時,織物的半衰期降低至0.4 s。袁小紅等[49]利用磁控濺射技術(shù)在滌綸織物上鍍覆Ag膜和Cu膜半衰期值越小,電荷逸散得越快,抗靜電效果越好。對于鍍覆Cu膜織物來說,半衰期能降低至0.7 s;對于鍍覆Ag膜織物來說,半衰期能降低至0 s。張建英等[50]探究了滌綸經(jīng)磁控濺射鍍覆Cu膜,鍍覆雙面金屬薄膜的織物相比于單面鍍膜織物抗靜電能力能強。在織物表面沉積復(fù)合膜也可以得到良好的抗靜電性,例如,Chu等[51]利用磁控濺射技術(shù)在聚丙烯織物表面鍍覆Cu/Ag復(fù)合膜,抗靜電性能得到了顯著提高。吳家斌[52]利用磁控濺射技術(shù)在丙綸非織造布表面沉積ZnO/Cu復(fù)合膜,半衰期從11.0 s降低至0.1 s。但以上鍍膜織物的膜-基結(jié)合力較弱,容易導(dǎo)致抗靜電織物耐久性降低,所以膜-基結(jié)合力需要提高。Wang等[53]對聚丙烯腈纖維先用(3-氨基丙基)三乙氧基硅烷(APTES)和3-巰基丙基三乙氧基硅烷(MPTES)進行前處理改性,然后利用磁控濺射技術(shù)在纖維表面鍍覆Ag膜。鍍膜織物抗靜電性能相比原織物顯著提高,且經(jīng)30次洗滌后,織物抗靜電性能仍良好;改性纖維產(chǎn)生的硫醇基團與銀離子形成化學(xué)鍵,提高了薄膜與纖維的結(jié)合力,從而提高了抗靜電織物的耐久性。但經(jīng)過該偶聯(lián)劑處理后,織物的手感會變硬,所以制備手感好、結(jié)合力強的抗靜電織物還有待研究。
2.5電磁屏蔽性能
磁控濺射電磁屏蔽技術(shù)是一種物理整理方法,電磁波傳播到鍍膜織物表面時,在屏蔽材料中的衰減主要包括表面反射、吸收和多次反射3種形式。磁控濺射技術(shù)制備電磁屏蔽紡織品具有工藝簡單、膜層致密均勻、生態(tài)環(huán)保等優(yōu)點[54]。
利用磁控濺射技術(shù)制備電磁屏蔽織物,也需要使用導(dǎo)電性較好的金屬,如Ag、Cu等,鍍膜織物的電磁屏蔽性能都能得到顯著提高。李強林等[55]通過磁控濺射技術(shù)在滌綸織物上鍍覆單面銅鈦膜和雙面銅鈦膜,雙面鍍膜織物的屏蔽效能值高達41 dB,單層鍍膜織物屏蔽效能值高達21 dB。儲長流等[56]利用磁控濺射技術(shù)在聚丙烯非織造布表面鍍覆納米Ag膜。未鍍膜織物幾乎不具備電磁屏蔽性能;隨著鍍膜時間增加,織物表面Ag膜變得致密,電磁屏蔽效能值高達70 dB。Ziaja等[57]利用磁控濺射技術(shù)在聚丙烯無紡布上鍍覆鋅膜、氧化鋅膜、鈦膜及氧化鈦膜。其中鋅膜電磁屏蔽值最高達42 dB,氧化鋅膜電磁屏蔽值不超過25 dB,鈦膜及氧化鈦膜電磁屏蔽值低于10 dB。沉積鋅膜無紡布屏蔽效果如圖6所示。Surdu等[58]利用磁控濺射技術(shù)在棉和滌綸織物表面沉積不同厚度的Cu膜。鍍膜后織物的電磁屏蔽性能相較于原織物得到了顯著提高。同樣在織物表面沉積復(fù)合膜也可以顯著提高織物的電磁屏蔽性能,例如,Meng等[59]利用直流和射頻共濺技術(shù)在滌綸織物表面鍍覆Ag/Cu復(fù)合膜,原樣屏蔽效能值為5 dB,鍍覆復(fù)合膜后織物屏蔽效能值為29.8~35.65 dB。Xu等[60]利用磁控濺射技術(shù),使用銀和聚四氟乙烯靶材,在聚酯無紡布表面鍍覆了Ag/FC復(fù)合膜,原織物電磁屏蔽值為0 dB,鍍覆銀膜織物電磁屏蔽值為25.35 dB。同樣,以上研究大多存在電磁屏蔽耐久性較差的問題,膜-基結(jié)合力較弱,電磁屏蔽性能會隨著薄膜脫落而下降,提高電磁屏蔽織物耐久性有待研究。
2.6其他性能
除了以上功能外,磁控濺射還可用于紅外屏蔽、光熱管理、防熱防火、光催化等紡織品特種功能整理方面。利用磁控濺射技術(shù)在織物上沉積Cu膜[61]、Ti-O膜[62]等,在織物上形成對紅外具有高反射率的納米薄膜,可以顯著增強織物的紅外屏蔽性能,應(yīng)用到軍事領(lǐng)域。在織物的一面沉積Zn膜、Ti膜、ZrN膜、Cu/TiO2復(fù)合膜等,當(dāng)該面朝向陽光時,利用納米薄膜對太陽光的高吸收以及對熱輻射的高反射,實現(xiàn)對人體的保溫功能;在同一織物的另一面沉積TiO2膜等,當(dāng)該面朝向陽光時,利用對太陽光具有高反射率的薄膜,實現(xiàn)對人體的散熱功能,能夠制備雙功能兼具的光熱管理紡織品[63-65]。Yan等[66]利用磁控濺射技術(shù)在PU涂層聚酯織物上沉積Ag膜,由于Ag膜優(yōu)異的導(dǎo)電性,對溫度的高敏感性,能夠制備可穿戴柔性溫度傳感器,隨時檢測人體溫度,預(yù)防多種疾病,在健康監(jiān)測和醫(yī)療保健等方面具有重要作用。在織物上沉積Al膜[67]、Ag/TiO[68]2膜等熱導(dǎo)率較高,隔熱性能較好的阻燃涂層,可用于制備防熱和防火的防護服或手套等。在織物上沉積Ag/TiO[69]2、Ag/Ag2O/TiO[70]2、CuxO/TiO[71]2等多層膜,可以制備光催化紡織品,金屬粒子的摻雜減少了光生電子-空穴的復(fù)合,進一步提高了TiO2的光催化性能,在環(huán)保、生物、化學(xué)、醫(yī)學(xué)等領(lǐng)域展現(xiàn)出廣闊的應(yīng)用前景。
3磁控濺射技術(shù)在仿生結(jié)構(gòu)生色紡織品制備中的應(yīng)用
結(jié)構(gòu)生色是材料的微納結(jié)構(gòu)與光相互作用而產(chǎn)生的,作用方式主要有薄膜干涉、衍射光柵、光子晶體、光散射等,其中薄膜干涉是結(jié)構(gòu)生色最主要的來源之一。薄膜干涉又可分為單層薄膜干涉和多層薄膜干涉。
單層薄膜干涉原理如圖7所示。當(dāng)自然光射入連續(xù)的薄膜,入射光在薄膜上表面反射后得第一束光,透過薄膜產(chǎn)生折射光經(jīng)薄膜下表面反射,又經(jīng)上表面折射后得第二束光,這兩束光存在一定的光程差,當(dāng)光程差滿足一定條件時,會在薄膜的上表面相遇發(fā)生相長干涉(最亮)或相消干涉(最暗),當(dāng)相長干涉的光進入人的視覺系統(tǒng),便會產(chǎn)生相應(yīng)的結(jié)構(gòu)色視覺效果。單層薄膜干涉產(chǎn)生的結(jié)構(gòu)色主要與薄膜的厚度、薄膜折射指數(shù)和光入射角度等有關(guān),當(dāng)折射率恒定,改變薄膜厚度,兩束光的光程差會發(fā)生改變,從而干涉波長也會發(fā)生相應(yīng)的改變,最終產(chǎn)生不同的結(jié)構(gòu)色。單層薄膜干涉結(jié)構(gòu)生色在自然界中比較常見,比如陽光下的肥皂泡、蜜蜂的翅膀、水面上的油膜等。
多層薄膜通常由兩種不同折射指數(shù)的薄膜交替疊加組成,反射波長與兩種薄膜的折射指數(shù)、厚度和折射角相關(guān)。相比于單層薄膜干涉,多層薄膜干涉產(chǎn)生的結(jié)構(gòu)色飽和度更高、色彩更加明亮,形式也比較多樣。在自然界中,龜甲蟲、獨角仙、鞭尾蜥蜴、蝴蝶翅膀等都屬于多層薄膜干涉[72-77]。
磁控濺射作為一種高速低溫、生態(tài)環(huán)保的薄膜沉積技術(shù),根據(jù)薄膜干涉原理,在織物上沉積單層膜或多層膜,可以制備多種顏色的結(jié)構(gòu)生色紡織品。Yuan等[78]利用磁控濺射技術(shù)在滌綸機織物上鍍覆Ag/TiO2復(fù)合膜制備結(jié)構(gòu)生色紡織品。隨著TiO2膜厚度的增加,織物顏色分別為藍色、綠色和黃色。同時,該課題組還在滌綸織物上沉積了Al/TiO2復(fù)合薄膜。TiO2膜濺射時間為10、12、18、20、26、27、30、45 min時,分別對應(yīng)的顏色為藍紫色、藍色、青色、綠色、黃色、黃紅、橙色、藍綠色[79],其中織物原樣、濺射10 min、濺射時間12 min的織物樣品如圖8所示。田桓榮[80]利用磁控濺射技術(shù)在棉織物上鍍覆TiO2單層膜,發(fā)現(xiàn)不能產(chǎn)生結(jié)構(gòu)色;先濺射基礎(chǔ)層Cu膜,再濺射TiO2膜,織物出現(xiàn)了結(jié)構(gòu)色。當(dāng)Cu膜濺射時間為10 min,TiO2膜厚度為20、30、50、70 min時,織物所對應(yīng)的顏色為紫色、藍色、黃色、紅色;此外,研究發(fā)現(xiàn)薄膜較薄時是光的散射和薄膜干涉共同作用的結(jié)果,繼續(xù)增加厚度才是薄膜干涉單獨作用的結(jié)果。
Zhang等[81]采用磁控濺射法在滌綸織物上沉積Ag/Ag2O復(fù)合膜,設(shè)定Ag膜的厚度為400 nm,再鍍覆不同厚度的Ag2O薄膜,復(fù)合膜的沉積過程如圖9所示。當(dāng)Ag2O層的厚度為10、25、30、42、85、105 nm,分別對應(yīng)的結(jié)構(gòu)色為黃色、紫色、橙色、靛藍色、藍色和綠色。葉麗華等[82]采用磁控濺射技術(shù)在滌綸非織造布和桑蠶絲織物上濺射SiO2、TiO2周期性薄膜制備結(jié)構(gòu)生色織物。鍍膜后的滌綸纖維網(wǎng)狀部分大都呈現(xiàn)黃色,而凹坑區(qū)呈現(xiàn)綠色;桑蠶絲織物則呈現(xiàn)出黃色、藍色和紫色。Yip等[83]在90%純棉和10%氨綸的白色經(jīng)編針織物上鍍覆Ag膜,發(fā)現(xiàn)織物在濺射處理后呈現(xiàn)出淡綠色和淡黃色。這可能是由于濺射過程中高能銀離子的轟擊,改變了原織物的顏色。Peng等[84]采用磁控濺射技術(shù)在滌綸織物上鍍覆TiO2/Cu/TiO2“三明治”結(jié)構(gòu)的復(fù)合膜。其中TiO2薄膜濺射時間均為120 min,Cu膜濺射時間分別為5、10、20、30 min時,分別對應(yīng)的顏色為綠色、黃色、棕色和紫色。以上研究雖都制備出各種結(jié)構(gòu)生色紡織品,但薄膜與織物結(jié)合牢度較差,所以高結(jié)合牢度、色彩亮麗的結(jié)構(gòu)生色紡織品還需進一步探索。
除以上實驗室研究工作外,廣東欣豐科技有限公司自主設(shè)計開發(fā)了工業(yè)級的連續(xù)化磁控濺射設(shè)備,建立了幾十種配色方案,能夠制備出金屬色、漸變色、角度色和雙面色等一系列結(jié)構(gòu)生色紡織品。在傳統(tǒng)印染難以上色的織物上也可以進行鍍膜得到豐富的結(jié)構(gòu)色。如,在芳綸織物上沉積TiO2、Zn、CuO等納米薄膜,能夠呈現(xiàn)出赤橙黃綠青藍紫的多種顏色[85];在聚酰亞胺織物、玻璃纖維上沉積Ti/Zn薄膜,再沉積一層不銹鋼膜作為保護膜,可得到多種顏色的結(jié)構(gòu)色,并且所制備的鍍膜織物色牢度較好,并具有抗紫外線、防水、抗靜電、抗菌等功能[86-87]。但由于磁控濺射設(shè)備較為昂貴,結(jié)構(gòu)生色紡織品色系尚不齊全等原因,磁控濺射技術(shù)結(jié)構(gòu)生色紡織品的廣泛應(yīng)用受到一定的限制[88-91]。
4磁控濺射膜與紡織基材的結(jié)合穩(wěn)定性研究
磁控濺射鍍膜織物的膜-基結(jié)合牢度是評價磁控濺射織物性能的一項重要指標。磁控濺射薄膜與織物的結(jié)合主要是通過范德華力(薄膜與基材之間的分子間作用力)、擴散附著(靶材和基材原子相互擴散纏結(jié),形成界面層)、機械鎖合(基材表面不平整,靶材原子與基材相互咬合)、靜電吸附(薄膜與基材帶有的電子接觸、轉(zhuǎn)移產(chǎn)生電荷,產(chǎn)生靜電吸附)等,隨靶材類型、基材類型、濺射工藝的不同,膜-基結(jié)合牢度有較大差異。
磁控濺射技術(shù)在功能性紡織品和結(jié)構(gòu)生色紡織品的制備中,不同程度地存在薄膜與基材結(jié)合牢度差的問題,所以結(jié)合牢度成為磁控濺射技術(shù)應(yīng)用方面急需解決的問題。Meng等[92]使用氧等離子體對滌綸織物進行預(yù)處理,再利用磁控濺射技術(shù)對織物鍍覆Cu膜。經(jīng)過等離子體處理的織物表面出現(xiàn)了明顯的刻蝕效應(yīng),導(dǎo)致織物表面變粗糙,提高了薄膜和織物的附著力,從而滌綸織物與Cu薄膜的牢度得到提高。Peng等[93]對滌綸織物進行激光預(yù)處理,再利用磁控濺射技術(shù)織物表面鍍覆Cu膜。激光處理后,織物表面發(fā)生刻蝕變得粗糙,金屬薄膜和滌綸織物之間的粘附性提高,從而薄膜與織物牢度得到顯著提高。Zhang等[94]采用磁控濺射技術(shù)在聚酯(PET)織物上鍍覆Cu膜,為提高Cu膜在合成汗液中的穩(wěn)定性,采用苯并三唑(BTA)溶液對鍍膜織物進行處理。未處理織物在汗液中腐蝕嚴重,處理濃度越高,鍍膜織物穩(wěn)定性越高,這是由于BTA可以和Cu形成配位化合物,保護Cu膜不被腐蝕。Liu等[95]利用磁控濺射技術(shù)在聚丙烯無紡布表面鍍覆Ag膜,隨后使用多巴胺溶液對織物進行后處理。隨著多巴胺處理時間的增加,織物經(jīng)過洗滌后,其Ag膜保持高度的完整性,織物的耐久性也得到了顯著的提高。這是由于多巴胺可以和織物形成共價鍵,和Ag形成配位鍵,提高了薄膜和織物之間的附著力,進而提高了耐久性;但用多巴胺處理會使織物顏色發(fā)生變化。該課題組先用聚丙烯酸酯(PA)處理聚酯(PET)織物,通過填充法使織物表面形成連續(xù)的薄膜,再在織物表面鍍覆Ti/Ag薄膜以及Ti/Ag/Ti三層膜。經(jīng)過剝離實驗后,經(jīng)過PA處理的鍍膜織物比未處理的牢度要好,說明PA處理織物后可以提高金屬薄膜和織物的附著力;其中Ti/Ag薄膜剝離牢度最好,分層多次鍍膜容易導(dǎo)致薄膜之間結(jié)合牢度變差[96]。杜麗娟等[97]利用磁控濺射技術(shù)在滌綸無紡布表面鍍覆Al膜,再將黏合劑涂覆在織物表面。在強烈的皂洗條件下,鍍膜織物的耐皂洗色牢度仍舊良好;未經(jīng)黏合劑處理的織物耐摩擦色牢度為1~2級,經(jīng)過黏合劑處理后摩擦色牢度達4~5級。這是由于黏合劑滲入織物內(nèi)部使纖維緊密連接在一起,從而薄膜和織物的結(jié)合牢度得到提高;但使用黏合劑處理會使織物手感變差。
以上都是以滌綸等合成纖維為基材進行研究,在天然纖維基材應(yīng)用方面研究較少。蔡珍[98]利用磁控濺射技術(shù)在滌綸及蠶絲織物上鍍覆Cu膜,鍍膜滌綸織物耐皂洗色牢度及耐摩擦色牢度優(yōu)于鍍膜蠶絲織物。劉明雪等[99]針對天然纖維鍍膜織物耐皂洗色牢度較差,甚至存在整層膜脫落的問題,以滌綸、棉及蠶絲織物為基材,利用磁控濺射技術(shù)在織物表面鍍覆Cu膜及Ti膜,探討了織物初始含水率及等離子體處理對磁控濺射織物牢度的影響,并應(yīng)用SEM和EDS等分析手段定性定量地觀察和分析了滌綸、棉和蠶絲3種典型纖維的紡織基材上磁控濺射產(chǎn)品的耐皂洗色牢度,發(fā)現(xiàn)纖維的熱性能和吸濕溶脹性能的差異性是造成磁控濺射結(jié)構(gòu)生色織物耐洗色牢度不同的根本原因。滌綸纖維為熱塑性纖維,磁控濺射高能粒子沉積到纖維表面時動能轉(zhuǎn)化為熱能,使滌綸纖維瞬間局部軟化甚至熔融,黏結(jié)濺射粒子,從而呈現(xiàn)較高的結(jié)合牢度,且滌綸纖維為疏水性纖維,水對滌綸微結(jié)構(gòu)的影響小,皂洗過程幾乎不影響濺射沉積粒子對基底織物的結(jié)合牢度。棉和蠶絲纖維則不然,它們并非熱塑性纖維,纖維對磁控濺射粒子無熔融黏結(jié)作用,而且棉和蠶絲均為親水性纖維,具有高吸濕溶脹性,皂洗過程中水分子的侵入削弱纖維和濺射沉積粒子間的作用力,且溶脹后的纖維空隙變大,即使有部分嵌入的粒子也會松動脫落,致使濺射膜與織物基材的結(jié)合牢度差,易整層脫落。在探明原由的基礎(chǔ)上,該課題組嘗試對棉和蠶絲織物進行“加法”改性,構(gòu)建出對濺射粒子具有接受及穩(wěn)固作用的纖維表面,顯著提高了棉和蠶絲鍍膜織物的色牢度[100]。Xu等[101]先用聚乙烯醇(PVA)對棉織物進行前處理,再用磁控濺射技術(shù)在棉織物上沉積Ag膜。PVA分子之間可以形成氫鍵,從而在織物表面形成PVA薄膜;PVA在填充過程中是棉纖維彼此之間有了更緊密的黏附力;并且棉織物具有可以通過氫鍵與PVA很好結(jié)合的羥基結(jié)構(gòu),所以PVA薄膜與織物緊密結(jié)合;此外,鍍覆Ag膜后,由于PVA的黏附作用,使得Ag膜緊密覆蓋在織物表面。由此,PVA提高了棉織物和薄膜的結(jié)合牢度。
5結(jié)語
磁控濺射技術(shù)不僅可以制備具有抗菌、抗靜電等一種或多種功能的紡織品,還可以利用薄膜干涉原理制備結(jié)構(gòu)生色紡織品。相較于傳統(tǒng)染整行業(yè)存在水資源消耗大,廢水排放污染環(huán)境等問題,磁控濺射“干法整理”和“干法著色”技術(shù)對于染整行業(yè)可持續(xù)發(fā)展有著重要的推動作用,契合低碳、環(huán)保理念,在紡織領(lǐng)域具有良好的發(fā)展前景。但磁控濺射技術(shù)也存在一些問題和不足:a)靶材利用率較低,磁場分布不夠均勻,容易形成濺射凹溝,導(dǎo)致靶材報廢,可以通過調(diào)控磁場分布、設(shè)計靶材等方法進行改善;b)磁性靶材濺射較困難,可以通過升高靶材溫度進行改善,超過磁控靶材的居里溫度后,鐵磁材料變?yōu)轫槾挪牧?,磁屏蔽效?yīng)消失,就能進行正常濺射;c)磁控濺射薄膜與天然纖維基材的結(jié)合牢度較差,通過對基材的表面改性等方法可提高膜-基結(jié)合牢度。目前,磁控濺射技術(shù)存在的上述問題都在一定程度上取得了研究進展,但廣泛應(yīng)用還面臨著很大的挑戰(zhàn),有待于學(xué)術(shù)界和工業(yè)界的共同努力,進一步研究創(chuàng)新和開拓應(yīng)用。
參考文獻:
[1]張以忱.真空鍍膜技術(shù)[M].北京:冶金工業(yè)出版社,2009:82-97.
ZHANG Yichen. Vacuum Coating Technology[M]. Beijing: Metallurgical Industry Press, 2009: 82-97.
[2]GROVE R W. On the electro-chemical polarity of gases[J]. Philosophical Transactions of the Royal Society of London, 1852, 142: 87-101.
[3]CHAPIN J S. Sputtering process and apparatus: US, 4166018[P]. 1979-08-28.
[4]WINDOW B, SAVVIDES N. Unbalanced dc magnetrons as sources of high ion fluxes[J]. Journal of Vacuum Science & Technology A: Vacuum Surfaces and Films, 1986, 4(3): 453-456.
[5]SAVVIDES N, WINDOW B. Unbalanced magnetron ion-assisted deposition and property modification of thin films[J]. Journal of Vacuum Science & Technology A: Vacuum Surfaces and Films, 1986, 4(3): 504-508.
[6]李芬,朱穎,李劉合,等.磁控濺射技術(shù)及其發(fā)展[J].真空電子技術(shù),2011(3):49-54.
LI Fen, ZHU Ying, LI Liuhe, et al. Review on magnetron sputtering technology and its development[J]. Vacuum Electronics, 2011(3): 49-54.
[7]MIAO D G, JIANG S X, LIU J, et al. Fabrication of copper and titanium coated textiles for sunlight management[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(13): 9852-9858.
[8]方應(yīng)翠.真空鍍膜原理與技術(shù)[M].北京:科學(xué)出版社,2014:80-189.
FANG Yingcui. Principle and Technology of Vacuum Coating[M]. Beijing: Science Press, 2014: 80-189.
[9]田民波.薄膜技術(shù)與薄膜材料[M].北京:清華大學(xué)出版社,2006:442-539.
TIAN Minbo. Thin Film Technologies and Materials[M]. Beijing: Tsinghua University Press, 2006: 442-539.
[10]ELLMER K. Magnetron sputtering of transparent conduc-tive zinc oxide: Relation between the sputtering parameters and the electronic properties[J]. Journal of Physics L: Applied Physics, 2000, 33(4): 17-32.
[11]WEI Q F, QI L, HOU D Y, et al. Surface characte-rization of functional nanostructures sputtered on fiber substrates[J]. Surface and Coatings Technology, 2006, 201(3/4): 1821-1826.
[12]HUANG X M, MENG L L, WEI Q F, et al. Effect of substrate structures on the morphology and interfacial bonding properties of copper films sputtered on polyester fabrics[J]. International Journal of Clothing Science and Technology, 2017, 29(1): 39-46.
[13]田民波.濺射鍍膜的特點和應(yīng)用(一)[J].稀有金屬,1987,11(1):35-40.
TIAN Minbo. Characteristics and application of sputtering coating(1)[J]. Chinese Journal of Rare Metals, 1987, 11(1): 35-40.
[14]羅朋,王曉波,鞏春志,等.磁控濺射制備高熵合金薄膜研究進展[J].中國表面工程,2021,34(5):53-66.
LUO Peng, WANG Xiaobo, GONG Chunzhi, et al. Research progress of high entropy alloy thin films prepared by magnetron sputtering[J]. China Surface Engineering, 2021, 34(5): 53-66.
[15]SIGMUND P. Theory of sputtering. I. sputtering yield of amorphous and polycrystalline targets[J]. Physical Review, 1969, 184(2): 383-416.
[16]陳明,王君,陳長琦,等.基于Sigmund理論的濺射產(chǎn)額計算及分析[J].真空,2007,44(2):44-47.
CHEN Ming, WANG Jun, CHEN Changqi, et al. Calculation and analysis based on Sigmund's theory for sputtering yield[J]. Vacuum, 2007, 44(2): 44-47.
[17]徐萬勁.磁控濺射技術(shù)進展及應(yīng)用(上)[J].現(xiàn)代儀器,2005,11(5):1-5.
XU Wanjin. Recent developments and applications in magnetron sputtering[J]. Modern Instruments, 2005, 11(5): 1-5.
[18]JIANG S X, XU J T, CHEN Z M, et al. Enhanced electro-conductivity and multi-shielding performance with copper, stainless steel and titanium coating onto PVA impregnated cotton fabric[J]. Journal of Materials Science Materials in Electronics, 2018, 29(7): 5624-5633.
[19]唐偉忠.薄膜材料制備原理、技術(shù)及應(yīng)用[M].北京:冶金工業(yè)出版社,2003:41-59.
TANG Weizhong. Principle, Technology and Application of Thin Film Preparation[M]. Beijing: Metallurgical Industry Press, 2003: 41-59.
[20]TAN X Q, LIU J Y, NIU J R, et al. Recent progress in magnetron sputtering technology used on fabrics[J]. Materials (Basel), 2018, 11(10): 1953.
[21]黃美林,魯圣國,杜文琴,等.磁控濺射法制備柔性紡織面料基納米薄膜的研究與進展[J].真空科學(xué)與技術(shù)學(xué)報,2017,37(12):1194-1200.
HUANG Meilin, LU Shengguo, DU Wenqin, et al. Latest progress in magnetron sputtered nanocoatings on flexible textile fabric substrate[J]. Chinese Journal of Vacuum Science and Technology, 2017, 37(12): 1194-1200.
[22]SCHOLZ J, NOCKE G, HOLLSTEIN F, et al. Investiga-tions on fabrics coated with precious metals using the magnetron sputter technique with regard to their anti-microbial properties[J]. Surface and Coatings Technology, 2005, 192(2/3): 252-256.
[23]HUANG M L, WU Y Z, FAN F, et al. Antibacterial and ultraviolet protective neodymium-doped TiO2 film coated on polypropylene nonwoven fabric via a sputtering method[J]. Journal of Engineered Fibers and Fabrics, 2021, 16: 2110252.
[24]JIN Y M, JIAO S J, LU H L, et al. Localized surface plasmon-enhanced ultraviolet and visible photoresponse based on ZnO films with Au nanoparticles[J]. Journal of Electronic Materials, 2020, 49(8): 4491-4497.
[25]HUANG M L, LU S G, DU W Q, et al. Performance of FC film deposited on PET fabric by a magnetron sputtering method[C]//Proceedings of the 2017 International Conference on Information Technology and Intelligent Manufacturing, IEEE,2017: 116-119.
[26]丁子寒,初曦,鄒婷婷,等.防水透濕織物的研究進展[J].服裝學(xué)報,2019,4(5):383-387,419.
DING Zihan, CHU Xi, ZOU Tingting, et al. Research progress on waterproof and moisture permeable fabric[J]. Journal of Clothing Research, 2019,4(5):383-387,419.
[27]于磊,蔡東照,吳欲兵,等.PU納米纖維表面濺射PTFE防水透濕膜研究[J].化工新型材料,2015,43(10):62-64.
YU Lei, CAI Dongzhao, WU Yubing, et, al. Study on the waterproof and moisture permeability property of PU nanofibrous membrane sputtered with PTFE[J]. New Chemical Materials, 2015, 43(10): 62-64.
[28]王東,齊宏進.磁控濺射法制備防水透濕織物的性能研究[J].棉紡織技術(shù),2002,30(1):17-19.
WANG Dong, QI Hongjin. Study on the properties of waterproof & moisture permeable fabrics prepared by magnetron sputtering[J]. Cotton Textile Technology, 2002, 30(1): 17-19.
[29]HUANG F L, WEI Q F, LIU Y, et al. Surface functio-nalization of silk fabric by PTFE sputter coating[J]. Journal of Materials Science, 2007, 42(19): 8025-8028.
[30]JIANG S X, XU J T, MIAO D G, et al. Water-repellency, ultraviolet protection and infrared emissivity properties of AZO film on polyester fabric[J]. Ceramics International, 2017, 43(2): 2424-2430.
[31]MIAO D G, ZHAO H M, PENG Q X, et al. Fabrication of high infrared reflective ceramic films on polyester fabrics by RF magnetron sputtering[J]. Ceramics International, 2015, 41(1): 1595-1601.
[32]LEE S Y, HONG T M, JIN D Y, et al. Properties of aluminum deposited chemically recycled PET fabrics[J]. Fibers and Polymers, 2015, 16(12): 2698-2703.
[33]劉瑋,張力,曹義坡,等.常見金屬離子抗菌劑及在醫(yī)用敷料中的應(yīng)用[J].中國急救復(fù)蘇與災(zāi)害醫(yī)學(xué)雜志,2015,10(11):1095-1098.
LIU Wei, ZHANG Li, CAO Yipo, et al. Common metal ion antibacterial agent and its application in medical dressing[J]. China Journal of Emergency Resuscitation and Disaster Medicine, 2015, 10(11): 1095-1098.
[34]HALL R E, BENDER G, MARQUIS R E. Inhibitory and cidal antimicrobial actions of electrically generated silver ions[J]. Journal of Oral and Maxillofacial Surgery, 1987, 45(9): 779-784.
[35]IRFAN M, PERERO S, MIOLA M, et al. Antimicrobial functionalization of cotton fabric with silver nanoclusters/silica composite coating via RF co-sputtering technique[J]. Cellulose, 2017, 24(5): 2331-2345.
[36]高秋瑾,彭程程,王鴻博,等.絲織物基納米結(jié)構(gòu)銀膜形貌及抗菌性能研究[J].化工新型材料,2010,38(5):75-77,99.
GAO Qiujin, PENG Chengcheng, WANG Hongbo, et al. Study on nano-structured silver film morphology and antibacterial[J]. New Chemical Materials, 2010, 38(5): 75-77, 99.
[37]RANI K V, SARMA B, SARMA A. Plasma sputtering process of copper on polyester/silk blended fabrics for preparation of multifunctional properties[J]. Vacuum, 2017, 146: 206-215.
[38]HE R D, LI J W, CHEN M, et al. Tailoring moisture electroactive Ag/Zn@cotton coupled with electrospun PVDF/PS nanofibers for antimicrobial face masks[J]. Journal of Hazardous Materials, 2022, 428: 128239.
[39]黃馬壯.一種基于磁控濺射納米膜材料的抗菌口罩:CN213370084U[P].2021-06-08.
HUANG Mazhuang. An antibacterial mask based on magnetron sputtering nanofilm material: CN213370084U[P]. 2021-06-08.
[40]劉小東,高世會.純棉織物防紫外功能整理研究進展[J].紡織導(dǎo)報,2021(12):49-50,52.
LIU Xiaodong, GAO Shihui. Research progress on ultraviolet resistant finishing of cotton fabrics[J]. China Textile Leader, 2021(12): 49-50, 52.
[41]肖頂.防紫外纖維及織物研究進展[J].山東化工,2021,50(10):75-76,80.
XIAO Ding. Research progress of anti-ultraviolet fibers and fabrics[J]. Shandong Chemical Industry, 2021, 50(10): 75-76, 80.
[42]李超榮,舒順新,謝勇,等.磁控濺射納米纖維基銀膜的結(jié)構(gòu)和性能[J].紡織學(xué)報,2014,35(4):32-36.
LI Chaorong, SHU Shunxin, XIE Yong, et al. Structure and properties of Ag coatings on nanofibers prepared by magnetron sputtering[J]. Journal of Textile Research, 2014, 35(4): 32-36.
[43]JIANG S X, QIN W F, GUO R H, et al. Surface functionalization of nanostructured silver-coated polyester fabric by magnetron sputtering[J]. Surface and Coatings Technology, 2010, 204(21/22): 3662-3667.
[44]KUDZIN M H, MROZINSKA Z, KACZMAREK A, et al. Deposition of copper on poly(lactide) non-woven fabrics by magnetron sputtering-fabrication of new multi-functional, antimicrobial composite materials[J]. Materials (Basel), 2020, 13(18): 3971.
[45]YUAN X H, WEI Q F, CHEN D S, et al. Electrical and optical properties of polyester fabric coated with Ag/TiO2 composite films by magnetron sputtering[J]. Textile Research Journal, 2016, 86(8): 887-894.
[46]孟靈靈,魏取福,嚴忠杰,等.磁控濺射Ag/ZnO納米薄膜滌綸織物的制備及其性能[J].紡織學(xué)報,2021,42(3):143-148.
MENG Lingling, WEI Qufu, YAN Zhongjie, et al. Preparation and properties of Ag/ZnO composite film deposited polyester fabrics by magnetron sputtering[J]. Journal of Textile Research, 2021, 42(3): 143-148.
[47]姚江薇,沈國建,鄒專勇,等.抗靜電滌綸功能織物開發(fā)綜述[J].上海紡織科技,2021,49(4):1-4,18.
YAO Jiangwei, SHEN Guojian, ZOU Zhuanyong, et al. Review on the development of antistatic polyester functional fabric[J]. Shanghai Textile Science & Technology, 2021, 49(4): 1-4, 18.
[48]彭靈慧,郭榮輝,蘭建武,等.磁控濺射鍍銅芳綸織物的制備及其性能研究[J].科學(xué)技術(shù)與工程,2017,17(11):89-93.
PENG Linghui, GUO Ronghui, LAN Jianwu, et al. Preparation and properties of copper coated kevlar fabric by magnetron sputtering[J]. Science Technology and Engineering, 2017, 17(11): 89-93.
[49]袁小紅,魏取福,陳東生,等.磁控濺射工藝參數(shù)對滌綸機織物基納米金屬薄膜抗靜電性能的影響[J].材料科學(xué)與工程學(xué)報,2014,32(6):848-852.
YUAN Xiaohong, WEI Qufu, CHEN Dongsheng, et al. Influence of process paramenters on antistatic property of metal thin film by magnetron sputtering on polyester fabric[J]. Journal of Materials Science &Engineering, 2014, 32(6): 848-852.
[50]張建英,張建波.磁控濺射紡織品的性能研究[J].針織工業(yè),2018(2):51-53.
ZHANG Jianying, ZHANG Jianbo. Properties of magnetron sputtered textile[J]. Knitting Industries, 2018(2): 51-53.
[51]CHU C L, HU X F, YAN H Q, et al. Surface functio-nalization of nanostructured Cu/Ag-deposited polypropylene fiber by magnetron sputtering[J]. E-Polymers, 2021, 21(1): 140-150.
[52]吳家斌.PP基納米氧化鋅/銅復(fù)合膜制備及其性能研究[D].蕪湖:安徽工程大學(xué),2014:12-39.
WU Jiabin. Preparation and Properties of ZnO/Cu Composite Films Deposited on PP[D]. Wuhu: Anhui Polytechnic University, 2014: 12-39.
[53]WANG W, LI W Y, GAO C C, et al. A novel preparation of silver-plated polyacrylonitrile fibers functionalized with antibacterial and electromagnetic shielding properties[J]. Applied Surface Science, 2015, 342: 120-126.
[54]譚學(xué)強,閆宗瑤,劉佳音,等.電磁屏蔽織物的研究新進展[J].天津紡織科技,2021(2):57-60.
TAN Xueqiang, YAN Zongyao, LIU Jiayin, et al. Recent progress in research on electromagnetic shielding fabrics[J]. Tianjin Textile Science & Technology, 2021(2): 57-60.
[55]李強林,黃方千,任建華,等.磁控濺射鍍銅鈦織物及其電磁屏蔽性能[J].天津紡織科技,2015(2):7-9,12.
LI Qianglin, HUANG Fangqian, REN Jianhua, et al. Magnetron sputtering copper-titanium fabric and its electromagnetic shielding properties[J]. Tianjin Textile Science & Technology, 2015(2): 7-9, 12.
[56]儲長流,甘賢鵬,葉念念,等.基于磁控濺射的聚丙烯/納米銀復(fù)合非織造功能材料的制備及性能研究[J].化工新型材料,2015,43(4):79-81,85.
CHU Changliu, GAN Xianpeng, YE Niannian, et al. Preparation and performance of polypeopylene/nano-silver non-woven functional composites based on magnetron sputtering[J]. New Chemical Materials, 2015, 43(4): 79-81, 85.
[57]ZIAJA J, OZIMEK M, KOPROWSKA J. Metallic and oxide Zn and Ti layers on unwoven fabric as shields for electromagnetic fields[C]//International Symposium on Electromagnetic Compatibility-EMC Europe. Athens, Greece.IEEE, 2009: 1-4.
[58]SURDU L, AILENI R M, RADULESCU R I, et al. Research regarding electromagnetic shielding achieved by the fabrics support[J]. IOP Conference Series: Materials Science and Engineering, 2020, 827(1): 012060.
[59]MENG L L, WANG Y J, WEI Q F, et al. Study on the structure and properties of Ag/Cu nanocomposite film deposited on the surface of polyester substrates[J].The Journal of the Textile Institute, 2021, 112(10): 1671-1677.
[60]XU W Z, YUAN, X H, WEI A F, et al. Characterisation of PET nonwoven deposited with Ag/FC nanocomposite films[J]. Surface Engineering, 2018, 34(11/12): 838-845.
[61]JIA L L, FU B H, LU M L, et al. High-performance aramid fabric in infrared shielding by magnetron sputtering method[J]. Materials Research Express, 2020, 7(5): 056401.
[62]NGUYEN T N, CHEN Y H, CHEN Z M, et al. Micros-tructure, near infrared reflectance, and surface temperature of Ti-O coated polyethylene terephthalate fabrics prepared by roll-to-roll high power impulse magnetron sputtering system[J]. Thin Solid Films, 2018, 663: 1-8.
[63]李強,羅皓,朱屹凝,等.一種保溫與散熱雙功能熱管理織物及其制備方法:CN113622204A[P].2021-11-09.
LI Qiang, LUO Hao, ZHU Qining, et al. A thermal management fabric with double functions of heat preservation and heat dissipation and a preparation method thereof: CN113622204A[P]. 2021-11-09.
[64]QIU S, JIA H, JIANG S X. Fabrication and characte-rization of thermal management fabric with heating and cooling modes through magnetron sputtering[J]. Materials Letters, 2021, 300(11): 130217.
[65]王超,謝春萍,蘇旭中,等.一種發(fā)熱織物的制造方法:CN102493171A[P].2012-06-13.
WANG Chao, XIE Chunping, SU Xuzhong, et al. A manufacturing method of heating fabric: CN102493171A[P]. 2012-06-13.
[66]YAN Z Y, LIU J Y, NIU J R. Research of a novel Ag temperature sensor based on fabric substrate fabricated by magnetron sputtering[J]. Materials (Basel), 2021, 14(20): 6014.
[67]MISKIEWICZ P, TOKARSKA M, FRYDRYCH I, et al. Assessment of coating quality obtained on flame-retardant fabrics by a magnetron sputtering method[J]. Materials (Basel), 2021, 14(6): 1348.
[68]ZHUO T T, HE S, XIN B J, et al. Preparation and characterization of heat-insulating Ag/TiO2 composite membranes based on magnetron sputtering technology[J]. Journal of Materials Research, 2020, 35(5): 473-480.
[69]YUAN X H, LIANG S Z, KE H Z, et al. Photocatalytic property of polyester fabrics coated with Ag/TiO2 composite films by magnetron sputtering[J]. Vacuum, 2020, 172: 109103.
[70]YU H L, WU Q X, WANG J, et al. Simple fabrication of the Ag-Ag2O-TiO2 photocatalyst thin films on polyester fabrics by magnetron sputtering and its photocatalytic activity[J]. Applied Surface Science, 2020, 503: 144075.
[71]ABIDI M, ASSADI A A, BOUZAZA A, et al. Photocatalytic indoor/outdoor air treatment and bacterial inactivation on CuxO/TiO2 prepared by HiPIMS on polyester cloth under low intensity visible light[J]. Applied Catalysis B: Environmental, 2019, 259: 118074.
[72]LIU G J, ZHOU L, WU Y J, et al. The fabrication of full color P(St-MAA) photonic crystal structure on polyester fabrics by vertical deposition self-assembly[J]. Journal of Applied Polymer Science, 2015, 132(13): 41750.
[73]KINOSHITA S, YOSHIOKA S. Structural colors in nature: The role of regularity and irregularity in the structure[J]. Chemphyschem, 2005, 6(8): 1442-1459.
[74]朱小威,邢鐵玲.結(jié)構(gòu)生色紡織品的研究進展[J].紡織科學(xué)與工程學(xué)報,2020,37(4):66-72.
ZHU Xiaowei, XING Tieling. Research progress of structural color textile[J]. Journal of Textile Science and Engineering, 2020, 37(4): 66-72.
[75]NOSE K. Structurally colored fiber "Morphotex"[J]. Annals of the High Performance Paper Society, 2004, 43: 17-21.
[76]方子鑫,閆宗瑤,劉建勇.結(jié)構(gòu)生色及其在紡織領(lǐng)域的應(yīng)用[J].印染,2021,47(1):74-80.
FANG Zixin, YAN Zongyao, LIU Jianyong. Structural coloring and its application in textile[J]. China Dyeing & Finishing, 2021, 47(1): 74-80.
[77]王曉輝,劉國金,邵建中.紡織品仿生結(jié)構(gòu)生色[J].紡織學(xué)報,2021,42(12):1-14.
WANG Xiaohui, LIU Guojin, SHAO Jianzhong. Biomimetic structural coloration of textiles[J]. Journal of Textile Research, 2021, 42(12): 1-14.
[78]YUAN X, XU W, HUANG F, et al. Structural colour of polyester fabric coated with Ag/TiO2 multilayer films[J]. Surface Engineering, 2017, 33(3): 231-236.
[79]YUAN X H, YE Y J, LIAN M, et al. Structural coloration of polyester fabrics coated with Al/TiO2 composite films and their anti-Ultraviolet properties[J]. Materials (Basel), 2018, 11(6): E1011.
[80]田桓榮.基于磁控濺射技術(shù)的金屬/金屬氧化物復(fù)合膜的結(jié)構(gòu)生色紡織品的研究[D].天津:天津工業(yè)大學(xué),2020:19-55.
TIAN Huanrong. Study on the Structural Colored Textile of Metal/metal Oxide Composite Film Based on Magnetron Sputtering Technology[D]. Tianjin: Tiangong University, 2020: 19-55.
[81]ZHANG X, JIANG S X, CAI M, et al. Magnetron sputtering deposition of Ag/Ag2O bilayer films for highly efficient color generation on fabrics[J]. Ceramics Interna-tional, 2020, 46(9): 13342-13349.
[82]葉麗華,杜文琴.結(jié)構(gòu)色織物的光學(xué)性能[J].紡織學(xué)報,2016,37(8):83-88.
YE Lihua, DU Wenqin. Optical properties of fabric with multiple structural colors[J]. Journal of Textile Research, 2016, 37(8): 83-88.
[83]YIP J, JIANG S Q, WONG C. Characterization of metallic textiles deposited by magnetron sputtering and traditional metallic treatments[J]. Surface and Coatings Technology, 2009, 204(3): 380-385.
[84]PENG L H, JIANG S X, GUO R H, et al. IR protection property and color performance of TiO2/Cu/TiO2 coated polyester fabrics[J]. Journal of Materials Science Materials in Electronics, 2018, 29(19): 16188-16198.
[85]王銀川,余榮沾,劉瓊溪,等.一種生態(tài)著色的芳綸:CN108130724A[P].2018-06-08.
WANG Yinchuan, YU Rongzhan, LIU Qiongxi, et al. An ecologically colored aramid: CN108130724A[P]. 2018-06-08.
[86]王銀川,余榮沾,劉瓊溪,等.一種能使聚酰亞胺著色的方法:CN108048808A[P].2018-05-18.
WANG Yinchuan, YU Rongzhan, LIU Qiongxi, et al. A method for coloring polyimide: CN108048808A[P]. 2018-05-18.
[87]王銀川,余榮沾,劉瓊溪,等.一種能使玻璃纖維著色的方法:CN108117279A[P].2018-06-08.
WANG Yinchuan, YU Rongzhan, LIU Qiongxi, et al. A
method for coloring glass fibers: CN108117279A[P]. 2018-06-08.
[88]劉瓊溪,張欣,余榮沾.納米生色技術(shù)的原理與優(yōu)勢[J].染整技術(shù),2019,41(2):3-6.
LIU Qiongxi, ZHANG Xin, YU Rongzhan. Principle of nanocoloring technique and its advantages[J]. Textile Dyeing and Finishing Journal, 2019, 41(2): 3-6.
[89]劉瓊溪,張欣,余榮沾,等.納米生色面料防紫外線性能研究[J].染整技術(shù),2019,41(6):13-15.
LIU Qiongxi, ZHANG Xin, YU Rongzhan, et al.Study on anti-UV properties of nano-chromogenic fabrics[J]. Textile Dyeing and Finishing Journal, 2019, 41(6): 13-15.
[90]劉瓊溪,張欣,余榮沾,等.納米生色面料的防水透氣性能與抗菌性能[J].染整技術(shù),2020,42(2):24-27.
LIU Qiongxi, ZHANG Xin, YU Rongzhan, et al.Water resistance/air permeability and anti-bacteria performance of nanochromophore fabric[J]. Textile Dyeing and Finishing Journal, 2020, 42(2): 24-27.
[91]劉瓊溪,劉協(xié)權(quán),倪新華,等.納米生色:織物抗靜電的新途徑[J].染整技術(shù),2020,42(2):20-23.
LIU Qiongxi, LIU Xiequan, NI Xinhua, et al. Nanocoloring: A new approach of fabricantistatic[J]. Textile Dyeing and Finishing Journal, 2020, 42(2): 20-23.
[92]MENG L L, WEI Q F, LI Y L, et al. Effects of plasma pre-treatment on surface properties of fabric sputtered with copper[J]. International Journal of Clothing Science and Technology, 2014, 26(1): 96-104.
[93]PENG L H, GUO R H, LAN J W, et al. Preparation and characterization of copper-coated polyester fabric pretreated with laser by magnetron sputtering[J]. Journal of Industrial Textiles, 2018, 48(2): 482-493.
[94]ZHANG X, MIAO D G, NING X, et al. The stability study of copper sputtered polyester fabrics in synthetic perspiration[J]. Vacuum, 2019, 164: 205-211.
[95]LIU C M, LIU J, NING X, et al. The effect of polydo-pamine on an Ag-coated polypropylene nonwoven fabric[J]. Polymers, 2019, 11(4): 627.
[96]LIU C M, XU J T, LIU Z Q, et al. Fabrication of highly electrically conductive Ti/Ag/Ti tri-layer and Ti-Ag alloy thin films on PET fabrics by multi-target magnetron sput-tering[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(22): 19578-19587.
[97]杜莉娟,姚玉元,陳文興.粘合劑涂層對磁控濺射鍍鋁織物牢度的影響[J].浙江理工大學(xué)學(xué)報,2007,24(2):122-124.
DU Lijuan, YAO Yuyuan, CHEN Wenxing. The influence of binder on combine fastness of aluminum fabric prepared by DC magnetron sputtering[J]. Journal of Zhejiang Sci-Tech University, 2007, 24(2): 122-124.
[98]蔡珍.磁控濺射鍍色織物制備及其色牢度研究[D].江門:五邑大學(xué),2018:15-48.
CAI Zhen. Preparation and Color Fastness Research of Plated Color Fabric by Magnetron Sputtering[D]. Jiangmen: Wuyi University, 2018: 15-48.
[99]劉明雪,趙倩,王曉輝,等.磁控濺射納米膜與不同紡織基材的結(jié)合牢度[J].紡織學(xué)報,2021,42(2):135-141,147.
LIU Mingxue, ZHAO Qian, WANG Xiaohui, et al. Bonding fastness of magnetron sputtering nano-films with various textile substrates[J]. Journal of Textile Research, 2021, 42(2): 135-141, 147.
[100]劉明雪,王曉輝,趙倩,等.低溫等離子體處理對紡織品磁控濺射鍍膜的影響[J].絲綢,2021,58(2):1-6.
LIU Mingxue, WANG Xiaohui, ZHAO Qian, et al. Impact of low temperature plasma treatment on magnetron sputter coating of textiles[J]. Journal of Silk, 2021, 58(2): 1-6.
[101]XU J T, JIANG S X, PENG L H, et al. AgNps-PVA-coated woven cotton fabric: Preparation, water repellency, shielding properties and antibacterial activity[J]. Journal of Industrial Textiles, 2019, 48(10): 1545-1565.
Research progress of magnetron sputtering applied in the textile field
QIAO Yangyang1, LIU Mingxue1, LIU Qiongxi2, ZHOU Lan1, SHAO Jianzhong1
(
1a.College of Textile Science and Engineering; 1b. MOE Engineering Research Center of Ecological Dyeing and Finishing
Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China; 2.Guangdong Rising Well Science & Technology
Co., Ltd., Kaiping 529300, China)
Abstract: Magnetron sputtering technology refers to the technology of bombarding the solid cathode target with high-energy particles, and the atoms on the surface of the cathode target are excited and deposited on the surface of the substrate to form a thin film. The technology has the advantages of high deposition rate, small damage to the film layer, high purity and uniformity of the film prepared, and can achieve large area of industrial coating with uniform thickness. It is one of the most widely used film deposition technologies at present, and has been widely paid attention to in the textile field. On the one hand, magnetron sputtering technology, as a kind of "dry" coating technology, can be used to prepare various functional textiles by coating functional films on the surface of fabrics, which has been becoming an important way of "dry" finishing. On the other hand, the bionic structure color textile can be prepared by using magnetron sputtering technology to "dry" color the fabric through the film interference structure color principle. The application of this magnetron sputtering is beneficial to the sustainable development of textile dyeing and finishing industry.
This paper summarizes the research progress of magnetron sputtering technology in the fields of textile functionalization, structure coloring and film-substrate bonding stability. At present, magnetron sputtering technology has been studied in the preparation of functional textiles. The technology mainly realizes the surface modification of the fabric by depositing Cu, Ag, TiO2, ZnO and other thin films on the surface of the fabric. The operation is relatively simple, and not only can it give various functions to the textile, but also can basically maintain the original style of the fabric. A thin film with low surface energy is deposited on the surface of the fabric, which will not close all the pores between the yarns, so that the fabric has good waterproof and moisture permeability and certain air permeability. The use of metal nanoparticles to destroy the cell wall and protein of bacteria can obtain good antibacterial effect. Due to the small particle size and large specific surface area of the film, its unique quantum size effect leads to a significant increase in UV absorption. Some UV rays are reflected by the nano film, thus achieving excellent anti-UV effect. Antistatic and electromagnetic shielding textiles can be prepared by depositing a thin film with excellent electrical conductivity on the fabric surface. In recent years, magnetron sputtering has been studied more and more in the finishing of textile special functions such as infrared shielding, photothermal management, heat protection and fire prevention, and photocatalysis, and some important progress has been made. According to the principle of thin film interference, magnetron sputtering technology in the preparation of structural color textiles, deposition of single layer film or multilayer film on the fabric can prepare a variety of colors of structural color textiles, and has achieved a certain industrial application.
The film-base bonding fastness of magnetron sputtering coated fabrics is an important index to evaluate the properties of magnetron sputtering fabrics. In the preparation of functional textiles and structural color textiles, there are different degrees of poor bonding fastness between films and substrates, so the film-base bonding fastness has become an urgent problem to be solved in the application of magnetron sputtering technology. At present, proper chemical pretreatment or plasma surface modification on the surface of textile substrate has been proved to improve the fastness of film-base bonding, which opens up an effective way for the practical application of magnetron sputtering technology in the textile field.
Compared with the traditional dyeing and finishing industry, there are problems such as large consumption of water resources and environmental pollution caused by waste water discharge. The "dry finishing" and "dry coloring" technologies of magnetron sputtering play an important role in promoting the sustainable development of the dyeing and finishing industry. They conform to the concept of low carbon and environmental protection and have good development prospects in the textile field. However, magnetron sputtering technology also has some problems and shortcomings: (a) the utilization rate of target materials is low, the distribution of magnetic field is uneven, and it is easy to form sputtering pits, which results in the abandonment of target materials. It can be improved by regulating magnetic field distribution and designing target materials. (b) The magnetic target sputtering is difficult, which can be improved by increasing the temperature of the target. When the Curie temperature of the magneto-controlled target is exceeded, the ferromagnetic material becomes paramagnetic material, the magnetic shielding effect disappears, and normal sputtering can be carried out. (c) The bonding fastness of magnetron sputtering film to natural fiber substrate is poor, and the bonding fastness of film-base can be improved by surface modification of the substrate. At present, research progress has been made to a certain extent to address the above problems of magnetron sputtering technology, but it still faces great challenges for the wide application, and the joint efforts of academia and industry are needed for further research, innovation and development of application.
Keywords: magnetron sputtering; textiles; functional finishing, structural color; thin-film interference; bonding fastness.
收稿日期:20220827
網(wǎng)絡(luò)出版日期:20220928
基金項目:國家自然科學(xué)基金項目(51773181,52003242)
作者簡介:喬陽陽(1998—),女,河南濮陽人,碩士研究生,主要從事染整新技術(shù)方面的研究。
通信作者:邵建中,E-mail:jshao@zstu.edu.cn