国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

變系數反應擴散方程的雙參數分裂預處理方法

2023-06-21 03:59蔣沁紗陳浩

蔣沁紗 陳浩

四川師范大學學報(自然科學版)第46卷第5期

摘要:考慮一類空間變系數反應擴散方程的快速算法.針對二階改進道格拉斯分裂時間離散所得線性代數系統(tǒng),構造一類雙參數交替分裂迭代方法.分析格式的收斂性,給出最優(yōu)參數的取值,并獲得相應預處理子.數值結果驗證新方法的有效性及相比單參數分裂迭代格式的優(yōu)越性.

關鍵詞:變系數反應擴散方程; 改進道格拉斯分裂方法; 雙參數; 交替分裂迭代方法; 預處理子

中圖分類號:O241.82; O241.6 文獻標志碼:A 文章編號:1001-8395(2023)05-0638-08

1離散

2交替分裂迭代算法

3數值實驗

4結束語

本文考慮了變系數反應擴散方程的快速算法,針對改進道格拉斯分裂時間離散所得的線性代數系統(tǒng),構造了一類雙參數交替分裂迭代法,分析了其收斂性及最優(yōu)參數的取值.同時,將其與GMRES結合,構造了一類預處理GMRES的方法,數值結果驗證了新方法的收斂性.

參考文獻

[1] HUNDSDORFER W, VERWER J. Advection-diffusion Discretizations[M]. Berlin:Springer,2003:215-323.

[2] 孫志忠. 非線性發(fā)展方程的有限差分方法[M]. 北京:科學出版社,2018.

[3] ZHOU Z G, LIANG D. Mass-preserving time second-order explicit-implicit domain decomposition schemes for solving parabolic equations with variable coefficients[J]. Computational and Applied Mathematics,2018,37(4):4423-4442.

[4] EVANS L C. Partial Differential Equations[M]. Providence:American Mathematical Society,1999.

[5] HESTHAVEN J, GOTTLIEB S, GOTTLIEB D. Spectral Methods for Time-dependent Problems[M]. Cambridge:Cambridge University Press,2007.

[6] ISERLES A. A First Course in the Numerical Analysis of Differential Equations[M]. Cambridge:Cambridge University Press,1996.

[7] ARRARS A, INHOUT K J, HUNDSDORFER W, et al. Modified Douglas splitting methods for reaction-diffusion equations[J]. BIT Numerical Mathematics,2017,57(2):261-285.

[8] PEACEMAN D W, RACHFORD H H Jr. The numerical solution of parabolic and elliptic differential equations[J]. Journal of the Society for Industrial and Applied Mathematics,1955,3(1):28-41.

[9] DOUGLAS J. Alternating direction methods for three space variables[J]. Numerische Mathematik,1962,4(1):41-63.

[10] BAI Z Z, GOLUB G H, NG M K. Hermitian and Skew-Hermitian splitting methods for non-Hermitian positive definite linear systems[J]. SIAM Journal on Matrix Analysis and Applications,2003,24(3):603-626.

[11] CHEN H. A splitting preconditioner for the iterative solution of implicit Runge-Kutta and boundary value methods[J]. BIT Numerical Mathematics,2014,54(3):607-621.

[12] CHEN H. Generalized Kronecker product splitting iteration for the solution of implicit Runge-Kutta and boundary value methods[J]. Numerical Linear Algebra With Applications,2015,22(2):357-370.

[13] CHEN H, L W, ZHANG T T. A Kronecker product splitting preconditioner for two-dimensional space-fractional diffusion equations[J]. Journal of Computational Physics,2018,360:1-14.

[14] BAI Z Z, LU K Y, PAN J Y. Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations[J]. Numerical Linear Algebra With Applications,2017,24(4):e2093.

[15] LIN X L, NG M K, SUN H W. A splitting preconditioner for Toeplitz-like linear systems arising from fractional diffusion equations[J]. SIAM Journal on Matrix Analysis and Applications,2017,38(4):1580-1614.

[16] 蔣沁紗,陳浩. 空間變系數反應擴散方程的一類交替分裂預處理迭代方法[J]. 重慶師范大學學報(自然科學版),2022,39(5):83-90.

[17] HORN R A, JOHNSON C R. Topics in Matrix Analysis[M]. Cambridge:Cambridge University Press,1991.

[18] SAAD Y. Iterative Methods for Sparse Linear Systems[M]. 2nd ed. Philadelphia:SIAM,2003.

A Class of Alternating Splitting Preconditioning Method with Two Parameters

for Reaction-Diffusion Equations with Variable Coefficients in SpaceJIANG Qinsha,CHEN Hao(School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331)

Abstract:This paper consider fast algorithms for solving a class of reaction-diffusion equations with variable coefficients. We propose an alternating splitting iterative method with two parameters for solving the linear algebraic systems resulting from the modified Douglas splitting discretization of the reaction-diffusion equations. We show that the proposed scheme is convergent and the optimal parameters are given. A splitting preconditioner is also derived for the linear system. Numerical results show that the proposed methods is effective and superior to the splitting iterative scheme with a single parameter.

Keywords:reaction-diffusion equation with variable coefficients; modified Douglas splitting method; two parameters; alternating splitting iteration method; preconditioner

2020 MSC:65F10; 65L06; 65N22

(編輯 余毅)

金湖县| 嵊州市| 五指山市| 寿阳县| 蒙山县| 阜新市| 佛坪县| 海宁市| 南皮县| 青州市| 中西区| 杭锦旗| 姜堰市| 天门市| 烟台市| 洮南市| 安义县| 犍为县| 博湖县| 黄平县| 郑州市| 盐山县| 永胜县| 南阳市| 鸡西市| 两当县| 莒南县| 宣威市| 宁波市| 米林县| 洪泽县| 眉山市| 健康| 博罗县| 阳城县| 霞浦县| 南安市| 和林格尔县| 汝南县| 洛扎县| 望谟县|