王赫 邊曉倩 江海濤
[摘要] 應(yīng)用間充質(zhì)干細胞(MSCs)治療是一種新興的手段,由于多種原因,對MSCs的研究停留在了臨床試驗階段。但是,目前現(xiàn)有的研究大部分都證明MSCs對于組織的損傷修復(fù)以及多種疾病的治療具有促進作用。組織的缺血再灌注(I/R)是常見的臨床事件,目前尚缺乏有效的快速治療手段。MSCs在I/R方面已經(jīng)有了許多臨床和臨床前研究,本文基于MSCs對I/R損傷修復(fù)的免疫機制進行綜述。
[關(guān)鍵詞] 間質(zhì)干細胞;再灌注損傷;免疫,細胞;免疫,體液;綜述
[中圖分類號] R392.4
[文獻標志碼] A
[文章編號] 2096-5532(2023)02-0308-05
doi:10.11712/jms.2096-5532.2023.59.070
[開放科學(xué)(資源服務(wù))標識碼(OSID)]
缺血再灌注(I/R)損傷是一種常見的與臨床事件相關(guān)的具有高發(fā)病率和死亡率的創(chuàng)傷。目前學(xué)術(shù)界普遍認為,缺血并不是導(dǎo)致組織損傷的主要因素,當(dāng)血液供應(yīng)得到恢復(fù)(再灌注),大量的自由基對細胞造成沖擊是I/R損傷發(fā)生的主要機制。然而最近有研究表明,白細胞、淋巴細胞、漿細胞等免疫細胞與I/R的發(fā)生發(fā)展密切相關(guān),再灌注過程中血管炎癥的發(fā)生發(fā)展也與I/R的進展相一致。I/R可以發(fā)生于心肌梗死、缺血性卒中、急性腎損傷、創(chuàng)傷、循環(huán)驟停、鐮狀細胞病和睡眠呼吸暫停中,是器官移植、心胸外科、血管外科和普通外科面臨的主要挑戰(zhàn)。對于I/R的治療,目前仍然缺乏有效的治療手段。由于間充質(zhì)干細胞(MSCs)具有缺乏共刺激分子表達導(dǎo)致的低免疫原性的特點和在體內(nèi)外分化為多種間充質(zhì)組織的能力,利用MSCs對I/R損傷進行修復(fù)已經(jīng)成為一個研究熱點,出現(xiàn)于多種器官(心、腦、腎、肝)損傷后治療修復(fù)研究中。I/R會引起無菌性炎癥(腸I/R等少數(shù)事件除外)以及細胞免疫和體液免疫的相應(yīng)反應(yīng),故靶向免疫治療作為一種新興的治療理念被提出。本文對MSCs在修復(fù)I/R損傷過程中的可能免疫機制進行綜述。
1 MSCs概述
MSCs為一種具有克隆性和自我更新能力并可分化為多種細胞系的細胞,它來源于胚泡期的哺乳動物胚胎,并有能力在體內(nèi)產(chǎn)生任何終末分化的細胞。新生兒的骨髓含有MSCs,它們能夠分化成多種間充質(zhì)組織,如骨、脂肪、軟骨和骨髓支持基質(zhì)。MSCs主要通過直接作用或外泌體介導(dǎo)的旁分泌發(fā)揮作用。MSCs取材容易、培養(yǎng)簡便、應(yīng)用前景廣闊,還有快速塑性黏附、造血標志物表達缺乏的特點,從而成為干細胞中最受關(guān)注的種類之一。MSCs不但具有自我更新和多向分化的雙向功能,還具有明顯的可塑性,并能分泌多種細胞因子,在醫(yī)學(xué)各個領(lǐng)域都具有極其重要的研究和應(yīng)用價值。許多研究表明,MSCs對先天性免疫和適應(yīng)性免疫都有調(diào)節(jié)作用。
2 細胞免疫與體液免疫概述
狹義的細胞免疫指T細胞介導(dǎo)的免疫應(yīng)答,本文中的細胞免疫還包括了巨噬細胞的免疫作用。T細胞是參與細胞免疫的主力軍,細胞毒性T細胞可以直接殺傷靶細胞,輔助性T細胞(Th)參與體液免疫的開始,抑制性T細胞停止免疫反應(yīng),調(diào)節(jié)性T細胞(Treg)分泌抑制性細胞因子抑制效應(yīng)T細胞活化增殖效應(yīng)。T細胞與巨噬細胞的作用途徑與多種細胞因子息息相關(guān)。體液免疫的重要機制是B細胞增殖分化為漿細胞產(chǎn)生抗體,而這一步驟也需要多種細胞因子的參與激活。
3 MSCs對I/R組織損傷修復(fù)的免疫機制
3.1 調(diào)節(jié)淋巴細胞亞群
缺血和再灌注引起了一種強大的適應(yīng)性免疫反應(yīng),其中包括T淋巴細胞反應(yīng)。雖然抗原特異性T細胞的種類及其在無菌炎癥反應(yīng)中被激活的機制還不清楚,但是有證據(jù)表明,抗原特異性和抗原非依賴性的激活機制都有所貢獻。MSCs可以通過抑制共刺激分子的表面表達來降低Th1和Th2細胞的活性,直接對T、B細胞的功能作用進行調(diào)節(jié)。有研究發(fā)現(xiàn),MSCs可在前列腺素E2(PGE2)、吲哚胺2,3-雙加氧酶(IDO)和轉(zhuǎn)化生長因子β(TGF-β)的介導(dǎo)下通過直接接觸作用對CD4+T細胞進行免疫抑制。有動物實驗表明,MSCs的治療作用可能與其對CD8+T細胞的抑制增殖作用以及CD103+樹突狀細胞的激活介導(dǎo)作用有關(guān)。許多研究發(fā)現(xiàn),骨髓間充質(zhì)干細胞(BMSCs)可以劑量依賴性地抑制T、B細胞的增殖。還有研究發(fā)現(xiàn),MSCs能夠抑制Th0細胞向Th17細胞分化,在基因水平上傾向于使Th0細胞分化為Th2細胞。Treg細胞在I/R中具有保護作用。MSCs可誘導(dǎo)T細胞中轉(zhuǎn)錄因子(Foxp3)上調(diào),從而促進血清或組織中的CD4+CD25+Foxp3+Treg細胞增殖,誘導(dǎo)免疫調(diào)節(jié),其減輕I/R損傷的作用在視網(wǎng)膜、心臟、肝臟和肺臟I/R中已經(jīng)得到研究證實。進一步的研究發(fā)現(xiàn),借助某些細胞因子預(yù)處理可以通過環(huán)氧化物酶2(COX-2)/PGE2通路增加Treg細胞百分比,更能增強MSCs對I/R急性腎損傷小鼠的療效。近期有研究表明,Treg細胞和MSCs之間的直接交流是基于活性線粒體和質(zhì)膜片段從MSCs轉(zhuǎn)移到Treg細胞,這個事件與Treg細胞和MSCs供體之間的人類白細胞抗原C(HLA-C)和人類白細胞抗原DRB1(HLA-DRB1)錯配負載有關(guān)。另有研究發(fā)現(xiàn),人羊膜來源MSCs可通過程序性死亡受體1(PD-1)路徑阻止T細胞活化。MSCs不僅能增加Treg細胞的比例,還能維持其活性。有研究結(jié)果表明,MSCs對T、B淋巴細胞的調(diào)節(jié)可能是通過對細胞周期蛋白的調(diào)節(jié)。有動物實驗研究結(jié)果表明,反復(fù)應(yīng)用MSCs治療過程中無明顯不良反應(yīng),預(yù)示這種治療有良好前景。
3.2 改變巨噬細胞的免疫表型
巨噬細胞是免疫系統(tǒng)的重要成員。有研究表明,MSCs能夠通過誘導(dǎo)巨噬細胞從M1表型向M2表型轉(zhuǎn)化,調(diào)節(jié)巨噬細胞極化,從而促進愈合過程。ABUMAREE等將煎蛋樣M1巨噬細胞與MSCs共培養(yǎng)3 d,M1巨噬細胞逐漸轉(zhuǎn)化為紡錘狀M2巨噬細胞。這一過程伴隨著白細胞介素(IL)-10水平升高,IL-12和IL-1β水平降低,以及巨噬細胞吞噬活性增加。MSCs還可以調(diào)節(jié)體內(nèi)巨噬細胞的免疫表型,這已在多種疾病模型中得到證實。例如,MSCs可通過改變M1/M2極化和抑制抗原遞呈細胞的浸潤來增加角膜移植的成功率。最新研究表明,MSCs通過分泌IL-13而不是IL-4增強巨噬細胞的選擇性活化。
3.3 調(diào)節(jié)細胞免疫/體液免疫相關(guān)細胞因子
I/R后接受MSCs治療,經(jīng)過48 h,Th1細胞因子下降不明顯,IL-6表達明顯上調(diào),表明MSCs的免疫調(diào)節(jié)效應(yīng)發(fā)生在非常早的時間點。目前已有研究試圖探尋MSCs對B細胞增殖及產(chǎn)生抗體的影響,得出的結(jié)論并不一致,所以顯而易見的是MSCs與B細胞的關(guān)系涉及復(fù)雜的機制,而且與細胞因子密切相關(guān)。在肝臟I/R損傷的情況下,樹突狀細胞的保護作用取決于它們產(chǎn)生的抗炎細胞因子IL-10,MSCs使組織中IL-10水平升高可能導(dǎo)致TNF-a、IL-6和活性氧水平下降。由于細胞因子的作用是廣泛且復(fù)雜的,針對MSCs免疫作用機制的細胞因子檢測數(shù)不勝數(shù),但仍未得到系統(tǒng)確切的結(jié)論。許多研究表明,MSCs可以通過升高組織或血清中的IL-10、分泌PGE2來調(diào)節(jié)細胞免疫與體液免疫,從而減輕I/R免疫損傷,這可能與Treg細胞的增殖有關(guān)。呂翠等研究發(fā)現(xiàn),移植IL-10修飾的MSCs對大鼠腦I/R損傷有保護作用。TGF-β1也被證明是參與MSCs的免疫抑制過程中的重要成員。有研究表明,在再生障礙性貧血病人中,MSCs可以通過下調(diào)IL-2、γ-干擾素的表達,上調(diào)IL-4、IL-10的表達來調(diào)節(jié)免疫紊亂。另有研究表明,在試驗性自身免疫性腦脊髓炎模型中,MSCs借助其對IL-17的抑制作用可以治療這種疾病。
3.4 通過外泌體發(fā)揮免疫功能
外泌體是已知的免疫調(diào)節(jié)因子,可以參與細胞免疫與體液免疫的調(diào)節(jié)。SATO等早在2007年便證明了小鼠MSCs分泌的一氧化氮通過細胞周期阻滯或細胞凋亡直接調(diào)節(jié)T細胞的免疫抑制反應(yīng)。近年來,越來越多的研究把研究重點放在了MSCs的外泌體上。WANG等在研究MSCs對心肌I/R損傷的治療效果時甚至發(fā)現(xiàn),來自MSCs的外泌體擁有比MSCs更好的治療效果。然而有研究表明,無論預(yù)處理如何,MSCs對于呼吸窘迫綜合征癥狀的改善能力總是強于相同數(shù)量MSCs產(chǎn)生的外泌體的作用能力。戴華磊通過實驗證明,MSCs外泌體可通過調(diào)節(jié)IL-10、IL-1β這兩個免疫相關(guān)細胞因子水平來緩解大鼠肝臟I/R損傷。有研究表明,人臍帶血MSCs來源的外泌體可以通過miR-1246介導(dǎo)的IL-6-gp130-STAT3軸調(diào)節(jié)Treg和Th17細胞之間的平衡來緩解肝I/R損傷。有研究發(fā)現(xiàn),來自腎臟的尿干細胞分泌的外泌體的裂解液有調(diào)節(jié)體液免疫的作用。
3.5 治療自身免疫性疾病
MSCs的免疫抑制特性在自身免疫性疾病中表現(xiàn)得尤為顯著,MSCs修復(fù)腸I/R損傷過程中腸黏膜免疫屏障相關(guān)指標的改變與MSCs治療許多自身免疫性疾病觀測到的免疫指標的改變類似。有MSCs對自身免疫性腦脊髓炎的治療效果的研究顯示,疾病的預(yù)后得到了極大的改善。有研究發(fā)現(xiàn),MSCs可以明顯抑制類風(fēng)濕性關(guān)節(jié)炎病人活化的T淋巴細胞凋亡,并且能促進B細胞功能成熟,使IgG分泌增加,或者通過誘導(dǎo)特異Treg細胞分化增殖阻止T細胞活化,從而治療類風(fēng)濕性關(guān)節(jié)炎。有動物實驗研究結(jié)果表明,BMSCs能夠通過降低Th1/Th2表達比值來減少自身免疫性多腺體綜合征的發(fā)病率。FORBES的研究提示了MSCs治療克羅恩病的有效性。TAKEDA等還發(fā)現(xiàn)了MSCs在治療過敏性氣道炎中的優(yōu)越性。
3.6 依賴于人表面抗原
胡紅林等在腎I/R疾病中進行了進一步的研究,結(jié)果表明,MSCs可以通過降低CD4+CD25+Treg的比例來調(diào)節(jié)免疫從而起到治療作用。最近有研究結(jié)果表明,MSCs可以通過miRNA-125b和miRNA-155通路負向調(diào)節(jié)原發(fā)性Sjgren綜合征病人的CD4+T細胞活化。SHENG等在缺乏CD47的MSCs會加重肝組織I/R損傷的基礎(chǔ)上進一步證明,CD47是治療I/R的潛在靶點。也有研究表明,MSCs的修復(fù)作用依賴于人表面抗原CD29、CD44。來源于人類臍帶的MSCs可通過降低CD4+ T細胞上的CD154抗原的表達來緩解肝臟I/R損傷。
4 小結(jié)
MSCs的臨床前期研究目前已經(jīng)得到了許多肯定的結(jié)果,在臨床試驗階段也有許多研究正在進行。近年來,對MSCs機制的研究逐漸深入,由于其機制的多樣性與廣泛性,MSCs可能對新冠肺炎亦有一定的治療潛力。已知MSCs主要通過直接作用和旁分泌作用發(fā)揮作用,近年來越來越多的研究把重點放在MSCs分泌的外泌體上面,帶有特定靶點或與其他材料結(jié)合的MSCs被證明能在特定的疾病中發(fā)揮更好的作用。I/R損傷免疫修復(fù)過程是一個復(fù)雜的涉及多因素的過程,盡管MSCs修復(fù)I/R損傷相關(guān)機制研究尤其是免疫機制研究涉及多個方面,但其具體的機制目前仍不是很清楚。因此,更多臨床試驗或臨床前試驗對于MSCs進一步的臨床應(yīng)用是必須的,對MSCs治療免疫相關(guān)疾病機制仍需做深入的探討。
[參考文獻]
JIANG H T, QU L L, DOU R R, et al. Potential role of me-senchymal stem cells in alleviating intestinal ischemia/reperfusion impairment.? PLoS One, 2013,8(9):e74468.
GAO Z B, ZHANG L N, HU J, et al. Mesenchymal stem cells: a potential targeted-delivery vehicle for anti-cancer drug, loaded nanoparticles.? Nanomedicine: Nanotechnology, Biology, and Medicine, 2013,9(2):174-184.
ELTZSCHIG H K, ECKLE T. Ischemia and reperfusion—from mechanism to translation.? Nature Medicine, 2011,17(11):1391-1401.
DEVINE S M, COBBS C, JENNINGS M, et al. Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates.? Blood, 2003,101(8):2999-3001.
BIKORIMANA J P, ABUSARAH J, SALAME N, et al. Humoral immunity to allogeneic immunoproteasome-expressing mesenchymal stromal cells requires efferocytosis by endogenous phagocytes.? Cells, 2022,11(4):596.
SATPUTE S R, PARK J M, JANG H R, et al. The role for T cell repertoire/antigen-specific interactions in experimental kidney ischemia reperfusion injury.? Journal of Immunology (Baltimore, Md:1950), 2009,183(2):984-992.
SHEN X D, WANG Y, GAO F, et al. CD4 T cells promote tissue inflammation via CD40 signaling without de novo activation in a murine model of liver ischemia/reperfusion injury.? Hepatology (Baltimore, Md), 2009,50(5):1537-1546.
KAPLAN J M, YOUD M E, LODIE T A. Immunomodulatory activity of mesenchymal stem cells.? Current Stem Cell Research & Therapy, 2011,6(4):297-316.
李明芬. 骨髓間充質(zhì)干細胞對CD8+T淋巴細胞的免疫調(diào)節(jié)功能及其機制研究.? 南寧:廣西醫(yī)科大學(xué), 2014.
DAVE M, HAYASHI Y, GAJDOS G B, et al. Stem cells for murine interstitial cells of Cajal suppress cellular immunity and colitis via prostaglandin E2 secretion.? Gastroenterology, 2015,148(5):978-990.
ZHANG F P, WANG C S, WEN X, et al. Mesenchymal stem cells alleviate rat diabetic nephropathy by suppressing CD103+ DCs-mediated CD8+T cell responses.? Journal of Cellular and Molecular Medicine, 2020,24(10):5817-5831.
馬麗輝. 骨髓間充質(zhì)干細胞治療類風(fēng)濕關(guān)節(jié)炎機制和相關(guān)研究.? 太原:山西醫(yī)科大學(xué), 2008.
WEISS A R R, DAHLKE M H. Immunomodulation by me-
senchymal stem cells (MSCs): mechanisms of action of living, apoptotic, and dead MSCs.? Frontiers in Immunology, 2019,10:1191.
LAING A G, FANELLI G, RAMIREZ-VALDEZ A, et al. Mesenchymal stem cells inhibit T-cell function through conserved induction of cellular stress.? PLoS One, 2019,14(3):e0213170.
FRANQUESA M, MENSAH F K, HUIZINGA R, et al. Human adipose tissue-derived mesenchymal stem cells abrogate plasmablast formation and induce regulatory B cells indepen-
dently of T helper cells.? Stem Cells (Dayton, Ohio), 2015,33(3):880-891.
劉春燕. 骨髓間充質(zhì)干細胞抑制Th0細胞向Th17細胞分化的研究.? 蘇州:蘇州大學(xué), 2018.
AGRAWAL M, RASIAH P K, BAJWA A, et al. Mesenchymal stem cell induced Foxp3(+) tregs suppress effector T cells and protect against retinal ischemic injury.? Cells, 2021,10(11):3006.
PANG L X, CAI W W, LI Q, et al. Bone marrow-derived mesenchymal stem cells attenuate myocardial ischemia-reperfusion injury via upregulation of splenic regulatory T cells.? BMC Cardiovascular Disorders, 2021,21(1):215.
LIU C, KANG L N, CHEN F, et al. Immediate intracoronary delivery of human umbilical cord mesenchymal stem cells reduces myocardial injury by regulating the inflammatory process through cell-cell contact with T lymphocytes.? StemCells and Development, 2020,29(20):1331-1345.
HWANG B, LILES W C, WAWORUNTU R, et al. Pretreatment with bone marrow-derived mesenchymal stromal cell-conditioned media confers pulmonary ischemic tolerance.? The Journal of Thoracic and Cardiovascular Surgery, 2016,151(3):841-849.
PIEKARSKA K, URBAN-WJCIUK Z, KURKOWIAK M, et al. Mesenchymal stem cells transfer mitochondria to allogeneic Tregs in an HLA-dependent manner improving their immunosuppressive activity.? Nature Communications, 2022,13(1):856.
TAGO Y, KOBAYASHI C, OGURA M, et al. Human am-
nion-derived mesenchymal stem cells attenuate xenogeneic graft-versus-h(huán)ost disease by preventing T cell activation and prolife-
ration.? Scientific Reports, 2021,11(1):2406.
BAI M, ZHANG L, FU B, et al. IL-17A improves the efficacy of mesenchymal stem cells in ischemic-reperfusion renal injury by increasing Treg percentages by the COX-2/PGE2 pathway.? Kidney International, 2018,93(4):814-825.
LIOTTA F, ANGELI R, COSMI L, et al. Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory acti-
vity by impairing Notch signaling.? Stem Cells (Dayton, Ohio), 2008,26(1):279-289.
KIM J A, HONG S, LEE B, et al. The inhibition of T-cells proliferation by mouse mesenchymal stem cells through the induction of p16INK4A-cyclin D1/cdk4 and p21waf1, p27kip1-cyclin E/cdk2 pathways.? Cellular Immunology, 2007,245(1):16-23.
HU C X, LI L J. The immunoregulation of mesenchymal stem cells plays a critical role in improving the prognosis of liver transplantation.? Journal of Translational Medicine, 2019,17(1):412.
GLENNIE S, SOEIRO I, DYSON P J, et al. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells.? Blood, 2005,105(7):2821-2827.
VAN HECKE L, MAGRI C, DUCHATEAU L, et al. Repeated intra-articular administration of equine allogeneic peripheral blood-derived mesenchymal stem cells does not induce a cellular and humoral immune response in horses.? Veterinary Immunology and Immunopathology, 2021,239:110306.
CHO D I, KIM M R, JEONG H Y, et al. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages.? Experimental & Molecular Medicine, 2014,46(1):e70.
KHAN A, HUNTER R L, JAGANNATH C. Emerging role of mesenchymal stem cells during tuberculosis: the fifth element in cell mediated immunity.? Tuberculosis, 2016,101:S45-S52.
ABUMAREE M H, AL JUMAH M A, KALIONIS B, et al. Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differen-
tiation from inflammatory M1 to anti-inflammatory M2 macrophages.? Stem Cell Reviews and Reports, 2013,9(5):620-641.
MURPHY N, LYNCH K, LOHAN P, et al. Mesenchymal stem cell therapy to promote corneal allograft survival: current status and pathway to clinical translation.? Current Opinion in Organ Transplantation, 2016,21(6):559-567.
CHOU K J, HSU C Y, HUANG C W, et al. Secretome of hypoxic endothelial cells stimulates bone marrow-derived me-
senchymal stem cells to enhance alternative activation of macrophages.? International Journal of Molecular Sciences, 2020,21(12):4409.
SEMEDO P, PALASIO C G, OLIVEIRA C D, et al. Early modulation of inflammation by mesenchymal stem cell after acute kidney injury.? International Immunopharmacology, 2009,9(6):677-682.
AUGELLO A, TASSO R, NEGRINI S M, et al. Bone marrow mesenchymal progenitor cells inhibit lymphocyte prolife-
ration by activation of the programmed death 1 pathway.? European Journal of Immunology, 2005,35(5):1482-1490.
ASARI S, ITAKURA S, FERRERI K, et al. Mesenchymal stem cells suppress B-cell terminal differentiation.? Experimental Hematology, 2009,37(5):604-615.
RASMUSSON I, LE BLANC K, SUNDBERG B, et al. Me-
senchymal stem cells stimulate antibody secretion in human B cells.? Scandinavian Journal of Immunology, 2007,65(4):336-343.
趙旭,毛鑫,李春天,等. 間充質(zhì)干細胞治療心肌缺血再灌注損傷的作用.? 中國組織工程研究, 2022,26(1):130-134.
張威,耿曉東. 間充質(zhì)干細胞條件培養(yǎng)基治療大鼠腎臟缺血再灌注損傷研究.? 中國現(xiàn)代醫(yī)藥雜志, 2016,18(8):23-27.
王芳. BMSCs移植對缺血性腦卒中鼠IL-10、TGF-β1表達的影響. 衡陽:南華大學(xué), 2014.
劉楠梅,田軍,程勁,等. 骨髓間充質(zhì)干細胞干預(yù)對急性腎損傷鼠腎臟中細胞因子的影響.? 中國中西醫(yī)結(jié)合腎病雜志, 2010,11(4):310-313,382.
王書,張新晨,吳德全,等. 骨髓間充質(zhì)干細胞對肝臟缺血再灌注損傷修復(fù)作用研究進展.? 中華實驗外科雜志, 2013,30(10):2236-2237.
MAO F, XU W R, QIAN H, et al. Immunosuppressive effects of mesenchymal stem cells in collagen-induced mouse arthritis.? Inflammation Research: Official Journal of the European Histamine Research Society, 2010,59(3):219-225.
CHOI J J, YOO S A, PARK S J, et al. Mesenchymal stem cells overexpressing interleukin-10 attenuate collagen-induced arthritis in mice.? Clinical and Experimental Immunology, 2008,153(2):269-276.
ZIDAN A A, AL-HAWWAS M, PERKINS G B, et al. Cha-
racterization of urine stem cell-derived extracellular vesicles reveals B cell stimulating cargo.? International Journal of Molecular Sciences, 2021,22(1):459.
AGGARWAL S, PITTENGER M F. Human mesenchymal stem cells modulate allogeneic immune cell responses.? Blood, 2005,105(4):1815-1822.
龐凌霄,李茜,朱蔚,等. 骨髓間充質(zhì)干細胞誘導(dǎo)調(diào)節(jié)性T細胞緩解心肌缺血-再灌注損傷.? 中華急診醫(yī)學(xué)雜志, 2021,30(8):973-978.
呂翠,王翠花,曾現(xiàn)偉. IL-10基因修飾的BMSCs對大鼠腦缺血再灌注損傷的保護作用.? 實用醫(yī)學(xué)雜志, 2016,32(21):3520-3523.
郭瑞雪. BM MSCs免疫抑制及HO-1/MSCs對大鼠受損腸道修復(fù)作用的研究.? 天津:天津醫(yī)科大學(xué), 2013.
CAI J R, JIAO X Y, ZHAO S, et al. Transforming growth factor-β1-overexpressing mesenchymal stromal cells induced local tolerance in rat renal ischemia/reperfusion injury.? Cytotherapy, 2019,21(5):535-545.
張樂琴,肖揚,蔣祖軍,等. 骨髓間充質(zhì)干細胞對再生障礙性貧血患者T細胞的免疫抑制.? 中國組織工程研究, 2013,17(36):6462-6467.
KOMIYAMA Y, NAKAE S, MATSUKI T, et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis.? Journal of Immunology (Baltimore, Md:1950), 2006,177(1):566-573.
QUAGLIA M, DELLEPIANE S, GUGLIELMETTI G, et al. Extracellular vesicles as mediators of cellular crosstalk between immune system and kidney graft.? Frontiers in Immunology, 2020,11:74.
SATO K, OZAKI K, OH I, et al. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells.? Blood, 2007,109(1):228-234.
WANG X Q, BAI L, LIU X X, et al. Cardiac microvascular functions improved by MSC-derived exosomes attenuate car-
diac fibrosis after ischemia-reperfusion via PDGFR-β modulation.? International Journal of Cardiology, 2021,344:13-24.
SILVA J D, DE CASTRO L L, BRAGA C L, et al. Mesenchymal stromal cells are more effective than their extracellular vesicles at reducing lung injury regardless of acute respiratory distress syndrome etiology.? Stem Cells International, 2019, 2019:8262849.
戴華磊. 骨髓間充質(zhì)干細胞來源exosomes對大鼠肝臟缺血再灌注損傷修復(fù)作用的實驗研究.? 瀘州:四川醫(yī)科大學(xué), 2015.
XIE K, LIU L, CHEN J M, et al. Exosomal miR-1246 derived from human umbilical cord blood mesenchymal stem cells attenuates hepatic ischemia reperfusion injury by modulating T helper 17/regulatory T balance.? IUBMB Life, 2019,71(12):2020-2030.
李子建. 骨髓間充質(zhì)干細胞來源的外泌體對實驗性自身免疫性腦脊髓炎大鼠的免疫調(diào)節(jié)作用的實驗研究.? 沈陽:中國醫(yī)科大學(xué), 2019.
GONZALEZ-REY E, GONZALEZ M A, VARELA N, et al. Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis.? Annals of the Rheumatic Di-
seases, 2010,69(1):241-248.
丁玉達. 異基因骨髓間充質(zhì)干細胞對實驗性自身免疫性甲狀腺炎的治療效果及對Th1/Th2細胞平衡影響的研究.? 天津:天津醫(yī)科大學(xué), 2012.
FORBES G M. Mesenchymal stromal cell therapy in Crohns disease.? Digestive Diseases (Basel, Switzerland), 2017,35(1-2):115-122.
TAKEDA K, WEBB T L, NING F K, et al. Mesenchymal stem cells recruit CCR2+ monocytes to suppress allergic airway inflammation.? Journal of Immunology (Baltimore, Md:1950), 2018, 200(4):1261-1269.
胡紅林,鄒叢,習(xí)小慶,等. 骨髓間充質(zhì)干細胞治療腎缺血再灌注損傷的免疫調(diào)節(jié)機制.? 中國組織工程研究, 2014,18(37):5977-5982.
GONG B D, ZHENG L, LU Z H, et al. Mesenchymal stem cells negatively regulate CD4+ T cell activation in patients with primary Sjgren syndrome through the miRNA-125b and miRNA-155 TCR pathway.? Molecular Medicine Reports, 2021,23(1):43.
SHENG M W, LIN Y B, XU D W, et al. CD47-mediated hedgehog/SMO/GLI1 signaling promotes mesenchymal stem cell immunomodulation in mouse liver inflammation.? Hepatology (Baltimore, Md), 2021,74(3):1560-1577.
ALDRIDGE V, GARG A, DAVIES N, et al. Human mesenchymal stem cells are recruited to injured liver in a β1-integrin and CD44 dependent manner.? Hepatology (Baltimore, Md), 2012,56(3):1063-1073.
ZHENG J, LU T Y, ZHOU C R, et al. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells protect liver ischemia/reperfusion injury by reducing CD154 expression on CD4+ T cells via CCT2.? Advanced Science, 2020,7(18):1903746.
GRGOIRE C, LECHANTEUR C, BRIQUET A, et al. Review article: mesenchymal stromal cell therapy for inflammatory bowel diseases.? Alimentary Pharmacology & Therapeutics, 2017,45(2):205-221.
CAI B L, LIN D, LI Y, et al. N2-polarized neutrophils guide bone mesenchymal stem cell recruitment and initiate bone regeneration: a missing piece of the bone regeneration puzzle.? Advanced Science, 2021,8(19):e2100584.
ZHOU Y, WEN L L, LI Y F, et al. Exosomes derived from bone marrow mesenchymal stem cells protect the injured spinal cord by inhibiting pericyte pyroptosis.? Neural Regeneration Research, 2022,17(1):194-202.
CAO J Y, WANG B, TANG T T, et al. Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury.? Theranostics, 2021,11(11):5248-5266.
(本文編輯 馬偉平)