国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

相變—通風(fēng)混合冷卻服的冷卻效果及其測(cè)評(píng)方法進(jìn)展

2023-07-04 11:31吳珺秋李俊
絲綢 2023年4期
關(guān)鍵詞:測(cè)評(píng)影響因素

吳珺秋 李俊

摘要: 相變—通風(fēng)混合冷卻服中兩種介質(zhì)之間存在相互影響,作用機(jī)制復(fù)雜。本文從冷卻介質(zhì)、服裝、人體和環(huán)境四個(gè)方面剖析了影響冷卻效果和著裝熱濕舒適性的關(guān)鍵因素,發(fā)現(xiàn)各因素對(duì)冷卻效果的交互影響還未得到細(xì)化研究,且忽視了服用性能方面的影響。同時(shí),分析了不同測(cè)評(píng)方法在相變—通風(fēng)混合冷卻服中應(yīng)用時(shí)的適用性及局限性,研究表明物理實(shí)驗(yàn)采用的方法、程序和指標(biāo)的不同會(huì)影響測(cè)評(píng)結(jié)果,數(shù)值模型存在簡(jiǎn)化熱濕傳遞和通風(fēng)過(guò)程等不足。本文提出未來(lái)的研究可以綜合考慮多方面因素對(duì)冷卻效果的交互影響,探尋兼顧冷卻和服用性能的冷卻服參數(shù)設(shè)計(jì);對(duì)冷卻效果的測(cè)評(píng)則應(yīng)考慮建立更加標(biāo)準(zhǔn)化的物理實(shí)驗(yàn)測(cè)試方法與綜合評(píng)價(jià)體系,并完善對(duì)衣下空氣層形態(tài)、空氣流動(dòng)及熱濕傳遞過(guò)程的數(shù)值模擬。

關(guān)鍵詞: 相變材料;通風(fēng)風(fēng)扇;混合冷卻服;冷卻效果;影響因素;測(cè)評(píng)

中圖分類號(hào): TS941.731

文獻(xiàn)標(biāo)志碼: A

文章編號(hào): 1001-7003(2023)04-0071-09

引用頁(yè)碼:

041110

DOI: 10.3969/j.issn.1001-7003.2023.04.010(篇序)

人體在高溫環(huán)境下長(zhǎng)時(shí)間作業(yè)時(shí),除自身代謝產(chǎn)生熱量升高外,人體與環(huán)境之間的溫差也導(dǎo)致人體向外散熱變得困難。此時(shí),僅通過(guò)自身體溫調(diào)節(jié)機(jī)制無(wú)法滿足維持熱平衡的要求,隨之可能產(chǎn)生的熱應(yīng)激不僅會(huì)降低作業(yè)效率,還威脅到人體健康和安全[1]。因此,各行業(yè)在高溫環(huán)境下作業(yè)的熱安全性已成為廣泛關(guān)注的問(wèn)題。在無(wú)法使用空調(diào)系統(tǒng)等環(huán)境冷卻措施時(shí),在服裝中增加冷卻介質(zhì)就成為有效的降溫手段。根據(jù)冷卻介質(zhì)的不同,冷卻服可分為液冷服、相變冷卻服、對(duì)流型和蒸發(fā)型氣冷服。液冷服和對(duì)流型氣冷服通過(guò)制冷液或預(yù)冷空氣與皮膚表面之間的溫差傳熱帶走熱量,但由于制冷裝置龐大使得使用者活動(dòng)受限[2],目前只在少數(shù)的特定場(chǎng)景下有一定應(yīng)用。蒸發(fā)型氣冷服通過(guò)小型通風(fēng)風(fēng)扇促進(jìn)衣下空氣對(duì)流,增強(qiáng)汗液蒸發(fā)散熱,具有節(jié)能、便攜、可手動(dòng)調(diào)節(jié)風(fēng)速等優(yōu)點(diǎn),但過(guò)度依靠蒸發(fā)散熱會(huì)存在人體脫水的風(fēng)險(xiǎn)[3]。相變冷卻服通過(guò)固液相變過(guò)程吸收人體熱量,相變材料包可循環(huán)使用,但其可攜帶數(shù)量限制了制冷時(shí)間且增加了人體負(fù)荷。

為了提升綜合冷卻效能,有學(xué)者開(kāi)發(fā)了相變—通風(fēng)混合冷卻服[4]。然而,當(dāng)氣體和相變材料兩種冷卻介質(zhì)共存時(shí),其冷卻作用不是簡(jiǎn)單疊加,兩者會(huì)產(chǎn)生相互影響。相變材料在吸收熱量的同時(shí),也增加了冷卻服的熱阻和濕阻,對(duì)通風(fēng)散熱提出了更高的要求,而利用通風(fēng)的蒸發(fā)散熱則會(huì)加速相變材料熔化,縮短其作用時(shí)間[5]。因此,相對(duì)于單一介質(zhì)的冷卻服而言,相變—通風(fēng)混合冷卻服的性能開(kāi)發(fā)涉及多方面的影響因素,其性能評(píng)估和預(yù)測(cè)也更為復(fù)雜。

國(guó)內(nèi)外學(xué)者已經(jīng)針對(duì)基于相變材料和通風(fēng)風(fēng)扇的冷卻服展開(kāi)了大量研究。不僅積極研發(fā)新型相變材料和微型風(fēng)扇以提升冷卻服的便攜性和服用性能[6],還對(duì)比了兩種冷卻介質(zhì)的工作機(jī)理、優(yōu)缺點(diǎn)和適用條件,以尋求優(yōu)勢(shì)互補(bǔ),研發(fā)混合冷卻服[4,7]。同時(shí)進(jìn)一步深入挖掘冷卻介質(zhì)、服裝構(gòu)成、人體特征、環(huán)境條件等因素對(duì)冷卻效果的影響機(jī)制,不斷優(yōu)化冷卻服的參數(shù)設(shè)計(jì),完善冷卻策略[8-10]。然而,關(guān)于多因素影響下的相變—通風(fēng)混合介質(zhì)的冷卻機(jī)理的揭示還不夠深入,這也影響了針對(duì)性強(qiáng)的測(cè)評(píng)方法的建立,測(cè)評(píng)程序和指標(biāo)的規(guī)范性仍有待提高。

本文在提煉相變—通風(fēng)冷卻服性能特征的基礎(chǔ)上,通過(guò)文獻(xiàn)回顧,逐一討論冷卻效果的影響因素及研究進(jìn)展,在此基礎(chǔ)上分析不同測(cè)評(píng)方法的差異、局限和發(fā)展方向,以期為相變—通風(fēng)冷卻服的產(chǎn)品開(kāi)發(fā)、性能優(yōu)化及效果評(píng)估提供參考。

1 性能特征概述

相變—通風(fēng)混合冷卻服由相變材料、通風(fēng)風(fēng)扇、內(nèi)層和外層織物組成,相變材料常以材料包的形式置于內(nèi)層織物上口袋內(nèi),使用電池供電的小型通風(fēng)風(fēng)扇通常安裝于下背部的外層織物上,如圖1[4]所示。相變—通風(fēng)混合冷卻服通過(guò)影響人體與環(huán)境之間的熱濕傳遞實(shí)現(xiàn)對(duì)衣下微氣候的降溫和除濕,使其保持在舒適范圍內(nèi)[11]。

如圖2所示,相變材料的熱量的吸收能力依賴于材料數(shù)量及其相變溫度,但材料量的增加會(huì)加重人體生理負(fù)荷并影響肢體運(yùn)動(dòng)靈活性。一方面,相變材料的低吸濕性能會(huì)降低服裝的透濕能力,導(dǎo)致衣下微氣候濕度升高而產(chǎn)生不適感[7],且由于限制蒸發(fā)散熱而對(duì)冷卻效果產(chǎn)生負(fù)面影響[10]。另一方面,通風(fēng)風(fēng)扇能夠促進(jìn)人體蒸發(fā)散熱并降低微氣候濕度,提升冷卻服的熱濕傳遞性能,但其所發(fā)揮的作用不僅與氣流溫度和通風(fēng)量相關(guān),而且與服裝衣下空間特征及服裝開(kāi)口設(shè)計(jì)有關(guān)。但通風(fēng)氣體在人體表面流動(dòng)會(huì)產(chǎn)生吹風(fēng)感,引起局部和整體熱舒適感的不均勻,且不適用于人體低汗液分泌、高濕度環(huán)境等濕度差較小的條件[7,12-13]。兩種冷卻介質(zhì)混合使用時(shí),不但會(huì)產(chǎn)生累積效應(yīng),大幅提升冷卻服的整體冷卻效果,而且會(huì)產(chǎn)生交互作用,優(yōu)勢(shì)互補(bǔ),如相變材料的低吸濕性引起的問(wèn)題可以經(jīng)由通風(fēng)策略得到緩解??梢?jiàn),相變—通風(fēng)冷卻服的冷卻效果受到冷卻介質(zhì)各參數(shù)、服裝構(gòu)成、環(huán)境參數(shù)等諸多因素的影響,對(duì)其冷卻性能的評(píng)價(jià)也涉及人體降溫量和降溫速度、衣下空間的溫濕度、人體皮膚表面濕度、主觀舒適感等多方面的指標(biāo)。

2 冷卻效果影響因素研究

2.1 冷卻介質(zhì)的影響

2.1.1 相變材料

相變材料的熔化溫度是影響其冷卻效果的主要因素之一。Gao等[14]研究了熔化溫度與皮膚之間溫度差對(duì)冷卻速率的影響,結(jié)果顯示溫度差越大,冷卻速率越大。有研究表明,提高相變材料的熔化溫度和潛熱可以延長(zhǎng)冷卻持續(xù)時(shí)間,在高溫環(huán)境中高熔點(diǎn)相變材料不足以從人體中吸收足夠熱量來(lái)緩解熱應(yīng)激[15]。然而,熔化溫度過(guò)低會(huì)造成皮膚出現(xiàn)紅斑的過(guò)冷現(xiàn)象[16],且低熔點(diǎn)相變材料通常具有低熔化潛熱和高液態(tài)密度,存在冷卻時(shí)間短、額外增重大、蓄冷耗能多的缺陷。因此,Zheng等[17]提出多熔點(diǎn)相變材料的復(fù)合應(yīng)用,采用15 ℃和23 ℃熔點(diǎn)的相變材料分別作為內(nèi)層和外層,在加快冷卻速率的同時(shí)延長(zhǎng)冷卻持續(xù)時(shí)間。Itani等[18]提出,在不同工作階段選用不同熔點(diǎn)相變材料的階段冷卻策略,在蓄熱量較少的初始階段選用高熔點(diǎn)相變材料,以較低的相變材料重量持續(xù)較長(zhǎng)冷卻時(shí)間;工作一段時(shí)間后選用低熔點(diǎn)相變材料包及時(shí)促進(jìn)熱量散失,緩解長(zhǎng)時(shí)間工作造成的熱應(yīng)激和知覺(jué)疲勞。

相變材料的數(shù)量也是介質(zhì)設(shè)置時(shí)需要考慮的因素,數(shù)量增加會(huì)延長(zhǎng)冷卻持續(xù)時(shí)間[14,19],但同時(shí)也會(huì)導(dǎo)致代謝產(chǎn)熱和人體工效學(xué)方面的消極影響。Itani等[20-21]認(rèn)為,可以根據(jù)實(shí)際應(yīng)用的環(huán)境溫度和工作時(shí)長(zhǎng)來(lái)調(diào)節(jié)相變材料添加量。并且,人體軀干的區(qū)域性生理特點(diǎn)不同,對(duì)冷卻的敏感程度和需求也存在差異,將相變材料均勻分配到整個(gè)軀干區(qū)域不能發(fā)揮最大冷卻潛力,Itani等[22]研究發(fā)現(xiàn),將相變材料放在對(duì)冷卻更敏感且出汗量大的背部可獲得最佳冷卻效果和熱濕舒適性。

相變材料透濕性差的特性導(dǎo)致冷卻效果與熱濕舒適性之間存在矛盾。Reinertsen等[23]研究表明,相變材料覆蓋整個(gè)軀干時(shí)能獲得更低的平均皮膚溫度,但僅覆蓋軀干上部時(shí)可以促進(jìn)衣下空間內(nèi)水分向外傳遞,從而降低20%的微氣候濕度并改善人體濕舒適性。楊晨雨[24]進(jìn)一步研究了相變材料分布間隙對(duì)冷卻效果和透濕性能的影響,發(fā)現(xiàn)隨著分布間隙量的減小,在增強(qiáng)冷卻效果的同時(shí)會(huì)阻礙水分傳遞,采用4 mm分布間隙量可以實(shí)現(xiàn)相對(duì)的綜合性能最優(yōu)化。

2.1.2 通風(fēng)風(fēng)扇

通風(fēng)量是影響對(duì)流和蒸發(fā)熱損失最主要的因素。Yang等[25]研究發(fā)現(xiàn),增大通風(fēng)量可以加快衣下空氣流速,增大對(duì)流和蒸發(fā)傳熱系數(shù),從而促進(jìn)對(duì)流換熱和蒸發(fā)散熱。然而,通風(fēng)量增大到一定程度后,會(huì)由于空氣流速過(guò)快而無(wú)法與人體充分接觸,繼續(xù)增大通風(fēng)量不僅無(wú)法有效降低皮膚溫度,還會(huì)減小冷卻效率[26]。Zhao等[27]的研究也表明通風(fēng)量過(guò)高會(huì)造成局部皮膚溫度和熱感覺(jué)偏低,導(dǎo)致熱舒適不均勻和整體熱舒適水平降低。

通風(fēng)風(fēng)扇在服裝中的位置會(huì)對(duì)衣下空間內(nèi)的氣流路徑產(chǎn)生一定影響。Zhao等[8]對(duì)比了風(fēng)扇分別置于胸部、腹部和背部的冷卻效果,結(jié)果顯示不同位置雖然未對(duì)軀干整體熱損失產(chǎn)生顯著影響,但明顯改善了風(fēng)扇所在區(qū)域的通風(fēng)和蒸發(fā)散熱效果,且風(fēng)扇置于腹部時(shí)空氣流經(jīng)的體表面積最大,整體冷卻效果最佳,因此推薦將風(fēng)扇置于出汗量和體表面積大的位置。Choudhary等[28]基于計(jì)算流體力學(xué)(Computation fluid dynamics,CFD)的研究也表明,空氣在胸部、腹部等熱通量較低的區(qū)域循環(huán)較少,將風(fēng)扇置于這些區(qū)域可以改善空氣循環(huán),實(shí)現(xiàn)更均勻和顯著的冷卻效果。

通風(fēng)風(fēng)扇的工作模式也影響著冷卻效率。由于在工作期間給風(fēng)扇電池充電或更換電池會(huì)降低工作效率,Yi等[29]認(rèn)為使用容量較大的電池供電或減少電池輸出功率可以延長(zhǎng)風(fēng)扇的運(yùn)行時(shí)間,優(yōu)化風(fēng)扇的可用性。Davey等[30]提出間歇通風(fēng)策略,發(fā)現(xiàn)相比于持續(xù)通風(fēng)不僅可以節(jié)約能耗和延長(zhǎng)冷卻持續(xù)時(shí)間,還對(duì)皮膚溫度感受器產(chǎn)生了周期性刺激,從而改善人體熱感覺(jué)。

2.1.3 相變—通風(fēng)混合

相變材料與通風(fēng)風(fēng)扇混合使用時(shí)會(huì)產(chǎn)生相互影響,因此混合冷卻策略極大地影響著冷卻效率。Lai等[4]研究表明當(dāng)運(yùn)行假人干態(tài)測(cè)試時(shí),在關(guān)閉和開(kāi)啟風(fēng)扇的條件下相變材料分別提供了283 min和170 min的冷卻持續(xù)時(shí)間,這是因?yàn)楫?dāng)皮膚表面濕度小于環(huán)境濕度時(shí),運(yùn)行風(fēng)扇不僅無(wú)法增強(qiáng)蒸發(fā)散熱,還會(huì)由于向微氣候引入具有較高溫濕度的環(huán)境空氣而增加人體和相變材料吸收的熱量,從而影響降溫效果并加速相變材料熔化。Raj等[5]提出在相變材料包外加入膨脹聚乙烯隔熱層,以減弱運(yùn)動(dòng)初始階段皮膚表面干燥時(shí)運(yùn)行風(fēng)扇帶來(lái)的負(fù)面影響,增加相變材料從人體吸收熱量的比例,結(jié)果顯示有效延長(zhǎng)了平均皮膚溫度上升至35 ℃的時(shí)間和相變材料的冷卻持續(xù)時(shí)間。此外,相變材料完全熔化后不僅無(wú)法提供冷卻效果,還會(huì)由于其額外增重而增加人體代謝產(chǎn)熱,并阻礙微氣候內(nèi)水分和熱量向外傳遞。Wang等[31]針對(duì)兩種冷卻介質(zhì)的特性制定了階段冷卻策略,在試驗(yàn)開(kāi)始的第21 min運(yùn)行風(fēng)扇以減少初始階段環(huán)境向微氣候的顯熱傳遞,提高人體熱舒適水平和延長(zhǎng)相變材料冷卻持續(xù)時(shí)間,在第71 min及時(shí)移除完全熔化的相變材料以減少37.3%的物理負(fù)荷和緩解人體知覺(jué)疲勞,并改善冷卻服的透濕性能,增強(qiáng)通風(fēng)帶來(lái)的蒸發(fā)冷卻效果。

2.2 服裝結(jié)構(gòu)的影響

通風(fēng)促進(jìn)的環(huán)境與衣下空間的空氣交換,經(jīng)由服裝開(kāi)口進(jìn)行,受到開(kāi)口特征的影響。Zhao等[8]在通風(fēng)服的胸部和背部增加了開(kāi)口設(shè)計(jì)以增強(qiáng)對(duì)流,降低服裝蒸發(fā)阻力,并分散通風(fēng)時(shí)空氣從領(lǐng)口、袖口等自然開(kāi)口排出的壓力,減小服裝膨脹度,提高穿著者運(yùn)動(dòng)靈活性。相變冷卻服為了減少環(huán)境向相變材料的熱傳遞,通常不增設(shè)開(kāi)口,陳柔羲[32]采用立領(lǐng)作為領(lǐng)口閉合形式以形成煙囪效應(yīng),實(shí)現(xiàn)空氣靠密度差和熱濕差的作用從領(lǐng)口快速排出,促進(jìn)人體產(chǎn)熱傳遞到環(huán)境。

服裝合體性直接決定了衣下空間的大小,從而影響微氣候內(nèi)空氣的流動(dòng)能力。Yang等[25]研究表明通風(fēng)冷卻效果取決于服裝尺寸和通風(fēng)量的綜合影響,當(dāng)通風(fēng)量一定時(shí)空氣流速隨著衣下空氣層厚度的增大而減小,因此較為寬松的服裝可以實(shí)現(xiàn)空氣與人體的充分接觸,產(chǎn)生更顯著的冷卻效果。

2.3 人體活動(dòng)的影響

人體活動(dòng)水平?jīng)Q定著代謝產(chǎn)生熱量和皮膚表面出汗量的多少。一方面,人體實(shí)際熱量散失需求影響著冷卻介質(zhì)的選擇,Lai等[4]研究表明人體活動(dòng)水平較低(1.5 MET)時(shí)使用單一的通風(fēng)或相變冷卻方式即可有效減輕身體熱負(fù)荷,使用混合冷卻方式會(huì)使人體產(chǎn)生過(guò)冷感。另一方面,出汗量與蒸發(fā)熱損失有著緊密聯(lián)系,Bachnak等[9]研究發(fā)現(xiàn)隨著活動(dòng)水平的增加,通風(fēng)引起的汗液蒸發(fā)熱損失明顯大于環(huán)境向微氣候的顯熱傳遞的時(shí)間點(diǎn)提前。此外,人體出汗感覺(jué)也會(huì)隨著出汗量的增加而變得強(qiáng)烈,從而期望更高通風(fēng)量來(lái)增強(qiáng)蒸發(fā)散熱[33]。

人體運(yùn)動(dòng)狀態(tài)不僅影響著衣下微氣候與環(huán)境之間的空氣交換,還會(huì)使衣下空氣層產(chǎn)生動(dòng)態(tài)變化進(jìn)而影響熱傳遞方式。人體運(yùn)動(dòng)時(shí)微氣候與環(huán)境之間會(huì)產(chǎn)生空氣對(duì)流的“風(fēng)箱效應(yīng)”,運(yùn)行風(fēng)扇可進(jìn)一步增強(qiáng)對(duì)流換熱;而當(dāng)人體休息為靜止坐姿時(shí),背部與服裝之間的空氣層厚度變小,無(wú)法形成有效的對(duì)流運(yùn)動(dòng),主要熱傳遞方式變?yōu)閭鲗?dǎo)和輻射,運(yùn)行風(fēng)扇無(wú)法有效增強(qiáng)冷卻效果[34]。

2.4 環(huán)境條件的影響

環(huán)境溫度直接決定了“人體—服裝—環(huán)境”系統(tǒng)內(nèi)的傳熱方向。當(dāng)環(huán)境溫度低于皮膚溫度時(shí),風(fēng)扇和相變材料分別通過(guò)人體皮膚與熱空氣間的溫濕度差及與相變材料間的溫度差從人體向外散熱,采用單一冷卻方式即可滿足人體熱舒適需求[22,35];當(dāng)環(huán)境溫度高于皮膚溫度時(shí),相變材料從環(huán)境中吸熱比例增加,對(duì)人體的降溫效果減弱,而通風(fēng)則進(jìn)一步增強(qiáng)環(huán)境向人體和相變材料的傳熱,單一冷卻方式無(wú)法提供足夠的冷卻能力,應(yīng)采用冷卻能力較強(qiáng)的混合冷卻方式[36]。

環(huán)境濕度影響系統(tǒng)內(nèi)的水分傳遞過(guò)程,進(jìn)而影響不同冷卻介質(zhì)的適用性。在干熱環(huán)境中,相變材料會(huì)阻礙汗液蒸發(fā)這種主要散熱方式,并且其冷卻能力不足以彌補(bǔ)對(duì)蒸發(fā)的阻礙[10],而通風(fēng)可以有效增強(qiáng)汗液蒸發(fā)熱損失;在濕熱環(huán)境中,由于皮膚表面與高濕度空氣之間的濕度差較小,通風(fēng)增強(qiáng)蒸發(fā)散熱的方式會(huì)受到限制[1],并且當(dāng)微氣候濕度超過(guò)冷凝閾值時(shí)會(huì)產(chǎn)生水蒸氣冷凝,不僅導(dǎo)致了人體明顯潮濕感覺(jué)和不適感,冷凝釋放的熱量還會(huì)加速相變材料熔化[31]。

3 測(cè)評(píng)方法分析

在相變—通風(fēng)混合冷卻服的開(kāi)發(fā)和研究中,暖體假人測(cè)試法[10]、真人著裝測(cè)試法[7]和數(shù)值模型預(yù)測(cè)法[19]是測(cè)評(píng)其冷卻效果的主要方法。

3.1 暖體假人測(cè)試法

暖體假人測(cè)試法是評(píng)價(jià)服裝隔熱性能的通用方法,已形成一系列統(tǒng)一標(biāo)準(zhǔn),如《ASTM F1291—2015》《ASTM F2370—2015》《ASTM F2371—2010》,可用于測(cè)試?yán)鋮s服的熱阻、濕阻和冷卻功率,評(píng)估其熱濕舒適性和冷卻效果。暖體假人可以在恒皮溫(CT)和恒熱流(CHF)兩種模式下運(yùn)行,恒皮溫模式將假人皮膚溫度設(shè)定為34~35 ℃,恒熱流模式根據(jù)模擬的人體活動(dòng)水平設(shè)定假人加熱功率,這兩種運(yùn)行模式均未將人體自身的熱生理調(diào)節(jié)功能考慮在內(nèi)?;贔anger提出的人體熱舒適方程來(lái)模擬熱調(diào)節(jié)過(guò)程,暖體假人可實(shí)現(xiàn)在熱舒適模式(TC)下運(yùn)行,但該模式由于熱舒適方程僅適用于熱中性條件而使用范圍有限[37]。

Lai等[4]在暖體假人恒皮溫模式下測(cè)評(píng)了相變—通風(fēng)混合冷卻服的冷卻效果,通過(guò)監(jiān)測(cè)冷卻服覆蓋的軀干區(qū)域的熱損失來(lái)計(jì)算冷卻功率,但特定條件下的冷卻功率無(wú)法代表冷卻服在不同應(yīng)用場(chǎng)景中的實(shí)際冷卻效果。Xu等[38]提出采用暖體假人測(cè)得冷卻功率后,進(jìn)一步根據(jù)實(shí)際的人體皮膚溫度、環(huán)境溫濕度等參數(shù)來(lái)估算冷卻能力。上述研究?jī)H關(guān)注冷卻介質(zhì)貢獻(xiàn)的熱調(diào)節(jié)能力,而未考慮其對(duì)透濕性的影響,韋帆汝等[39]研究表明相變材料包阻礙水分向外傳遞,顯著增大了上身區(qū)域濕阻,而運(yùn)行風(fēng)扇可以增強(qiáng)微氣候與環(huán)境間的對(duì)流,從而顯著降低冷卻服總濕阻。盡管恒皮溫模式是ASTM標(biāo)準(zhǔn)推薦暖體假人使用的模式,但用于評(píng)價(jià)冷卻服時(shí),卻只能采用間接的冷卻功率指標(biāo),而不能直接獲取人體體溫下降的結(jié)果。

美國(guó)可再生能源研究所提出將暖體假人系統(tǒng)與體溫調(diào)節(jié)模型、熱舒適模型耦合得到體溫調(diào)節(jié)模式[40],假人皮膚表面的實(shí)時(shí)熱通量用作體溫調(diào)節(jié)模型的反饋,從而預(yù)測(cè)和調(diào)節(jié)下一時(shí)間段的假人皮膚溫度、出汗率、熱感覺(jué)和熱舒適水平等參數(shù)[41]。Lai等[4]采用體溫調(diào)節(jié)模式比較了人體處于低等(1.5 MET)和高等(5.5 MET)活動(dòng)水平時(shí),分別采用相變材料、通風(fēng)風(fēng)扇及相變—通風(fēng)混合三種冷卻方式的平均皮膚溫度、下丘腦溫度和總體熱感覺(jué)指標(biāo)。Zhao等[42]采用該模式探究了冷卻服開(kāi)口面積和位置的最佳組合,發(fā)現(xiàn)位于前胸和后背的大孔眼設(shè)計(jì)(直徑為2 cm)可以有效減小衣下空氣層體積,但未能顯著降低平均皮膚溫度和核心溫度。這可能是由于假人處于靜止站立狀態(tài),忽略了人體運(yùn)動(dòng)時(shí)通過(guò)服裝開(kāi)口與環(huán)境進(jìn)行的熱濕交換。Wang等[43]研究也表明,假人步行時(shí)預(yù)測(cè)的平均皮膚溫度和核心溫度更接近真人試驗(yàn)數(shù)據(jù),靜止站立假人明顯高估了實(shí)際熱應(yīng)力。

暖體假人測(cè)試法可重復(fù)性高且測(cè)試成本低,并且從傳統(tǒng)的恒皮溫和恒熱流模式發(fā)展到體溫調(diào)節(jié)模式,越來(lái)越接近真人的著裝反應(yīng),但仍存在一定局限性:1) 測(cè)評(píng)精度受暖體假人設(shè)備和體溫調(diào)節(jié)模型精度、耦合方式等因素的影響,仍存在不能充分模擬真實(shí)著裝人體傳熱行為的技術(shù)限制;2) 由于暖體假人本身的局限,忽略了人體不同部位的生理特點(diǎn)和冷卻敏感程度差異[10],且無(wú)法評(píng)估服裝增重、身體運(yùn)動(dòng)限制等人體工效學(xué)問(wèn)題;3) 假人的比熱容(~1.0 kJ/(kg·k))遠(yuǎn)小于人體(~3.5 kJ/(kg·k)),較小的熱量交換會(huì)導(dǎo)致較大的皮膚溫度差[25],這可能會(huì)導(dǎo)致對(duì)服裝冷卻效果評(píng)價(jià)發(fā)生偏差。

3.2 真人著裝測(cè)試法

真人著裝測(cè)試是服裝熱濕舒適性評(píng)價(jià)的常用方法,通過(guò)監(jiān)測(cè)受試者的生理指標(biāo)和收集其主觀評(píng)價(jià)來(lái)量化冷卻效果。真人著裝測(cè)試又可根據(jù)試驗(yàn)場(chǎng)景的不同分為實(shí)驗(yàn)室試驗(yàn)和現(xiàn)場(chǎng)試驗(yàn)兩類。

Zhao等[13]在38 ℃的氣候室中研究了采用通風(fēng)冷卻方式是否能緩解受試者進(jìn)行辦公室內(nèi)輕度體力活動(dòng)時(shí)產(chǎn)生的熱疲勞,結(jié)果表明由于人體出汗量較少,運(yùn)行風(fēng)扇無(wú)法有效促進(jìn)蒸發(fā)散熱,并未產(chǎn)生顯著降溫效果。而Song等[12,44]研究表明,相變—通風(fēng)混合冷卻方式不僅可以顯著改善辦公室作業(yè)人員在高溫環(huán)境中的全身熱感覺(jué)、濕感覺(jué)等主觀評(píng)價(jià),提升熱舒適水平,還可以有效降低人體在跑步機(jī)上運(yùn)動(dòng)時(shí)的平均皮膚溫度、核心溫度、心率和出汗量等生理指標(biāo),緩解熱應(yīng)變。除人體生理參數(shù)之外,衣下微氣候溫濕度的變化也密切影響著人體著裝熱濕舒適性[11]。Zhao等[7]對(duì)比了相變和通風(fēng)兩種冷卻方式的熱濕舒適性,研究表明采用相變材料時(shí)微氣候溫度下降幅度更大,對(duì)人體熱感覺(jué)和熱舒適水平的改善更顯著,但其微氣候濕度比通風(fēng)冷卻高40%,從而導(dǎo)致明顯濕感覺(jué)。有學(xué)者進(jìn)一步考慮到人體區(qū)域性生理特點(diǎn),研究了不同熔化溫度與分布方式的相變材料組合對(duì)冷卻效果的影響,結(jié)果顯示將低熔點(diǎn)相變材料置于汗腺分布較多的胸部和背部,可以抑制出汗進(jìn)而改善熱濕舒適性[45];將低熔點(diǎn)和高熔點(diǎn)的相變材料分別置于軀干下部和上部可以增強(qiáng)微氣候內(nèi)的空氣循環(huán),促進(jìn)熱空氣向上運(yùn)動(dòng)并離開(kāi)衣下微氣候[3]。然而,目前通過(guò)真人試驗(yàn)進(jìn)行的關(guān)于通風(fēng)風(fēng)扇的研究多集中于降溫效果方面,而真人受試者具有敏感性強(qiáng)的優(yōu)點(diǎn),未來(lái)在通風(fēng)引起的人體吹風(fēng)感及局部和整體熱舒適不均勻的問(wèn)題等方面應(yīng)該具有較好的適用性。

由于實(shí)驗(yàn)室模擬環(huán)境條件無(wú)法體現(xiàn)真實(shí)環(huán)境多變的特點(diǎn),也有研究者將真人試驗(yàn)置于實(shí)際作業(yè)環(huán)境中開(kāi)展。Chan等[46]實(shí)地研究了建筑業(yè)、園藝和清潔業(yè)、餐飲業(yè)、機(jī)場(chǎng)工作行業(yè)穿著相變—通風(fēng)混合冷卻服時(shí)的熱生理參數(shù)和熱舒適水平,研究表明有效緩解了高強(qiáng)度工作引起的熱應(yīng)激和知覺(jué)疲勞,但在實(shí)際使用過(guò)程中仍存在冷卻效果不足、限制作業(yè)人員活動(dòng)、缺乏行業(yè)特定設(shè)計(jì)等不足。因此,進(jìn)一步提出在休息期間穿著混合冷卻服的階段冷卻策略[47],以增強(qiáng)隨后工作表現(xiàn)并延長(zhǎng)工作時(shí)間,并采用分別由核心溫度和心率、熱感覺(jué)和知覺(jué)疲勞程度復(fù)合而成的生理和知覺(jué)熱應(yīng)激指數(shù)來(lái)量化客觀和主觀冷卻效果。

真人著裝測(cè)試法可以最直接地評(píng)價(jià)冷卻效果,但該方法耗時(shí)、成本高、受個(gè)體差異影響大,且在應(yīng)用上還存在以下問(wèn)題:1) 不同研究中的冷卻服應(yīng)用場(chǎng)景、時(shí)間、頻率各不相同,結(jié)果不具備可比性,應(yīng)進(jìn)一步結(jié)合基于《ASTM F2300—10》等標(biāo)準(zhǔn)的客觀測(cè)評(píng)結(jié)果進(jìn)行綜合評(píng)估,為冷卻服選擇提供可靠的依據(jù);2) 研究中采用的單一生理指標(biāo)對(duì)熱應(yīng)變的量化和分類能力有限,不能全面反映身體狀態(tài),而生理和知覺(jué)熱應(yīng)激指數(shù)的參數(shù)權(quán)重主觀賦予且恒定不變,缺乏物理意義,可采用模糊綜合評(píng)價(jià)等數(shù)據(jù)分析方法來(lái)全面評(píng)估冷卻效果[48];3) 由于女性生理周期引起的核心溫度大幅度波動(dòng)、勞動(dòng)密集型職業(yè)中存在的性別不平等現(xiàn)象等原因,研究對(duì)象僅有9%是女性[49]。而女性體重和基礎(chǔ)代謝率較小,對(duì)高溫環(huán)境敏感且所需冷卻能力較低[50],因此有必要研究針對(duì)女性受試者的降溫效果,使研究結(jié)果更具適用性。

3.3 數(shù)值模型預(yù)測(cè)法

數(shù)值模型預(yù)測(cè)法通過(guò)集成冷卻服熱濕傳遞模型與人體熱生理模型[51-52]、熱舒適模型[41]來(lái)預(yù)測(cè)“人體—服裝—環(huán)境”系統(tǒng)內(nèi)熱濕傳遞過(guò)程,評(píng)估冷卻效果和著裝熱濕舒適性,并可以通過(guò)修改模型設(shè)置來(lái)研究不同條件下冷卻服的最優(yōu)設(shè)計(jì)參數(shù)和工作模式。

Hamdan等[19]開(kāi)發(fā)了織物—相變材料熱濕傳遞模型,通過(guò)確??椢锱c皮膚表面之間熱量和質(zhì)量通量的連續(xù)性來(lái)與分段熱生理模型[51]集成,研究相變材料熔化溫度和添加量對(duì)軀干熱損失、平均皮膚溫度等的影響,但該模型忽略了水蒸氣冷凝、加重人體生理負(fù)荷等負(fù)面影響。Itani等[20-21]考慮了冷凝熱及相變材料重量和高溫環(huán)境對(duì)人體代謝率的影響,對(duì)集成模型進(jìn)行修正,探究如何在滿足人體冷卻需求的前提下最大限度地減少相變材料量。并進(jìn)一步將相變冷卻服模型與人體熱舒適模型[41]集成,研究相變材料分布方式對(duì)整體熱感覺(jué)和熱舒適水平的影響[22,53]。然而,該模型未全面考慮冷凝位置,也忽略了水分傳遞過(guò)程中產(chǎn)生的蒸發(fā)潛熱、吸附和解吸顯熱。

為減小微氣候內(nèi)產(chǎn)生冷凝的風(fēng)險(xiǎn),Itani等[54]建立了織物—相變材料—干燥劑熱濕傳遞模型,預(yù)測(cè)表明在相變材料包內(nèi)表面加入固體干燥劑層可以有效降低微氣候濕度,但干燥劑釋放的吸附熱導(dǎo)致微氣候溫度和相變材料熔化率升高,減弱了冷卻效果。Wan等[55]通過(guò)集成織物—相變材料—風(fēng)扇熱濕傳遞模型與65節(jié)點(diǎn)體溫調(diào)節(jié)模型[52]來(lái)預(yù)測(cè)相變—通風(fēng)混合冷卻的冷卻效果,研究表明通風(fēng)增強(qiáng)的汗液蒸發(fā)潛熱損失遠(yuǎn)大于將外界熱空氣引入微氣候增加的顯熱傳遞,但同時(shí)也導(dǎo)致相變材料熔化過(guò)程中從環(huán)境吸收了超過(guò)50%的熱量,降低了冷卻效率。此外,該集成模型預(yù)測(cè)的平均皮膚溫度明顯低于前人試驗(yàn)結(jié)果[12],一方面空氣層熱阻存在誤差,模型將衣下空氣層設(shè)定為均勻分布,而在實(shí)際情況下,空氣層由于人體幾何形態(tài)和服裝合體性等原因并不呈均勻分布,且隨運(yùn)動(dòng)和通風(fēng)過(guò)程而產(chǎn)生動(dòng)態(tài)變化;另一方面相變傳熱過(guò)程僅考慮傳導(dǎo)和對(duì)流,忽略了較為復(fù)雜的輻射熱傳遞。

為減少通風(fēng)時(shí)相變材料吸收的環(huán)境熱量,Kang等[15]建立了織物—相變材料—隔熱層—風(fēng)扇熱濕傳遞模型,研究隔熱層熱阻對(duì)“人體—服裝—環(huán)境”系統(tǒng)內(nèi)熱濕傳遞的影響,研究表明相變材料吸收的環(huán)境熱量隨著隔熱層熱阻的增加而減少,以達(dá)到延長(zhǎng)冷卻持續(xù)時(shí)間的目的。但該模型將通風(fēng)過(guò)程簡(jiǎn)化為衣下微氣候與環(huán)境之間的空氣交換,弱化了人體與相變材料之間的熱濕傳遞。Bachnak等[9]通過(guò)集成織物—相變材料—風(fēng)扇熱濕傳遞模型與分段熱生理模型[51]來(lái)預(yù)測(cè)采用相變—通風(fēng)混合冷卻方式時(shí)運(yùn)行風(fēng)扇的合適時(shí)間點(diǎn),發(fā)現(xiàn)相比于持續(xù)運(yùn)行風(fēng)扇,在織物吸濕飽和后再運(yùn)行風(fēng)扇可以有效減少人體和相變材料吸收的環(huán)境熱量,實(shí)現(xiàn)冷卻效率最大化。Itani等[36]采用前人建立的模型[9,54]進(jìn)一步比較了相變—通風(fēng)混合冷卻服和相變—干燥劑冷卻服在不同環(huán)境條件下的冷卻效果,研究表明在低等和中等濕度環(huán)境下相變—通風(fēng)混合冷卻服可以更有效地增強(qiáng)對(duì)流和蒸發(fā)熱損失,但由于人體向高濕度空氣蒸發(fā)汗液的能力有限,而干燥劑可以通過(guò)吸附水分來(lái)降低微氣候濕度,從而促進(jìn)汗液蒸發(fā),因此在高溫高濕環(huán)境下相變—干燥劑冷卻服的降溫效果更為顯著。

相對(duì)于物理試驗(yàn)方法,數(shù)值模型預(yù)測(cè)法可節(jié)省成本和時(shí)間,但目前此類方法多使用簡(jiǎn)化模型,導(dǎo)致結(jié)果產(chǎn)生偏差:1) 現(xiàn)有冷卻服熱濕傳遞模型多集中于一維,將空氣層理想化為均勻分布,未考慮人體幾何形態(tài)、服裝合體性對(duì)空氣層形態(tài)的影響;2) 將通風(fēng)過(guò)程簡(jiǎn)化為微氣候與環(huán)境間的空氣交換,忽略了人體運(yùn)動(dòng)和通風(fēng)時(shí)空氣層厚度、空氣流速等的動(dòng)態(tài)變化及其對(duì)熱傳遞的影響;3) 熱傳遞過(guò)程主要考慮傳導(dǎo)和對(duì)流,忽略了熱傳遞主要方式之一的熱輻射,也未全面考慮水分傳遞對(duì)能量交換的影響;4) 一些學(xué)者在建立數(shù)值模型時(shí)由于聚焦點(diǎn)不同往往采用不同的假設(shè)和邊界條件,模型驗(yàn)證時(shí)預(yù)測(cè)與試驗(yàn)結(jié)果之間吻合度的評(píng)價(jià)標(biāo)準(zhǔn)也不統(tǒng)一,因此研究成果的可比性和適用性有待考證。

4 結(jié) 語(yǔ)

本文針對(duì)相變—通風(fēng)混合冷卻服的冷卻效果影響因素研究及測(cè)評(píng)方法進(jìn)行了回顧和分析,總結(jié)了相關(guān)研究存在的主要問(wèn)題并展望了未來(lái)的研究方向。

1) 已有研究大多孤立地研究單方面因素對(duì)相變—通風(fēng)混合冷卻服的冷卻效果的影響,而未全面考慮冷卻介質(zhì)、服裝、人體和環(huán)境等因素,應(yīng)深入研究多方面因素對(duì)冷卻效果的交互影響。

2) 現(xiàn)有研究大多聚焦于冷卻服的冷卻效果,而忽視了服用性能方面,但相變材料用量和分布、風(fēng)扇通風(fēng)量和位置等因素亦會(huì)影響運(yùn)動(dòng)靈活性、熱舒適均勻性等,未來(lái)應(yīng)進(jìn)一步探尋兼顧冷卻效果和服用性能的冷卻服參數(shù)設(shè)計(jì)方法。

3) 采用物理試驗(yàn)方法測(cè)評(píng)冷卻服整體的冷卻效果時(shí),假人運(yùn)動(dòng)狀態(tài)、受試者性別及冷卻服應(yīng)用場(chǎng)景和頻率等因素都會(huì)影響測(cè)試結(jié)果的準(zhǔn)確性和可比性。因此,有必要充分考慮冷卻服實(shí)際應(yīng)用時(shí)的人體、環(huán)境等各方面影響因素,對(duì)測(cè)評(píng)方法、程序和指標(biāo)進(jìn)行規(guī)范化,建立統(tǒng)一的冷卻效果測(cè)試標(biāo)準(zhǔn)與綜合評(píng)價(jià)體系。

4) 采用數(shù)值模型預(yù)測(cè)“人體—服裝—環(huán)境”系統(tǒng)內(nèi)的熱濕傳遞時(shí),建立的冷卻服模型仍以一維為主,對(duì)熱濕傳遞和通風(fēng)過(guò)程考慮不夠充分,且模型建立與驗(yàn)證的標(biāo)準(zhǔn)尚未統(tǒng)一。未來(lái),可運(yùn)用三維掃描和CFD技術(shù)模擬衣下空氣層形態(tài)、空氣流動(dòng)及熱濕傳遞過(guò)程,并在參數(shù)化研究中綜合考慮各方面因素的共同影響,從而準(zhǔn)確合理地預(yù)測(cè)冷卻效果。

參考文獻(xiàn):

[1]JAY O, CRAMER M N, RAVANELLI N M, et al. Should electric fans be used during a heat wave?[J]. Applied Ergonomics, 2015, 46: 137-143.

[2]WANG F M, CHOW C S W, ZHENG Q, et al. On the use of personal cooling suits to mitigate heat strain of mascot actors in a hot and humid environment[J]. Energy and Buildings, 2019, 205: 109561.

[3]OUAHRANI D, ITANI M, GHADDAR N, et al. Experimental study on using PCMs of different melting temperatures in one cooling vest to reduce its weight and improve comfort[J]. Energy and Buildings, 2017, 155: 533-545.

[4]LAI D D, WEI F R, LU Y H, et al. Evaluation of a hybrid personal cooling system using a manikin operated in constant temperature mode and thermoregulatory model control mode in warm conditions[J]. Textile Research Journal, 2017, 87(1): 46-56.

[5]RAJ U, WANG F M, SONG W F, et al. Performance enhancement of hybrid personal cooling clothing in a hot environment: PCM cooling energy management with additional insulation[J]. Ergonomics, 2019, 62(7): 928-939.

[6]范一強(qiáng), 賀建蕓, 劉士成, 等. 制冷與制熱空調(diào)服的研究進(jìn)展[J]. 紡織學(xué)報(bào), 2018, 39(7): 174-180.

FAN Yiqiang, HE Jianyun, LIU Shicheng, et al. Review of cooling and heating garments[J]. Journal of Textile Research, 2018, 39(7): 174-180.

[7]ZHAO M M, GAO C S, LI J, et al. Effects of two cooling garments on post-exercise thermal comfort of female subjects in the heat[J]. Fiber and Polymers, 2015, 16(6): 1403-1409.

[8]ZHAO M M, GAO C S, WANG F M, et al. A study on local cooling of garments with ventilation fans and openings placed at different torso sites[J]. International Journal of Industrial Ergonomics, 2013, 43(3): 232-237.

[9]BACHNAK R, ITANI M, GHADDAR N, et al. Performance of hybrid PCM-Fan vest with deferred fan operation in transient heat flows from active human in hot dry environment[J]. Building and Environment, 2018, 144: 334-348.

[10]ZHAO M M, GAO C S, WANG F M, et al. The torso cooling of vests incorporated with phase change materials: A sweat evaporation perspective[J]. Textile Research Journal, 2013, 83(4): 418-425.

[11]原田隆司. 衣服內(nèi)氣候與衣著[J]. 國(guó)外紡織技術(shù), 1987(16): 35-40.

HARADA T. The climate of clothes[J]. Textile Technology Overseas, 1987(16): 35-40.

[12]SONG W F, WANG F M. The hybrid personal cooling system (PCS) could effectively reduce the heat strain while exercising in a hot and moderate humid environment[J]. Ergonomics, 2016, 59(8): 1009-1018.

[13]ZHAO M M, KUKLANE K, LUNDGREN K, et al. A ventilation cooling shirt worn during office work in a hot climate: Cool or not?[J]. International Journal of Occupational Safety and Ergonomics, 2015, 21(4): 457-463.

[14]GAO C S, KUKLANE K, HOLMER I. Cooling vests with phase change material packs: The effects of temperature gradient, mass and covering area[J]. Ergonomics, 2010, 53(5): 716-723.

[15]KANG Z X, WAN X F, WANG F M. A new hybrid personal cooling system (HPCS) incorporating insulation pads for thermal comfort management: Experimental validation and parametric study[J]. Building and Environment, 2018, 145: 276-289.

[16]HOUSE J R, LUNT H C, TAYLOR R, et al. The impact of a phase-change cooling vest on heat strain and the effect of different cooling pack melting temperatures[J]. European Journal of Applied Physiology, 2013, 113(5): 1223-1231.

[17]ZHENG Q, KE Y, WANG H F. Design and evaluation of cooling workwear for miners in hot underground mines using PCMs with different temperatures[J]. International Journal of Occupational Safety and Ergonomics, 2022, 28(1): 118-128.

[18]ITANI M, GHADDAR N, OUAHRANI D, et al. An optimal two-bout strategy with phase change material cooling vests to improve comfort in hot environment[J]. Journal of Thermal Biology, 2018, 72: 10-25.

[19]HAMDAN H, GHADDAR N, OUAHRANI D, et al. PCM cooling vest for improving thermal comfort in hot environment[J]. International Journal of Thermal Sciences, 2016, 102: 154-167.

[20]ITANI M, GHADDAR N, GHALI K, et al. Cooling vest with optimized PCM arrangement targeting torso sensitive areas that trigger comfort when cooled for improving human comfort in hot conditions[J]. Energy and Buildings, 2017, 139: 417-425.

[21]ITANI M, GHADDAR N, GHALI K, et al. Significance of PCM arrangement in cooling vest for enhancing comfort at varied working periods and climates: Modeling and experimentation[J]. Applied Thermal Engineering, 2018, 145: 772-790.

[22]ITANI M, GHADDAR N, GHALI K, et al. Experimental study on effective placement of PCM packets in cooling vest to improve performance in warm environment[C]//Heat Transfer Summer Conference. Washington: American Society of Mechanical Engineers, 2017.

[23]REINERTSEN R E, FAREVIK H, HOLBO K, et al. Optimizing the performance of phase-change materials in personal protective clothing systems[J]. International Journal of Occupational Safety and Ergonomics, 2008, 14(1): 43-53.

[24]楊晨雨. 相變蓄冷材料填充式冷卻服性能研究[D]. 西安: 西安科技大學(xué), 2017.

YANG Chenyu. Study on the Performance Study of the Cooling Garment Filled with Phase Change Cold Storage Material[D]. Xian: Xian University of Science and Technology, 2017.

[25]YANG J, WANG F M, SONG G W, et al. Effects of clothing size and air ventilation rate on cooling performance of air ventilation clothing in a warm condition[J]. International Journal of Occupational Safety and Ergonomics, 2022, 28(1): 354-363.

[26]劉何清, 高黎穎, 游波, 等. 影響氣體冷卻服熱舒適性因素的實(shí)驗(yàn)[J]. 西安科技大學(xué)學(xué)報(bào), 2018, 38(6): 910-918.

LIU Heqing, GAO Liying, YOU Bo, et al. Experimental study on factors affecting thermal comfortability of air cooling garment[J]. Journal of Xian University of Science and Technology, 2018, 38(6): 910-918.

[27]ZHAO M M, WANG F M, GAO C S, et al. The effect of flow rate of a short sleeve air ventilation garment on torso thermal comfort in a moderate environment[J]. Fibers and Polymers, 2022, 23(2): 546-553.

[28]CHOUDHARY B, UDAYRAJ N, WANG F M, et al. Development and experimental validation of a 3D numerical model based on CFD of the human torso wearing air ventilation clothing[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118973.

[29]YI W, ZHAO Y J, CHAN A P C. Evaluation of the ventilation unit for personal cooling system (PCS)[J]. International Journal of Industrial Ergonomics, 2017, 58: 62-68.

[30]DAVEY S L, BARWOOD M J, TIPTON M J. Thermal perceptions and skin temperatures during continuous and intermittent ventilation of the torso throughout and after exercise in the heat[J]. European Journal of Applied Physiology, 2013, 113(11): 2723-2735.

[31]WANG F M, KE Y, UDAYRAJ N et al. Effect of cooling strategies on overall performance of a hybrid personal cooling system incorporated with phase change materials (PCMs) and electric fans[J]. Journal of Thermal Biology, 2020, 92: 102655.

[32]陳柔羲. 基于相變材料熱緩沖作用的高溫防護(hù)服設(shè)計(jì)[D]. 蘇州: 蘇州大學(xué), 2013.

CHEN Rouxi. Design of the High Temperature Protective Clothing Based on the Heat Buffer Action of PCM[D]. Suzhou: Soochow University, 2012.

[33]WANG H Y, HU S T. Experimental study on thermal sensation of people in moderate activities[J]. Building and Environment, 2016, 100: 127-134.

[34]HADID A, YANOVICH R, ERLICH T, et al. Effect of a personal ambient ventilation system on physiological strain during heat stress wearing a ballistic vest[J]. European Journal of Applied Physiology, 2008, 104(2): 311-319.

[35]UDAYRAJ N, LI Z Q, KE Y, et al. Personal cooling strategies to improve thermal comfort in warm indoor environments: Comparison of a conventional desk fan and air ventilation clothing[J]. Energy and Buildings, 2018, 174: 439-451.

[36]ITANI M, BACHNAK R, GHADDAR N, et al. Evaluating performance of hybrid PCM-fan and hybrid PCM-desiccant vests in moderate and hot climates[J]. Journal of Building Engineering, 2019, 22: 383-396.

[37]OLIVEIRA A V M, BRANCO V J, GASPAR A R, et al. Measuring thermal insulation of clothing with different manikin control methods: Comparative analysis of the calculation methods[C]//7th International Thermal Manikin and Modelling Meeting. Coimbra: University of Coimbra, 2008.

[38]XU X J, GONZALEZ J. Determination of the cooling capacity for body ventilation system[J]. European Journal of Applied Physiology, 2011, 111(12): 3155-3160.

[39]韋帆汝, 王發(fā)明. 基于相變材料與微型通風(fēng)風(fēng)扇的新型個(gè)體混合冷卻服在溫?zé)岘h(huán)境下的制冷效果研究[J]. 絲綢, 2016, 53(3): 1-8.

WEI Fanru, WANG Faming. The cooling performance of a portable hybrid personal cooling system (PCS) based on phase change materials and micro-ventilation fans in a warm environment[J]. Journal of Silk, 2016, 53(3): 1-8.

[40]FARRINGTON R B, RUGH J P, BHARATHAN D, et al. Use of a thermal manikin to evaluate human thermoregulatory responses in transient, non-uniform, thermal environments[J]. Sae Transactions, 2004, 113: 548-556.

[41]ZHANG H, HUIZENGA C, ARENS E, et al. Thermal sensation and comfort in transient non-uniform thermal environments[J]. European Journal of Applied Physiology, 2004, 92(6): 728-733.

[42]WANG F M, ZHAO M M, YANG J, et al. Effects of size and location of ventilation eyelets on the cooling performance of forced air ventilation clothing in various warm environments[J]. The Journal of The Textile Institute, 2021, 112(11): 1-10.

[43]WANG F M. Effect of body movement on the thermophysiological responses of an adaptive manikin and human subjects[J]. Measurement, 2018, 116: 251-256.

[44]SONG W F, WANG F M, WEI F R. Hybrid cooling clothing to improve thermal comfort of office workers in a hot indoor environment[J]. Building and Environment, 2016, 100: 92-101.

[45]陳家鵬, 蔡德華, 王飛, 等. 相變冷卻服舒適性實(shí)驗(yàn)研究[J]. 建筑熱能通風(fēng)空調(diào), 2022, 41(2): 36-41.

CHEN Jiapeng, CAI Dehua, WANG Fei, et al. Experimental study on the comfort of phase change cooling vest[J]. Building Energy & Environment, 2022, 41(2): 36-41.

[46]CHAN A P C, YI W, WONG F K W. Evaluating the effectiveness and practicality of a cooling vest across four industries in Hong Kong[J]. Facilities, 2016, 34: 511-534.

[47]CHAN A P C, YANG Y, SONG W F, et al. Hybrid cooling vest for cooling between exercise bouts in the heat: Effects and practical considerations[J]. Journal of Thermal Biology, 2017, 63: 1-9.

[48]廖夢(mèng)婷, 鄒聲華. 降溫服綜合性能的模糊評(píng)價(jià)[J]. 工業(yè)安全與環(huán)保, 2018, 44(6): 75-78.

LIAO Mengting, ZOU Shenghua. Fuzzy evaluation of cooling garments comprehensive performance[J]. Industrial Safety and Environmental Protection, 2018, 44(6): 75-78.

[49]MORRIS N B, JAY O, FLOURIS A D, et al. Sustainable solutions to mitigate occupational heat strain-an umbrella review of physiological effects and global health perspectives[J]. Environmental Health, 2020, 19(1): 1-24.

[50]VERHAART J, LI R L, ZEILER W. User interaction patterns of a personal cooling system: A measurement study[J]. Science and Technology for the Built Environment, 2018, 24(1): 57-72.

[51]KARAKI W, GHADDAR N, GHALI K, et al. Human thermal response with improved AVA modeling of the digits[J]. International Journal of Thermal Sciences, 2013, 67: 41-52.

[52]TANABE S, KOBAYASHI K, NAKANO J, et al. Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD)[J]. Energy and Building, 2002, 34(6): 637-646.

[53]ITANI M, OUAHRANI D, GHADDAR N, et al. The effect of PCM placement on torso cooling vest for an active human in hot environment[J]. Building and Environment, 2016, 107: 29-42.

[54]ITANI M, GHADDAR N, GHALI K. Innovative PCM-desiccant packet to provide dry microclimate and improve performance of cooling vest in hot environment[J]. Energy Conversion and Management, 2017, 140: 218-227.

[55]WAN X F, WANG F M, UDAYRAJ N. Numerical analysis of cooling effect of hybrid cooling clothing incorporated with phase change material (PCM) packs and air ventilation fans[J]. International Journal of Heat and Mass Transfer, 2018, 126: 636-648.

Research progress on the cooling effects and evaluation methods of hybrid cooling clothingbased on phase change materials and ventilation fans

WU Junqiu1, LI Jun1,2,3

(1.College of Fashion and Design, Donghua University, Shanghai 200051, China; 2.Key Laboratory of Clothing Design and Technology,Ministry of Education, Shanghai 200051, China; 3.Shanghai Belt and Road Joint Laboratoryof Textile Intelligent Manufacturing, Shanghai 200051, China)

Abstract:

Since ambient cooling measures cannot be used in some special high temperature environments, researchers have developed various cooling garments with different cooling mechanisms. Among them, the cooling clothing of phase change materials (PCMs) and ventilation fans has gradually attracted more researchers attention due to its advantages of energy saving and renewability. Therefore, the hybrid cooling clothing (HCC) based on PCMs and ventilation fans has been developed to improve the comprehensive cooling effect. However, when two kinds of cooling media coexist, the cooling effect is not only simple superposition, but also complex interaction is produced. In recent years, researchers have compared the working mechanism, advantages and disadvantages, and applicable conditions of the two cooling media, and explored the influence mechanism of factors such as human body, cooling clothing and environment on the cooling effect. However, the cooling mechanism of the HCC under the influence of multiple factors has not been deeply revealed, which also affects the establishment of targeted evaluation methods.

Firstly, the key factors affecting the cooling effect are analyzed from the aspects of cooling medium, clothing, human body and environment. The cooling medium has the most direct influence on the cooling effect. The melting temperature, addition amount and distribution mode of PCMs are the main factors affecting the endothermic effect. The air flow volume and placement of the ventilation fans are the main factors affecting the convection and evaporative effect. And the cooling strategy of the HCC affects the cooling efficiency. Heat transfer from the environment to the human body and PCMs during ventilation can be reduced by running the fan after the amount of sweating increases, or by adding insulation layer. And after PCMs are completely melted, it is removed in time to reduce the physiological load and improve the moisture permeability of the clothing. In addition, the opening and fit of clothing and the motion state of human body indirectly affect the air exchange between microclimate and environment during ventilation, as well as the air flow and heat transfer mode within microclimate. And then, the level of human activity directly determines the amount of metabolic heat and sweat production, the ambient temperature and humidity affect the direction of heat and moisture transfer between human body, clothing and environment, thus affecting the applicability of the cooling media.

On the basis of the influencing factors, the differences and limitations of using different methods to evaluate the cooling effect are further analyzed. Thermal manikin tests are a general method to evaluate the thermal insulation and moisture permeability performance of clothing. However, existing studies often ignore the influence of the motion state on the cooling effect when using this method. And this method cannot fully simulate the physiological characteristics, heat transfer behavior and movement limitation of the clothed human body. The human test directly quantifies the cooling effect by collecting the subjects physiological indicators and subjective evaluation. However, the research object, test procedure and evaluation index of the human test still need to be normalized. The mathematical modeling approach can predict the heat and moisture transfer process by integrating the heat and moisture transfer model of the cooling clothing and the human thermophysiological model. And the optimal design parameters and working modes of cooling clothing under different conditions can be studied by modifying the model settings. However, most of the existing heat and moisture transfer models of cooling clothing are one-dimensional models which oversimplify the heat and moisture transfer and ventilation process.

When only PCMs or ventilation fans are used as the cooling media, their respective defects will have a negative impact on the cooling effect. When the two cooling media are used together, not only the cumulative effect of the cooling effect can be produced, but also the interaction of complementary advantages can be generated. At present, the HCC based on PCMs and ventilation fans has become a hot research topic. Through in-depth study of the influence mechanism of various factors on the cooling effect, we optimize the parameter design of HCC. In this way, the cooling effect can be improved to ensure the thermal safety of operators in high temperature environment.

The results show that: (i) the interaction of various factors on the cooling effect has not been researched in detail, and the influence of cooling medium design on the movement flexibility, thermal comfort uniformity and other wearability is ignored. (ii) The different methods, procedures and indexes used in physical experiments will affect the evaluation results, and the numerical model has defects such as simplifying heat and moisture transfer and ventilation process. The future development trend is to comprehensively consider the interaction of various factors on the cooling effect, and further explore the parameter design of cooling clothing that takes into account the cooling effect and wearability. For the evaluation of the cooling effect, a more standardized physical test method as well as a comprehensive evaluation system should be established, and the numerical simulation of air layer morphology, air flow and heat and moisture transfer process should be established.

Key words:

phase change material; ventilation fan; hybrid cooling clothing; cooling effect; influencing factors; test and evaluation

收稿日期:

2022-08-27;

修回日期:

2023-03-04

基金項(xiàng)目:

中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目(2232022G-08);上海市科學(xué)技術(shù)委員會(huì)“科技創(chuàng)新行動(dòng)計(jì)劃”“一帶一路”國(guó)際合作項(xiàng)目(21130750100)

作者簡(jiǎn)介:

吳珺秋(1998),女,碩士研究生,研究方向?yàn)榉b舒適性與功能防護(hù)服裝。通信作者:李俊,教授,lijun@dhu.edu.cn。

猜你喜歡
測(cè)評(píng)影響因素
測(cè)評(píng)一款LED成像燈
解析一款LED燈具
西藏職業(yè)技術(shù)學(xué)院學(xué)生綜合素質(zhì)測(cè)評(píng)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)
社會(huì)治安防控體系建設(shè)中的公民參與度測(cè)評(píng)研究
突發(fā)事件下應(yīng)急物資保障能力影響因素研究
環(huán)衛(wèi)工人生存狀況的調(diào)查分析
農(nóng)業(yè)生產(chǎn)性服務(wù)業(yè)需求影響因素分析
村級(jí)發(fā)展互助資金組織的運(yùn)行效率研究
基于系統(tǒng)論的煤層瓦斯壓力測(cè)定影響因素分析