国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

響應(yīng)面法與粒子群算法集成的激光熔覆工藝參數(shù)優(yōu)化方法

2023-07-05 06:04:32胡言峰杜彥斌許磊周志杰舒林森
關(guān)鍵詞:覆層平整度殘差

胡言峰, 杜彥斌, 許磊, 周志杰, 舒林森

(1. 重慶工商大學(xué) 制造裝備機(jī)構(gòu)設(shè)計與控制重慶市重點(diǎn)實驗室,重慶 400067;2. 陜西理工大學(xué) 陜西省工業(yè)自動化重點(diǎn)實驗室,陜西漢中 723001)

激光熔覆是一種在不改變基材芯部材質(zhì)情況下,通過激光將合金粉末在基材表面熔融,并冷凝一層高性能(如高耐腐蝕性、耐磨性、抗氧化性等)的熔覆層,從而實現(xiàn)損傷修復(fù)及表面改性的綠色增材再制造技術(shù),常用于損傷機(jī)械零部件再制造[1-4]。激光熔覆是由工藝參數(shù)、自然環(huán)境、材料特征、設(shè)備性能等多因素耦合作用的復(fù)雜過程,所以熔覆層的質(zhì)量隨著因素的變化而變化,其中激光功率、掃描速度、送粉量、搭接率等工藝參數(shù)是決定熔覆層質(zhì)量的關(guān)鍵因素,進(jìn)而影響再制造零部件的再服役壽命,通過分析、調(diào)整、優(yōu)選工藝參數(shù),能夠?qū)崿F(xiàn)對熔覆層質(zhì)量的有效控制[5-6]。為此,針對制備高質(zhì)量熔覆層的需求,通過優(yōu)化得到最佳工藝參數(shù)組合對于保障并提高零部件再服役壽命具有重要意義。

近年來,諸多高校、研究院主要通過統(tǒng)計學(xué)方法與智能算法兩種方法對激光熔覆工藝參數(shù)優(yōu)化展開了研究。Zhang等[7]基于田口法實驗結(jié)果,通過灰色關(guān)聯(lián)分析得到最佳工藝參數(shù)組合。MARZBAN等[8]基于正交實驗結(jié)果,將PCA與TOPSIS方法相結(jié)合,實現(xiàn)了工藝參數(shù)優(yōu)化。蔣三生等[9]通過極差分析法輔以激光熔覆實驗結(jié)果分析工藝參數(shù)對熔覆層特征的影響,獲得最優(yōu)工藝參數(shù)組合。溫海駿等[10]結(jié)合全因子實驗結(jié)果,構(gòu)建了工藝參數(shù)與熔覆層綜合質(zhì)量間的反饋神經(jīng)網(wǎng)絡(luò)預(yù)測模型,并使用遺傳算法實現(xiàn)尋優(yōu)得到最佳的工藝參數(shù)。龐祎帆等[11]基于正交實驗結(jié)果建立工藝參數(shù)與沉積率間的遺傳算法優(yōu)化神經(jīng)網(wǎng)絡(luò)模型,同時采用遺傳算法全局尋優(yōu)得到最優(yōu)工藝參數(shù)組合。PENG等[12]結(jié)合實驗結(jié)果建立工藝參數(shù)與能量消耗、粉末利用率間的禁忌基因表達(dá)式編程模型,并使用非支配排序遺傳算法得到最優(yōu)工藝參數(shù)集。利用統(tǒng)計學(xué)方法實現(xiàn)工藝參數(shù)尋優(yōu)的結(jié)果較可靠、操作簡單,但存在一定的主觀局限性,通過智能算法建模并尋優(yōu)的方法系統(tǒng)性好、效率高,但模型對樣本的需求量大,而激光熔覆是一個典型的小樣本實驗,因此模型的建立比較關(guān)鍵,會影響最終的優(yōu)化結(jié)果。

針對目前激光熔覆工藝參數(shù)優(yōu)化存在的問題,本文引入響應(yīng)面法(Response surface methodology, RSM)與粒子群算法(Partical swarm optimization, PSO),擬提出一種RSM與PSO集成的激光熔覆工藝參數(shù)優(yōu)化方法。其中,響應(yīng)面法能夠利用較少的數(shù)據(jù)構(gòu)建響應(yīng)目標(biāo)模型,同時還考慮了隨機(jī)誤差,改善了模型的精度,具有計算量小、且能夠表征復(fù)雜的非線性關(guān)系的特點(diǎn)[13];粒子群算法是一種具有記憶能力的全局隨機(jī)搜索算法,收斂速度快,全局搜索能力更強(qiáng)[14]。該方法確定以熔覆層質(zhì)量為優(yōu)化目標(biāo),使用響應(yīng)面法的中心復(fù)合實驗設(shè)計法進(jìn)行實驗設(shè)計,根據(jù)實驗方案進(jìn)行激光熔覆實驗,結(jié)合實驗結(jié)果構(gòu)建工藝參數(shù)與熔覆層質(zhì)量目標(biāo)間的響應(yīng)面近似數(shù)學(xué)模型,并采用粒子群算法尋優(yōu)獲得最優(yōu)工藝參數(shù)組合,從而有效地改善了熔覆層的質(zhì)量。該方法可為生產(chǎn)實際中制備高質(zhì)量熔覆層提供方法指導(dǎo)與決策參考。

1 激光熔覆工藝參數(shù)優(yōu)化模型建立

1.1 優(yōu)化模型定義

激光熔覆層質(zhì)量是各種特征組成的綜合體,決定了再制造零部件的再服役壽命,需要明確響應(yīng)目標(biāo)以表征熔覆層質(zhì)量。熔覆層質(zhì)量特征也隨著工藝參數(shù)的變化而變化,但影響的工藝參數(shù)眾多且相互耦合,因此將對其影響最大的工藝參數(shù)作為實驗因素。

由于表征熔覆層質(zhì)量的響應(yīng)目標(biāo)有多個,各個子目標(biāo)間可能會相互矛盾,即不能使子目標(biāo)同時達(dá)到最優(yōu)[10]。因此需對各個子目標(biāo)進(jìn)行分析、比較、權(quán)衡使之成為一個單目標(biāo)優(yōu)化問題,數(shù)學(xué)表達(dá)式為:

(1)

本文以表面平整度(F)與稀釋率(D)表征熔覆層質(zhì)量。表面平整度反映了多道熔覆表層的光滑程度,即實際可利用熔覆層的多少[15];稀釋率是熔凝時基材滲入熔覆層導(dǎo)致成分的變化程度,也反映了熔覆層與基體結(jié)合質(zhì)量[16],則將二者作為響應(yīng)目標(biāo),計算公式為:

(2)

(3)

式中:W為熔覆層寬度;H為熔覆層高度;Sc為熔覆層面積;Sp為熔池面積,如圖1所示。

圖1 激光多道熔覆層橫截面示意圖

在激光熔覆實驗中,激光功率(A)、掃描速度(B)、送粉量(C)、搭接率(D)對多道熔覆層的F、D影響最大,則將其作為實驗因素。

以表面平整度與稀釋率作為工藝參數(shù)的質(zhì)量響應(yīng)目標(biāo),則加權(quán)使之成為一個最小單目標(biāo)優(yōu)化問題,數(shù)學(xué)表達(dá)式為:

(4)

1.2 響應(yīng)面近似數(shù)學(xué)模型構(gòu)建

由于工藝參數(shù)與熔覆層質(zhì)量響應(yīng)目標(biāo)間是復(fù)雜的非線性關(guān)系,且激光熔覆實驗是小樣本實驗,故需要保證通過實驗結(jié)果回歸擬合的模型能夠近似準(zhǔn)確的描述二者的關(guān)系。響應(yīng)面法是由box和wilson提出的一種兼顧效率與精度的設(shè)計實驗與構(gòu)建模型的數(shù)理統(tǒng)計方法,其核心思想是按照恰當(dāng)?shù)膶嶒炘O(shè)計方法設(shè)計的實驗方案進(jìn)行實驗,以實驗結(jié)果為基礎(chǔ)利用簡單的顯式函數(shù)表達(dá)自變量(實驗因素)與因變量(響應(yīng)目標(biāo))間的復(fù)雜映射關(guān)系[17-18]。

為獲得響應(yīng)面近似數(shù)學(xué)模型,首先進(jìn)行實驗前準(zhǔn)備,即確定實驗所用的基材與熔覆材料。為避免相鄰熔覆間的熱影響,將大塊基材切割成只進(jìn)行一次熔覆實驗的小樣,并去除其表面氧化皮以及其它雜質(zhì),同時將熔覆用合金粉末干燥處理備用。確定實驗因素(工藝參數(shù))的取值范圍。

中心復(fù)合實驗設(shè)計(Central composite design,CCD)是使用最多的響應(yīng)面設(shè)計方法,通過CCD設(shè)計得到具體的激光熔覆實驗方案,不僅能夠減少實驗次數(shù),縮短實驗周期,還能節(jié)省實驗成本。CCD以兩水平析因設(shè)計點(diǎn)為基礎(chǔ),增加了保證模型精度的軸向極值點(diǎn),同時為確保設(shè)計近似正交還增添了一定數(shù)量的中心點(diǎn)。CCD以編碼的形式編排,在n個實驗因素的情況下,由中心點(diǎn)0,析因點(diǎn)±1、軸向極值點(diǎn)α=±2n/4這3部分構(gòu)成,實驗時再轉(zhuǎn)化為實際的操作值,實驗次數(shù)N計算式[19]為

N=2n+2n+m

(5)

式中:2n為析因設(shè)計點(diǎn)實驗數(shù);2n為軸向極值點(diǎn)實驗數(shù);m為中心點(diǎn)處的重復(fù)實驗數(shù)。

在激光熔覆系統(tǒng)中按照實驗方案進(jìn)行實驗。為防止熔覆過程中系統(tǒng)過熱損壞全程打開冷卻系統(tǒng),同時通入保護(hù)氣避免熔覆區(qū)域迅速被氧化;將激光發(fā)生器發(fā)出的激光作為熱源,激光從激光頭射出,輻照在基材上形成熔池,同時將從送粉器送出的合金粉末熔化;控制系統(tǒng)控制著激光頭與工作臺相對運(yùn)動,最后在基材表面冷凝形成連續(xù)的熔覆層。對熔覆后的樣品,通過切線割、打磨、拋光至鏡面并腐蝕得到金相試樣;使用三維超景深顯微鏡測量熔覆層的形貌特征;隨后經(jīng)分析處理得到響應(yīng)目標(biāo)數(shù)據(jù)。

基于實驗結(jié)果,選用多項式函數(shù)(如式(6)所示)能夠近似真實的表征實驗因素與響應(yīng)目標(biāo)間的非線性關(guān)系,同時減少計算量、提升效率[20]。以實驗因素數(shù)據(jù)為輸入,以響應(yīng)目標(biāo)數(shù)據(jù)為輸出,在Design-expert12中構(gòu)建實驗因素與響應(yīng)目標(biāo)間的近似數(shù)學(xué)模型,即

(6)

式中:f(x)為響應(yīng)目標(biāo)函數(shù);xi(i=1,2,…,t)表示第i個實驗因素;r0,ri,rii,rij為待定各項回歸系數(shù);ωi為誤差項。

構(gòu)建的響應(yīng)面近似數(shù)學(xué)模型直接影響著優(yōu)化結(jié)果的正確性,需要對其進(jìn)行驗證分析。通過方差分析保證模型的顯著性與可信度。一般地,模型的F值越大、P<0.05,失擬項的P>0.05,則認(rèn)為回歸擬合的響應(yīng)面模型是顯著的,能夠較為真實反映實驗因素與響應(yīng)目標(biāo)間的關(guān)系[21]。殘差是實驗值與預(yù)測值的差值,基于殘差分布情況分析響應(yīng)面模型的適應(yīng)性與準(zhǔn)確性[20]。引入決定系數(shù)R2、均方根誤差RMSE以及平均相對誤差MRE評價響應(yīng)面模型的精度,R2反映了模型的預(yù)測規(guī)律與真實規(guī)律的擬合程度,RMSE與MRE反映了模型預(yù)測值與實驗值的差異程度,即R2愈大和MSE與MRE愈小時,則回歸擬合的響應(yīng)面模型具有較高的精度,計算過程為:

(7)

(8)

(9)

2 激光熔覆工藝參數(shù)優(yōu)化問題求解

粒子群算法是由Eberhart和Kennedy提出的一種全局隨機(jī)并行優(yōu)化算法[22]。其核心思想是在解空間內(nèi),每個粒子在附近尋優(yōu)得到個體最優(yōu)解Pbest,然后通過種群信息共享,再群體迭代得到種群最優(yōu)解Gbest,粒子的Pbest與Gbest影響粒子的速度,進(jìn)而決定其搜索的方向和距離[23]。粒子的速度與位置更新過程如圖2所示。

圖2 粒子更新過程

計算式為:

(10)

為有效地均衡粒子群算法的全局與局部的搜索能力,所以ω不宜是一個固定的值,則采用慣性遞減權(quán)重[24],即

(11)

式中:ωstart為初始慣性權(quán)重;ωend為最大迭代次數(shù)時的慣性權(quán)重。

以式(4)為適應(yīng)度函數(shù),將工藝因素的取值范圍作為搜索范圍,采用粒子群算法在搜索范圍內(nèi)迭代尋優(yōu),當(dāng)達(dá)到最大迭代次數(shù)或者得到全局最優(yōu)解時終止尋優(yōu),進(jìn)而得到最優(yōu)工藝參數(shù)組合。尋優(yōu)過程如圖3所示。

圖3 基于粒子群算法的工藝參數(shù)優(yōu)化求解流程圖

3 實驗驗證與分析

3.1 實驗設(shè)計與實驗結(jié)果

實驗選用45鋼為基材,M2粉末為熔覆材料,M2粉末形貌如圖4所示,化學(xué)成分如表1所示。

表1 45鋼與M2各元素的質(zhì)量分?jǐn)?shù) %

圖4 M2粉末的形貌

在Design-expert12中根據(jù)CCD原理進(jìn)行激光熔覆實驗設(shè)計,工藝參數(shù)對應(yīng)的編碼水平數(shù)以及范圍如表2所示,具體的實驗方案如表3所示。

表2 激光熔覆工藝參數(shù)與編碼水平數(shù)

表3 實驗方案與實驗結(jié)果

實驗選用的激光熔覆系統(tǒng)如圖5a)、圖5b)所示,熔覆過程如圖5c)所示。

圖5 實驗設(shè)備

完成實驗后制備金相試樣,得到的M2激光多道熔覆層橫截面均無裂紋。選用Leica DVM6S三維超景深顯微鏡測量多道熔覆層的W、H、Sc、Sp,測量結(jié)果如表3所示,按照式(2)與式(3)計算F、D,結(jié)果如表3所示。

3.2 響應(yīng)面近似數(shù)學(xué)模型構(gòu)建

3.2.1 表面平整度回歸擬合模型

在Design-expert12中輔以表3中的工藝參數(shù)與表面平整度數(shù)據(jù),利用式(6)回歸擬合表面平整度近似數(shù)學(xué)模型f(xF)描述工藝參數(shù)與表面平整度間的映射關(guān)系為:

f(xF)=0.725 7+0.006 5A+0.027 2B+0.011 8C-

0.007D+0.008 2AB+0.004 1AC-0.004 1BC-

0.004 7BD+0.005 5CD+0.012 1A2+0.007 5D2+

0.004 3ABC+0.009 6ABD+0.005 7ACD-

0.004 2BCD-0.020 7A2-0.009 8A2C+

0.008 2A2D-0.020 6A2B2B

(12)

構(gòu)建表面平整度近似數(shù)學(xué)模型之后,對式(12)進(jìn)行方差分析,結(jié)果如表4所示。模型的F值為14.25,P值小于0.000 1,表明由于噪音的影響而回歸擬合出表面平整度近似數(shù)學(xué)模型的概率小于0.01%,模型整體上是十分顯著的,可信度高;失擬項的P值為0.536 2,相對于純誤差并不顯著。所以表面平整度模型在回歸區(qū)域內(nèi)能夠準(zhǔn)確的描述工藝參數(shù)與表面平整度間的復(fù)雜關(guān)系。

表4 表面平整度模型方差分析結(jié)果

圖6~圖8中不同顏色的樣本點(diǎn)代表不同工藝參數(shù)下的表面平整度,圖6中所有樣本點(diǎn)的殘差正態(tài)概率近似呈一條直線分布,表明殘差呈正態(tài)分布,表面平整度模型具有良好的適應(yīng)性。圖7中上下兩條線代表殘差的分布范圍,所有表面平整度預(yù)測值的殘差在分布范圍內(nèi)隨機(jī)的分布在零線附近,表明表面平整度的殘差之間無明顯規(guī)律。圖8中大部分樣本點(diǎn)分布在直線(y=x)上,小部分樣本點(diǎn)分布在直線(y=x)附近,表明表面平整度實驗值與預(yù)測值十分吻合,模型擬合精度較高。綜上,構(gòu)建的表面平整度近似數(shù)學(xué)模型具有較高的適應(yīng)性與準(zhǔn)確性。

圖6 表面平整度模型殘差正態(tài)概率分布圖

圖7 表面平整度模型殘差與預(yù)測值分布圖

圖8 表面平整度模型預(yù)測值與實際值分布圖

通過誤差分析,可知決定系數(shù)R2=0.964 4,ERMS=0.001 3,EMR=0.005 1,表明表面平整度近似數(shù)學(xué)模型的擬合程度高、預(yù)測精度高、穩(wěn)定性好、實驗值與預(yù)測值吻合。綜上所述,獲得的表面平整度近似數(shù)學(xué)模型非常顯著,適應(yīng)性好,可信度高,預(yù)測精度高,能夠準(zhǔn)確的描述工藝參數(shù)與表面平整度間的非線性關(guān)系。

3.2.2 稀釋率回歸擬合模型

以表3中的工藝參數(shù)與稀釋率數(shù)據(jù)為基礎(chǔ),在Design-expert12中利用式(6)構(gòu)建稀釋率的近似數(shù)學(xué)模型f(xD)表征工藝參數(shù)與稀釋率間的非線性關(guān)系,即:

f(xD)=0.262 4+0.063 1A-0.043 9C+0.018 7AB-

0.029 3AC-0.024 5AD+0.039 4A2+0.013 4B2+

0.039 4ABC+0.013 4ABC-0.021 3ACD-0.034 5BCD-

0.012 9A2B+0.067 9A2C-0.097 5AB2-0.033A2B2

(13)

構(gòu)建稀釋率近似數(shù)學(xué)模型之后,將式(13)進(jìn)行方差分析,結(jié)果見表5。

表5 稀釋率模型方差分析結(jié)果

模型的F=7.36,P=0.000 3,表明僅有0.03%的概率構(gòu)建的稀釋率近似模型會失效,意味著模型整體是顯著的、可信度較高;模型失擬項的P=0.788 9,則相對于純誤差并不顯著。因此,在回歸區(qū)域內(nèi)稀釋率模型擬合程度高,能夠通過工藝參數(shù)較為準(zhǔn)確的預(yù)測其稀釋率。

圖9~圖11中不同顏色的數(shù)據(jù)點(diǎn)代表不同工藝參數(shù)下的稀釋率,圖9中各個數(shù)據(jù)點(diǎn)的殘差正態(tài)概率近似呈線性分布,表明所有數(shù)據(jù)點(diǎn)均是正常的,稀釋率模型的適應(yīng)性較好。

圖9 稀釋率模型殘差正態(tài)概率分布圖

圖10中上下兩條線代表殘差的分布范圍,稀釋率預(yù)測值的殘差在分布范圍內(nèi)無規(guī)律的分布于零線附近,表明各個殘差之間無明顯聯(lián)系,隨機(jī)性好。

圖10 稀釋率模型殘差與預(yù)測值分布圖

圖11中小部分?jǐn)?shù)據(jù)點(diǎn)分布在直線(y=x)上,大部分?jǐn)?shù)據(jù)點(diǎn)分布在直線(y=x)周圍,表明稀釋率的實驗值與預(yù)測值基本吻合,模型擬合精度較高。綜上,構(gòu)建的稀釋率近似數(shù)學(xué)模型有較高的適應(yīng)性與準(zhǔn)確性。

圖11 稀釋率模型預(yù)測值與實際值分布圖

稀釋率近似數(shù)學(xué)模型的決定系數(shù)R2=0.887 4,ERMS=0.017 8,EMR=0.081 9,表明模型的擬合程度較高,預(yù)測精度高。綜上所述,回歸擬合的稀釋率近似數(shù)學(xué)模型的顯著性高,適應(yīng)性好,可信度高,擬合精度高,能夠較為準(zhǔn)確的反映工藝參數(shù)與稀釋率間的非線性關(guān)系。

3.3 工藝參數(shù)優(yōu)化及結(jié)果

取p1=0.85,p2=0.25,即表面平整度為0.85,稀釋率為0.25時,熔覆層質(zhì)量最好。取ω1、=ω2=0.5,因此最終優(yōu)化目標(biāo)函數(shù)和約束條件為:

minF(x)=0.5[f(xD)-0.85]2+0.5[f(xF)-0.25]2

(14)

以式(14)為適應(yīng)度函數(shù),以函數(shù)的最小值為尋優(yōu)目標(biāo),在MATLAB(R2019b)中以粒子群算法對激光功率、掃描速度、送粉量、搭接率這4個工藝參數(shù)進(jìn)行優(yōu)化,設(shè)置粒子群算法的初始參數(shù)如表6所示。

表6 粒子群算法的初始參數(shù)

粒子群算法在尋優(yōu)過程中,僅需迭代7次便開始收斂,適應(yīng)度值為1.524×10-5,迭代500次時,適應(yīng)度值為9.732×10-24,趨近于0,收斂精度最高,適應(yīng)度曲線如圖12所示,得出最優(yōu)解A=1.890 1,B=-0.159 9,C=-1.798 2,D=-1.628 6。即激光功率為2 516.7 W、掃描速度為11.84 mm/s、送粉量為1.72 r/min、搭接率為0.369。

圖12 適應(yīng)度曲線

基于最優(yōu)工藝參數(shù)的激光多道熔覆結(jié)果如下:表面平整度為0.849 8,即熔覆層表面較光滑,實際可利用熔覆層達(dá)到最多;稀釋率為0.249 8,即熔覆層材料成分變化較小,且基材與熔覆層結(jié)合較好,不易脫落。

4 結(jié)論

1) 通過定義優(yōu)化模型,以稀釋率和表面平整度表征熔覆層質(zhì)量并作為優(yōu)化目標(biāo),并構(gòu)建了響應(yīng)面近似數(shù)學(xué)模型,最后采用粒子群算法對工藝參數(shù)優(yōu)化問題求解,進(jìn)而形成一種響應(yīng)面法和粒子群算法集成的激光熔覆工藝參數(shù)優(yōu)化方法。

2) 輔以45鋼為基體,M2合金粉末為熔覆材料的激光多道熔覆實驗對該方法進(jìn)行了驗證分析,結(jié)果表明:所提出的工藝參數(shù)優(yōu)化方法能夠改善熔覆層質(zhì)量,具有一定的實用性。

3) 由于表征熔覆層質(zhì)量的目標(biāo)有多個,文中采用賦權(quán)法將其轉(zhuǎn)化為單目標(biāo)問題,存在一定的局限性,下一步研究將采用多目標(biāo)優(yōu)化算法求解工藝參數(shù)非劣解組合,從中挑選出相對最優(yōu)解組合。

猜你喜歡
覆層平整度殘差
WC含量及熱處理對WC-Fe60熔覆層組織與性能的影響
基于雙向GRU與殘差擬合的車輛跟馳建模
圓盤鋸超硬質(zhì)耐磨被覆層下方防磨損措施
石材(2020年11期)2021-01-08 09:21:48
基于殘差學(xué)習(xí)的自適應(yīng)無人機(jī)目標(biāo)跟蹤算法
鋁合金表面激光熔覆Re+Ni60電化學(xué)腐蝕性能研究
瀝青混凝土路面平整度的探索
探討道路施工中如何提高瀝青路面的平整度
基于遞歸殘差網(wǎng)絡(luò)的圖像超分辨率重建
橋面施工中平整度的控制
江西建材(2018年1期)2018-04-04 05:26:16
工程塑料表面金屬覆層的激光定域精細(xì)去除
威海市| 徐闻县| 锡林浩特市| 江安县| 偃师市| 灵丘县| 九龙县| 青龙| 潜山县| 延长县| 交口县| 象州县| 海兴县| 香河县| 新昌县| 永丰县| 株洲县| 垫江县| 泸州市| 昭通市| 金昌市| 理塘县| 公安县| 亳州市| 磴口县| 庄浪县| 荥阳市| 武川县| 民丰县| 衡阳县| 洮南市| 乃东县| 兴化市| 双柏县| 海宁市| 衡东县| 曲水县| 家居| 大石桥市| 凌海市| 肃北|