劉笑蓉 李碩夫 劉湘丹 王志輝 曾娟 周日寶
〔摘要〕 目的 本研究旨在探討鬧羊花毒素Ⅲ調(diào)控TLR4、MyD88和NF-κB的機制,以及鬧羊花毒素Ⅲ對類風(fēng)濕關(guān)節(jié)炎(rheumatoid arthritis, RA)的影響。方法 RA大鼠模型通過Ⅱ型膠原誘導(dǎo)構(gòu)建。隨機將Wistar大鼠分成6組(n=8):假手術(shù)組(Sham組)、RA模型組(Model組)、陽性藥物雷公藤組[TWG組,50 mg·(kg·d)-1]、鬧羊花毒素Ⅲ低劑量組[R-Ⅲ Lo組,0.06 mg·(kg·d)-1]、中劑量[R-Ⅲ Mi組,0.12 mg·(kg·d)-1]和高劑量組[R-Ⅲ Hi組,0.24 mg·(kg·d)-1]。測定各組大鼠的關(guān)節(jié)炎指數(shù)(arthritis index, AI);采用HE染色、ELISA、Western blot和RT-qPCR檢測鬧羊花毒素Ⅲ對TLR4/MyD88/NF-κB信號軸及RA的影響。結(jié)果 與Model組比較,鬧羊花毒素Ⅲ處理顯著降低了RA大鼠的AI評分(P<0.05)。鬧羊花毒素Ⅲ對滑膜組織的惡性增生和炎癥細胞浸潤有明顯的抑制作用。與Model組比,鬧羊花毒素Ⅲ各劑量組的TNF-α、IL-1β、IL-6、IL-17、VEGF、MMP-2、MMP-9、TLR4、MyD88、p-NF-κB/NF-κB因子的水平降低且呈濃度依賴性(P<0.05)。與TWG組比,R-Ⅲ Lo和R-Ⅲ Mi組的。TNF-α、IL-1β、IL-6、IL-17、VEGF、MMP-2、MMP-9、TLR4、MyD88、p-NF-κB/NF-κB因子的水平升高(P<0.05),而R-Ⅲ Hi組無顯著差異(P>0.05)。結(jié)論 鬧羊花毒素Ⅲ可以通過下調(diào)TLR4、MyD88、NF-κB因子的表達水平來改善RA。本研究為利用鬧羊花毒素Ⅲ治療RA提供了一定的實驗基礎(chǔ)。
〔關(guān)鍵詞〕 鬧羊花毒素Ⅲ;TLR4/MyD88/NF-κB信號軸;類風(fēng)濕關(guān)節(jié)炎;羊躑躅;炎癥;血管生成
〔中圖分類號〕R285.5? ? ? ?〔文獻標志碼〕A? ? ? ? 〔文章編號〕doi:10.3969/j.issn.1674-070X.2023.06.005
〔Abstract〕 Objective To investigate the effects of rhodojaponin Ⅲ on rheumatoid arthritis (RA) by regulating toll-likereceptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and nuclear factor-kappa-B (NF-κB). Methods Type Ⅱ collagen was used to construct the RA rat model. Wistar rats were randomly divided into 6 groups, with 8 rats in each group: normal feeding group (sham group), RA model group (Model group), positive drug tripterygium wilfordii group [TWG group, 50 mg·(kg·d)-1], low-dose Rhodojaponin Ⅲ group [R-Ⅲ Lo group, 0.06 mg·(kg·d)-1], medium-dose group [R-Ⅲ Mi group, 0.12 mg·(kg·d)-1], and high-dose group [Rhodojaponin Ⅲ Hi group, 0.24 mg·(kg·d)-1]. The arthritis index (AI) of the rats was scored. Meanwhile, HE ELISA, Western blot, and real-time quantitative PCR (RT-qPCR) were used to detect the effects of Rhodojaponin Ⅲ on TLR4/MyD88/NF-κB signal axis and RA. Results Rhodojaponin Ⅲ significantly reduced the AI scores of RA rats compared with model group (P<0.05) and it effectively inhibited the development of malignant hyperplasia and inflammatory cell infiltration into synovial tissue. Meanwhile, compared with model group, the expresson levels of the tumor necrosis facor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-17 (IL-17), vascular endothelial growth factor (VEGF), matrix metallopeptidase-2 (MMP-2), matrix metallopeptidase-9 (MMP-9), TLR4, MyD88, and phosphor-nuclear factor-kappa-B (p-NF-κB)/NF-κB were reduced in R-Ⅲ Lo, Mi, and Hi groups (P<0.05). Compared with the TWG group, the levels of TNF-α, IL-1β, IL-6, IL-17, VEGF, MMP-2, MMP-9, TLR4, MyD88, p-NF-κB/NF-κB factors increased in the R-Ⅲ Lo and R-Ⅲ Mi groups (P<0.05), while no significant differences were observed in the R-Ⅲ Hi group (P>0.05). Conclusion Rhodojaponin Ⅲ can improve RA by down-regulating the expression levels of TLR4, MyD88, and NF-κB. This paper offered a solid experimental foundation for the use of Rhodojaponin Ⅲ in the treatment of RA.
〔Keywords〕 Rhodojaponin Ⅲ; TLR4/MyD88/NF-κB signal axis; rheumatoid arthritis; Yangzhizhu [Rhododendron molle (Blum) G.Don]; inflammation; angiogenesis
類風(fēng)濕關(guān)節(jié)炎(rheumatoid arthritis, RA)是一種常見的自身免疫性疾病[1]。目前,全國有0.5%的人患有RA[2]。RA的主要特征有:滑膜炎、血管翳形成、鄰近骨侵蝕、以及關(guān)節(jié)腫脹和疼痛等[3-6]。雖然多種抗風(fēng)濕藥物具有良好臨床治療效果,但RA患者與正常人仍相差了10~15年的預(yù)期壽命[7]。因此,我們需要進一步探索治療RA的藥物。
人體內(nèi)各種炎性細胞因子(IL-1β、IL-6、IL-7、TNF-α等)能夠促進炎癥反應(yīng),加重鄰近骨破壞,這表明炎癥因子可能影響RA的發(fā)展[8-12]。有研究表明,阻斷TNF-α、IL-1、IL-6和IL-7等炎癥因子釋放,可以減緩RA相關(guān)炎癥反應(yīng)[13-14]。TLR4能夠接收外界刺激并將其轉(zhuǎn)化為信號分子,從而傳導(dǎo)相關(guān)炎癥和免疫信號[15-16]。例如,TLR4通過依賴MyD88途徑激活NF-κB信號[17],促進TNF-α、IL-1、IL-7、IL-6等下游炎性因子的合成與分泌[18],從而導(dǎo)致RA炎癥和免疫反應(yīng)發(fā)生[17-20]。多項研究表明,控制TLR4/MyD88/NF-κB信號軸有助于減輕RA癥狀[21-22]。因此,為緩解RA的發(fā)展,我們亟須探索阻斷TLR4/MyD88/NF-κB信號軸的新藥物。
羊躑躅Rhododendron molle (Blum) G.Don是中醫(yī)用來治療RA的常用藥物,其提取物具有鎮(zhèn)痛、消炎和免疫抑制的作用[23]。目前研究發(fā)現(xiàn),羊躑躅中的主要活性成分之一鬧羊花毒素Ⅲ具有抑炎作用,能夠抑制TNF-α和IL-1β釋放[24]。前期的研究報道了鬧羊花毒素Ⅲ通過介導(dǎo)Wnt1/Dvl1/β-catenin信號通路來抑制滑膜細胞增殖和細胞炎癥的產(chǎn)生,從而緩解RA[25]。而鬧羊花毒素Ⅱ能抑制TLR4/MyD88/NF-κB信號軸,抑制細胞炎癥反應(yīng)改善RA[26-27]。鬧羊花毒素Ⅲ和Ⅱ均為羊躑躅的二萜類化合物,具有相似的化學(xué)結(jié)構(gòu)[28]。因此,我們將進一步探討鬧羊花毒素Ⅲ是否也能通過TLR4/MyD88/NF-κB軸來改善RA。本研究擬通過研究鬧羊花毒素Ⅲ對RA的調(diào)節(jié)作用,以期為鬧羊花毒素Ⅲ臨床治療RA提供可靠的理論依據(jù)。
1 材料和方法
1.1? 實驗動物
48只Wistar雄性大鼠(200±20) g購自長沙市天勤生物技術(shù)有限公司。許可證號:SYXK(湘)2022-0007。實驗倫理審批編號:LL2022061401。實驗前先適應(yīng)性飼養(yǎng)1周。
1.2? 主要試劑及儀器
生物樣品均質(zhì)儀(杭州奧盛儀器有限公司,型號:BioPrep-24);化學(xué)發(fā)光成像系統(tǒng)(上海勤翔科學(xué)儀器有限公司,型號:ChemiScope6100);熒光定量PCR儀(Thermo Fisher Scientific,型號:PIKOREAL96)。
鬧羊花毒素Ⅲ(上海聯(lián)邁生物工程有限公司,批號:LM20895);雷公藤多苷片(貴州漢方藥業(yè)有限公司,批號:2003006);牛Ⅱ型膠原和完全弗氏佐劑購自美國Chondrex公司(批號分別為:20022和7001);RIPA裂解液(長沙艾碧維生物科技有限公司,批號:AWB0136);BCA蛋白定量試劑盒(Thermo Fisher Scientific,批號:23225);TRIzon總RNA提取試劑盒和mRNA逆轉(zhuǎn)錄試劑盒均購自北京康為世紀生物科技有限公司(批號分別為:CW0580S和CW2569);一抗VEGF、MMP-2、MMP-9、MyD88、p-NF-κB均購買自英國Abcam公司(批號分別為:ab32152、ab92536、ab76003、ab219413、ab76302);TLR4抗體、核轉(zhuǎn)錄因子-κB(NF-κB)抗體、β-actin抗體、HRP goat anti-mouse IgG和HRP goat anti-rabbit IgG抗體以及IL-1β、IL-6、IL-17和TNF-α ELISA試劑盒均購自美國Proteintech公司(批號分別為:19811-1-AP、10745-1-AP、66009-1-Ig、SA00001-1、SA00001-2、KE00021、KE10007、KE10020、KE10002)。
1.3? 方法
1.3.1? Ⅱ型膠原誘導(dǎo)建立RA大鼠模型? RA大鼠模型采用Ⅱ型膠原誘導(dǎo)進行構(gòu)建[27,29]。具體操作如下:將終濃度為2 mg/mL的牛Ⅱ型膠原溶液與完全弗氏佐劑以1∶1混合制成Ⅱ型膠原乳劑。于大鼠尾根部皮下注射300 μL制好的Ⅱ型膠原乳劑。7天后,同劑量二次注射Ⅱ型膠原乳劑。同時設(shè)置假手術(shù)組(Sham組),對該組大鼠注射等劑量生理鹽水作為對照。每日觀察大鼠關(guān)節(jié)腫脹情況。實驗期間每4天根據(jù)關(guān)節(jié)腫脹程度評估關(guān)節(jié)炎指數(shù)(arthritis index, AI)。以AI作為判斷RA大鼠模型構(gòu)建成功與否的標準。AI評分每4天統(tǒng)計一次,根據(jù)關(guān)節(jié)腫脹程度進行評價。總共分為4個等級:未出現(xiàn)任何發(fā)紅、腫脹狀況,計為0分;趾關(guān)節(jié)出現(xiàn)輕微發(fā)紅、腫脹狀況,計為1分;趾或者足趾關(guān)節(jié)出現(xiàn)發(fā)紅、腫脹狀況,計為2分;除踝關(guān)節(jié)外,全部后肢關(guān)節(jié)出現(xiàn)發(fā)紅、腫脹狀況,計為3分;所有后肢關(guān)節(jié)出現(xiàn)發(fā)紅、腫脹狀況,計為4分[30]。由于前爪炎癥的發(fā)生率很低,后足關(guān)節(jié)更容易出現(xiàn)嚴重腫脹,因此,選用兩后肢之和來評價大鼠的發(fā)病機制[31]。所有關(guān)節(jié)腫脹評分之和即為AI值。當(dāng)AI≥4時,RA大鼠模型構(gòu)建成功[32]。
1.3.2? 分組與給藥? 雷公藤療法是當(dāng)前治療RA最有效和關(guān)鍵的療法之一[33]。因此,本研究用雷公藤作為陽性對照藥物。隨機將48只Wistar雄性大鼠分成Sham組、RA模型組(Model組)、陽性藥物雷公藤組[TWG組,50 mg·(kg·d)-1]、鬧羊花毒素Ⅲ低劑量組[R-Ⅲ Lo組,0.06 mg·(kg·d)-1]、鬧羊花毒素Ⅲ中劑量組[R-Ⅲ Mi組,0.12 mg·(kg·d)-1]、鬧羊花毒素Ⅲ高劑量組[R-Ⅲ Hi組,0.24 mg·(kg·d)-1],每組8只,灌胃給藥。Sham組和Model組灌胃等劑量的生理鹽水。28 d后,將大鼠麻醉,固定四肢,然后剪開腹壁,腹主動脈采血。最后,剪開皮膚,從鄰近肌肉中分離踝關(guān)節(jié),剪短兩側(cè)韌帶,暴露滑膜位置,取出滑膜,并用于后續(xù)實驗。
1.3.3? HE染色觀察滑膜組織形態(tài)? 用4%多聚甲醛固定大鼠踝關(guān)節(jié)滑膜組織。隨后經(jīng)石蠟包埋、切片、烘烤二甲苯脫蠟、梯度乙醇水化、蘇木精和伊紅染液染色、脫水、封片等過程,在光學(xué)顯微鏡下觀察大鼠踝關(guān)節(jié)滑膜組織形態(tài)病變情況。
1.3.4? ELISA檢測血清中促炎因子含量? 取腹主動脈全血,在4 ℃下,1000×g離心15 min,取上層血清用于檢測。分別按照試劑盒操作步驟,檢測血清中促炎因子含量的變化。
1.3.5? Western blot檢測血管生成、TLR4/MyD88/NF-κB軸相關(guān)蛋白? 用RIPA裂解緩沖液提取大鼠踝關(guān)節(jié)滑膜組織中的總蛋白。再用BCA蛋白定量試劑盒進行蛋白質(zhì)定量。隨著SDS-PAGE電泳后,將總蛋白轉(zhuǎn)移至硝化纖維素膜上。將膜與一抗4 ℃孵育過夜,再與二抗孵育90 min。內(nèi)參蛋白為β-actin。最后,分析蛋白VEGF、MMP-2、MMP-9、TLR4、MyD88、p-NF-κB、NF-κB的相對表達量。
1.3.6? RT-qPCR檢測TLR4/MyD88/NF-κB軸相關(guān)基因表達? 按照試劑盒說明,用TRIzon試劑提取踝關(guān)節(jié)滑膜組織總RNA。然后,用紫外分光光度計測定260 nm與280 nm處的吸光度值,并計算其濃度跟純度。再用mRNA反轉(zhuǎn)錄試劑盒將mRNA反轉(zhuǎn)錄為cDNA。接下來,將cDNA直接用于熒光定量PCR反應(yīng)。運用Primer 5軟件設(shè)計引物,結(jié)果見表1。最后,以β-actin為內(nèi)參基因,用2-ΔΔCT法計算基因相對表達量。
1.4? 統(tǒng)計學(xué)分析
本研究使用GraphPad Prism 9對實驗數(shù)據(jù)進行評估。數(shù)據(jù)均用“x±s”表示。數(shù)據(jù)差異比較采用單因素方差分析(one-way ANOVA)和多因素方差分析(two-way ANOVA)。以P<0.05表示差異具有統(tǒng)計學(xué)意義。
2 實驗結(jié)果
2.1? 鬧羊花毒素Ⅲ對RA大鼠的改善作用
首先,我們評估了不同時間點的AI評分變化。隨著天數(shù)的變化,Sham組中AI評分無顯著變化(P>0.05)。隨著天數(shù)的變化,Model組AI評分逐漸升高,在第12天達到最高值(P<0.05),12 d以后無顯著變化(P>0.05)。隨著天數(shù)的變化,TWG、R-Ⅲ Lo組、R-Ⅲ Mi組、R-Ⅲ Hi組AI評分逐漸升高,在第12天 達到最高值,12 d以后AI評分逐漸降低(P>0.05)。此外,我們比較了不同組間的AI評分。在4 d后,Model組大鼠AI評分顯著高于Sham組(P<0.05)。8 d后,TWG組、R-Ⅲ Mi組、R-Ⅲ Hi組與Model組比較,AI評分顯著降低(P<0.05),且R-Ⅲ Hi組和TWG組AI評分基本一致(P>0.05)。見圖1A。Sham組大鼠滑膜組織結(jié)構(gòu)正常,表面光滑無增生;Model組、R-Ⅲ Lo組、R-Ⅲ Mi組大鼠滑膜組織增生,層次模糊,伴有大量炎性細胞浸潤;TWG組、R-Ⅲ Hi組大鼠滑膜組織表面光滑,且層次清晰,見圖1B。
2.2? 鬧羊花毒素Ⅲ抑制RA大鼠的炎癥反應(yīng)
如圖2所示,相比于Sham組,Model組中TNF-α、IL-1β、IL-6和IL-17含量顯著升高(P<0.05)。相比于Model組,R-Ⅲ Lo、R-Ⅲ Mi、R-Ⅲ Hi組中TNF-α、IL-1β、IL-6、IL-17含量呈濃度依賴性降低(P<0.05)。與TWG組比較,R-Ⅲ Lo、R-Ⅲ Mi組中TNF-α、IL-1β、IL-6、IL-17含量顯著升高(P<0.05),而R-Ⅲ Hi組中TNF-α、IL-1β、IL-6、IL-17含量無顯著變化(P>0.05)。
2.3? 鬧羊花毒素Ⅲ抑制RA大鼠的血管生成
與Sham組相比,Model組中VEGF、MMP-2、MMP-9蛋白表達量顯著升高(P<0.05);TWG組、R-Ⅲ Lo組、R-Ⅲ Mi組、R-Ⅲ Hi組中VEGF、MMP-2、MMP-9蛋白表達水平相比于Model組,呈劑量依賴性降低(P<0.05)。R-Ⅲ Lo組、R-Ⅲ Mi組中VEGF、MMP-2、MMP-9蛋白表達水平顯著升高于TWG組(P<0.05),而R-Ⅲ Hi組中VEGF、MMP-2、MMP-9蛋白表達水平與TWG組無顯著差異詳見圖3。
2.4? 鬧羊花毒素Ⅲ抑制RA大鼠的TLR4/MyD88/NF-κB信號軸激活
如圖4A所示,相較于Sham組,Model組中TLR4、MyD88、NF-κB基因的相對表達水平均顯著上升(P<0.05)。R-Ⅲ Mi組、R-Ⅲ Hi組中TLR4、MyD88、NF-κB基因的相對表達水平相比于Model組,均顯著降低(P<0.05)。而R-Ⅲ Lo組與Model組相比,差異無統(tǒng)計學(xué)意義(P>0.05)。R-Ⅲ Lo組中TLR4、MyD88、NF-κB基因的相對表達水平顯著高于TWG組(P<0.05)而R-Ⅲ Mi組、R-Ⅲ Hi組中TLR4、MyD88、NF-κB基因的相對表達水平與TWG組比,無顯著性差異(P>0.05)。相比于Sham組,Model組中TLR4、MyD88、NF-κB蛋白表達量顯著增加(P<0.05)。R-Ⅲ Lo組、R-Ⅲ Mi組、R-Ⅲ Hi組中TLR4、MyD88、p-NF-κB/NF-κB蛋白表達水平相比于Model組,均呈濃度依賴性降低(P<0.05)。R-Ⅲ Lo組中TLR4、MyD88、NF-κB蛋白表達量顯著高于TWG組(P<0.05)而R-Ⅲ Mi組、R-Ⅲ Hi組中TLR4、MyD88、NF-κB基因的蛋白表達量與TWG組比,無顯著性差異(P>0.05),見圖4B。
3 討論
RA的發(fā)展與機體分泌的炎癥因子[34]密切相關(guān)。例如,TNF-α、IL-1β、IL-6、IL-17等炎癥因子的釋放能夠加重滑膜炎癥反應(yīng)[35]。本研究發(fā)現(xiàn)在RA造模后,大鼠AI評分顯著增加,血清中促炎癥因子表達水平顯著上升。同時,在鬧羊花毒素Ⅲ的干預(yù)下,大鼠血清中促炎因子的釋放被抑制。這些結(jié)果表明,鬧羊花毒素Ⅲ能夠抑制促炎癥因子的釋放,產(chǎn)生抑炎作用。綜上,鬧羊花毒素Ⅲ可能是通過抑制促炎因子TNF-α、IL-1β、IL-6、IL-17等的釋放,緩解RA。
滑膜組織炎癥和骨關(guān)節(jié)破壞的另一原因可能是血管生成[36]。研究表明VEGF能夠調(diào)控血管生成,促進RA疾病發(fā)展[37]。同時,VEGF因子表達與RA患者病癥也呈正相關(guān)的調(diào)控趨勢,因此,可以選用VEGF檢測RA病變程度[38-39]。基質(zhì)金屬蛋白酶(MMP),影響骨關(guān)節(jié)破壞,RA滑膜液中MMP-2和MMP-9[39]水平升高具有觸發(fā)血管生成的能力[40-42]。本研究結(jié)果顯示,RA大鼠中促血管因子(MMP-2、MMP-9和VEGF)表達量顯著升高,鬧羊花毒素Ⅲ的干預(yù)顯著下調(diào)了RA大鼠促血管生成因子VEGF、MMP-2和MMP-9的表達。這些結(jié)果說明,鬧羊花毒素Ⅲ可通過下調(diào)促血管生成因子(MMP-2、MMP-9和VEGF)的表達來改善RA。
TLR4-MyD88-NF-κB通路是常見于RA并調(diào)控相關(guān)炎性反應(yīng)的信號通路[43]。TLR4蛋白監(jiān)控先天免疫與后天免疫,并在RA患者中表達異常升高[44-45]。TLR4蛋白可以上調(diào)MyD88蛋白表達,促進NF-κB因子積累,進而誘導(dǎo)促炎因子的分泌,加劇RA滑膜炎癥反應(yīng)和骨破壞[46-49]。抑制該通路可以減緩相關(guān)炎性反應(yīng),從而改善RA[50]。本研究表明,在RA大鼠中,TLR4、MyD88、p-NF-κB/NF-κB等相關(guān)因子含量顯著上升,且鬧羊花毒素Ⅲ能顯著抑制RA滑膜組織TLR4、MyD88、p-NF-κB/NF-κB等相關(guān)因子水平的上升。由此,我們得出,鬧羊花毒素Ⅲ可以通過抑制TLR4、MyD88、p-NF-κB/NF-κB因子表達上調(diào),減少促炎因子的分泌,抑制關(guān)節(jié)滑膜惡性增生,從而改善RA大鼠相關(guān)病癥。這將為鬧羊花毒素Ⅲ治療RA提供實驗基礎(chǔ)。
綜上所述,本研究表明鬧羊花毒Ⅲ具有改善RA的作用。其主要作用機制可能是通過下調(diào)促血管生成相關(guān)因子(MMP-2、MMP-9和VEGF)和TLR4/MyD88/NF-κB信號軸相關(guān)蛋白的表達,抑制促炎因子誘導(dǎo)的炎癥反應(yīng)和抑制滑膜增生。
總之,鬧羊花毒Ⅲ可通過調(diào)節(jié)TLR4/MyD88/NF-κB信號軸改善RA,這將為鬧羊花毒素Ⅲ應(yīng)用于RA的臨床治療提供可靠的實驗依據(jù)。
參考文獻
[1] EVANGELATOS G, FRAGOULIS G E, KOULOURI V, et al. MicroRNAs in rheumatoid arthritis: From pathogenesis to clinical impact[J]. Autoimmunity Reviews, 2019, 18(11): 102391.
[2] ALETAHA D, SMOLEN J S. Diagnosis and management of rheumatoid arthritis: A review[J]. JAMA, 2018, 320(13): 1360-1372.
[3] BI X, GUO X H, MO B Y, et al. LncRNA PICSAR promotes cell proliferation, migration and invasion of fibroblast-like synoviocytes by sponging miRNA-4701-5p in rheumatoid arthritis[J]. EBioMedicine, 2019, 50: 408-420.
[4] LIU H, ZHU Y L, GAO Y T, et al. NR1D1 modulates synovial inflammation and bone destruction in rheumatoid arthritis[J]. Cell Death & Disease, 2020, 11(2): 129.
[5] RANA A K, LI Y, DANG Q J, et al. Monocytes in rheumatoid arthritis: Circulating precursors of macrophages and osteoclasts and, their heterogeneity and plasticity role in RA pathogenesis[J]. International Immunopharmacology, 2018, 65: 348-359.
[6] MATTHIJSSEN X M E, WOUTERS F, SIDHU N, et al. Tenosynovitis has a high sensitivity for early ACPA-positive and ACPA-negative RA: A large cross-sectional MRI study[J]. Annals of the Rheumatic Diseases, 2021, 80(8): 974-980.
[7] VAN DEN HOEK J, BOSHUIZEN H C, ROORDA L D, et al. Mortality in patients with rheumatoid arthritis: A 15-year prospective cohort study[J]. Rheumatology International, 2017, 37(4): 487-493.
[8] TAN Q, HUANG Q, MA Y L, et al. Potential roles of IL-1 subfamily members in glycolysis in disease[J]. Cytokine & Growth Factor Reviews, 2018, 44: 18-27.
[9] 許? 艷, 崔海虹, 朱靜媛. 金線蓮苷對TNF-α誘導(dǎo)的人類風(fēng)濕關(guān)節(jié)炎滑膜細胞增殖及炎癥因子、MMPs產(chǎn)生的影響[J]. 湖北中醫(yī)藥大學(xué)學(xué)報, 2022, 24(2): 38-42.
[10] YOKOTA K, SATO K, MIYAZAKI T, et al. Characterization and function of tumor necrosis factor and interleukin-6-induced osteoclasts in rheumatoid arthritis[J]. Arthritis & Rheumatology, 2021, 73(7): 1145-1154.
[11] AKRAM M, DANIYAL M, SULTANA S, et al. Traditional and modern management strategies for rheumatoid arthritis[J]. Clinica Chimica Acta, 2021, 512: 142-155.
[12] KOPER-LENKIEWICZ O M, SUTKOWSKA K, WAWRUSIEWICZ-KURYLONEK N, et al. Proinflammatory cytokines (IL-1, -6, -8, -15, -17, -18, -23, TNF-α) single nucleotide polymorphisms in rheumatoid arthritis-a literature review[J]. International Journal of Molecular Sciences, 2022, 23(4): 2106.
[13] MALHOTRA H, GARG V, SINGH G. Biomarker approach towards rheumatoid arthritis treatment[J]. Current Rheumatology Reviews, 2021, 17(2): 162-175.
[14] ALAM J, JANTAN I, BUKHARI S N A. Rheumatoid arthritis: Recent advances on its etiology, role of cytokines and pharmacotherapy[J]. Biomedicine & Pharmacotherapy, 2017, 92: 615-633.
[15] ARENAS-PADILLA M, MATA-HARO V. Regulation of TLR signaling pathways by microRNAs: Implications in inflammatory diseases[J]. Central-European Journal of Immunology, 2018, 43(4): 482-489.
[16] QUERO L, TIADEN A N, HANSER E, et al. MiR-221-3p drives the shift of M2-macrophages to a pro-inflammatory function by suppressing JAK3/STAT3 activation[J]. Frontiers in Immunology, 2019, 10: 3087.
[17] WANG Q, ZHOU X, ZHAO Y J, et al. Polyphyllin I ameliorates collagen-induced arthritis by suppressing the inflammation response in macrophages through the NF-κB pathway[J]. Frontiers in Immunology, 2018, 9: 2091.
[18] ICHISE Y, SAEGUSA J, TANAKA-NATSUI S, et al. Soluble CD14 induces pro-inflammatory cytokines in rheumatoid arthritis fibroblast-like synovial cells via toll-like receptor 4[J]. Cells, 2020, 9(7): 1689.
[19] 袁? 娟, 胡? 玲, 宋小鴿, 等. 艾灸對類風(fēng)濕性關(guān)節(jié)炎大鼠關(guān)節(jié)滑膜組織Toll樣受體4-骨髓樣分化因子88-核轉(zhuǎn)錄因子-κB信號通路的影響[J]. 針刺研究, 2015, 40(3): 199-204.
[20] LI Y, XU J Z, GU C X, et al. Carvacrol suppresses inflammatory responses in rheumatoid arthritis fibroblast-like synoviocytes[J]. Journal of Cellular Biochemistry, 2019, 120(5): 8169-8176.
[21] SAMARPITA S, KIM J Y, RASOOL M K, et al. Investigation of toll-like receptor (TLR) 4 inhibitor TAK-242 as a new potential anti-rheumatoid arthritis drug[J]. Arthritis Research & Therapy, 2020, 22(1): 16.
[22] HEGEWALD A B, BREITWIESER K, OTTINGER S M, et al. Extracellular miR-574-5p induces osteoclast differentiation via TLR 7/8 in rheumatoid arthritis[J]. Frontiers in Immunology, 2020, 11: 585282.
[23] 姚禹民, 房? 鑫, 李? 俊, 等. 羊躑躅二萜類成分和各極性部位的體內(nèi)外抗炎活性研究[J]. 上海中醫(yī)藥大學(xué)學(xué)報, 2019, 33(4): 84-88.
[24] HE Y C, YAO Y M, XUE Q W, et al. Anti-rheumatoid arthritis potential of diterpenoid fraction derived from Rhododendron molle fruits[J]. Chinese Journal of Natural Medicines, 2021, 19(3): 181-187.
[25] 劉笑蓉, 劉湘丹, 王? 智, 等. 鬧羊花毒素Ⅲ通過調(diào)控Wnt1/Dvl1/β-catenin通路影響成纖維樣滑膜細胞增殖凋亡的實驗研究[J]. 中國中西醫(yī)結(jié)合雜志, 2022, 42(10): 1199-1206.
[26] 闞玉娜, 謝佳明, 馬立威, 等. 中藥活性成分改善類風(fēng)濕性關(guān)節(jié)炎作用機制研究進展[J]. 遼寧中醫(yī)藥大學(xué)學(xué)報, 2021, 23(10): 139-145.
[27] KONG L L, WANG L F, ZHAO Q, et al. Rhodojaponin II inhibits TNF-α-induced inflammatory cytokine secretion in MH7A human rheumatoid arthritis fibroblast-like synoviocytes[J]. Journal of Biochemical and Molecular Toxicology, 2020, 34(10): e22551.
[28] 夏德超, 楊天明, 朱景申, 等. 羊躑躅的研究進展[J]. 中藥材, 2002, 25(11): 829-832.
[29] HU X M, TANG J H, ZENG G, et al. RGS1 silencing inhibits the inflammatory response and angiogenesis in rheumatoid arthritis rats through the inactivation of Toll-like receptor signaling pathway[J]. Journal of Cellular Physiology, 2019, 234(11): 20432-20442.
[30] DA SILVEIRA K L, DA SILVEIRA L L, THORSTENBERG M L, et al. Free and nanoencapsulated vitamin D3: Effects on E-NTPDase and E-ADA activities in an animal model with induced arthritis[J]. Cell Biochemistry and Function, 2016, 34(4): 262-273.
[31] ZHANG Q, PENG W, WEI S, et al. Guizhi-Shaoyao-Zhimu decoction possesses anti-arthritic effects on type II collagen-induced arthritis in rats via suppression of inflammatory reactions, inhibition of invasion & migration and induction of apoptosis in synovial fibroblasts. Biomed Pharmacother, 2019, 118: 109367.
[32] HU X, TANG J, ZENG G, et al. RGS1 silencing inhibits the inflammatory response and angiogenesis in rheumatoid arthritis rats through the inactivation of Toll-like receptor signaling pathway. J Cell Physiol, 2019, 234(11): 20432-20442.
[33] ZHANG Y Q, MAO X, LI W J, et al. Tripterygium wilfordii: An inspiring resource for rheumatoid arthritis treatment[J]. Medicinal Research Reviews, 2021, 41(3): 1337-1374.
[34] SHEN P, LIN W J, BA X, et al. Quercetin-mediated SIRT1 activation attenuates collagen-induced mice arthritis[J]. Journal of Ethnopharmacology, 2021, 279: 114213.
[35] FIGUS F A, PIGA M, AZZOLIN I, et al. Rheumatoid arthritis: Extra-articular manifestations and comorbidities[J]. Autoimmunity Reviews, 2021, 20(4): 102776.
[36] CHEN Z, WANG H Q, XIA Y, et al. Therapeutic potential of mesenchymal cell-derived miRNA-150-5p-expressing exosomes in rheumatoid arthritis mediated by the modulation of MMP14 and VEGF[J]. Journal of Immunology, 2018, 201(8): 2472-2482.
[37] DAI C Q, KUO S J, HU S L, et al. VEGF-C gene polymorphisms increase susceptibility to rheumatoid arthritis[J]. International Journal of Medical Sciences, 2019, 16(10): 1397-1403.
[38] LEE Y H, BAE S C. Correlation between circulating VEGF levels and disease activity in rheumatoid arthritis: A meta-analysis[J]. Zeitschrift Für Rheumatologie, 2018, 77(3): 240-248.
[39] MELINCOVICI C S, BO[S][5]CA A B, [S][5]U[S][5]MAN S, et al. Vascular endothelial growth factor (VEGF)-key factor in normal and pathological angiogenesis[J]. Revue Roumaine De Morphologie et Embryologie, 2018, 59(2): 455-467.
[40] TATEMATSU N, WAGURI-NAGAYA Y, KAWAGUCHI Y, et al. Mithramycin has inhibitory effects on gliostatin and matrix metalloproteinase expression induced by gliostatin in rheumatoid fibroblast-like synoviocytes[J]. Modern Rheumatology, 2018, 28(3): 495-505.
[41] DU H Y, ZHANG X, ZENG Y C, et al. A novel phytochemical, DIM, inhibits proliferation, migration, invasion and TNF-α induced inflammatory cytokine production of synovial fibroblasts from rheumatoid arthritis patients by targeting MAPK and AKT/mTOR signal pathway[J]. Frontiers in Immunology, 2019, 10: 1620.
[42] DAS S, AMIN S A, JHA T. Inhibitors of gelatinases (MMP-2 and MMP-9) for the management of hematological malignancies[J]. European Journal of Medicinal Chemistry, 2021, 223: 113623.
[43] 井維堯, 杜小正, 田杰祥, 等. 基于TLR4/NF-KB通路的類風(fēng)濕性關(guān)節(jié)炎滑膜炎癥發(fā)病機制及中醫(yī)藥治療研究進展[J]. 甘肅中醫(yī)藥大學(xué)學(xué)報, 2022, 39(2): 84-89.
[44] BAHRAMI A, PARSAMANESH N, ATKIN S L, et al. Effect of statins on toll-like receptors: A new insight to pleiotropic effects[J]. Pharmacological Research, 2018, 135: 230-238.
[45] ZHANG Y D, JI T F, MA S, et al. MLL1 promotes migration and invasion of fibroblast-like synoviocytes in rheumatoid arthritis by activating the TRIF/NF-κB signaling pathway via H3K4me3 enrichment in the TLR4 promoter region[J]. International Immunopharmacology, 2020, 82: 106220.
[46] GOMES DA SILVA I I F, LIMA C A D, SILVA J E A, et al. Is there an inflammation role for MYD88 in rheumatoid arthritis?[J]. Inflammation, 2021, 44(3): 1014-1022.
[47] MITCHELL J P, CARMODY R J. NF-κB and the transcriptional control of inflammation[M]//International Review of Cell and Molecular Biology. Amsterdam: Elsevier, 2018: 41-84.
[48] 李? 梅, 蔣錦梅, 歐大明, 等. 白術(shù)多糖對類風(fēng)濕性關(guān)節(jié)炎大鼠的抗炎作用及TLR4/NF-κB信號通路的影響[J]. 安徽醫(yī)科大學(xué)學(xué)報, 2022, 57(4): 552-557
[49] 張傳英, 胡? 玲, 蔡榮林, 等. 艾灸對類風(fēng)濕性關(guān)節(jié)炎大鼠踝關(guān)節(jié)滑膜組織Toll樣受體4/核因子-κB信號通路的影響[J]. 針刺研究, 2018, 43(11): 687-691.
[50] 李宗祥, 肖? 凱. 基于TLR4/NF-κB信號通路探討通痹膠囊對膠原誘導(dǎo)型關(guān)節(jié)炎治療機制的研究[J]. 中國免疫學(xué)雜志, 2019, 35(12): 1453-1457.