韓帆 焦倩 杜希恂 閻春玲 姜宏 陳曦
[摘要]目的探討不同月齡A53T轉(zhuǎn)基因(A53T)小鼠脊髓背根神經(jīng)節(jié)(DRG)中α-突觸核蛋白(α-Syn)表達(dá)水平的變化。方法6月齡和12月齡野生型(WT)小鼠和A53T小鼠經(jīng)烏拉坦腹腔麻醉后處死,在體視顯微鏡下取出胸段、腰段和薦段的DRG組織,采用蛋白免疫印跡法檢測DRG中α-Syn的表達(dá)水平。結(jié)果與相同月齡WT小鼠相比,6月齡及12月齡A53T小鼠DRG中α-Syn表達(dá)量顯著增加(F=59.164、55.681,P<0.01);與6月齡A53T小鼠相比,12月齡A53T小鼠DRG中α-Syn的表達(dá)量顯著增加(F=13.802,P<0.05)。結(jié)論A53T小鼠DRG中α-Syn表達(dá)量高于同月齡WT小鼠,且其表達(dá)量隨年齡增長而增加。
[關(guān)鍵詞]α突觸核蛋白;帕金森??;小鼠,轉(zhuǎn)基因;神經(jīng)節(jié),脊
[中圖分類號]R338.2[文獻(xiàn)標(biāo)志碼]A[文章編號]2096-5532(2023)03-0337-04
doi:10.11712/jms.2096-5532.2023.59.075[開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID)]
[網(wǎng)絡(luò)出版]https://kns.cnki.net/kcms2/detail/37.1517.R.20230719.1618.003.html;2023-07-2014:53:22
EXPRESSION OF α-SYNUCLEIN IN THE DORSAL ROOT GANGLION OF A53T MICE WITH DIFFERENT AGES IN MONTHS? HAN Fan, JIAO Qian, DU Xixun, YAN Chunling, JIANG Hong, CHEN Xi? (State Key Discipline: Physiology (in Incubation), Department of Physiology, Qingdao University, Qingdao 266071, China)
[ABSTRACT]ObjectiveTo investigate the expression level of α-synuclein (α-Syn) in the dorsal root ganglion (DRG) of A53T transgenic mice with different ages in months. MethodsWild-type (WT) mice and A53T mice, aged 6 or 12 months, were sacrificed after intraperitoneal anesthesia with urethane. DRG tissue samples of the thoracic, lumbar, and sacral segments were collected under a stereomicroscope, and Western blotting was used to measure the expression level of α-Syn. ResultsCompared with the WT mice with the same age in months, the A53T mice aged 6 or 12 months had a significant increase in the expression level of α-Syn in DRG (F=59.164,55.681;P<0.01). Compared with the A53T mice aged 6 months, the A53T mice aged 12 months had a significant increase in the expression level of α-Syn in DRG (F=13.802,P<0.05). ConclusionA53T mice have a higher expression level of α-Syn in DRG than WT mice with the same age in months, and the expression level of α-Syn increases with age.
[KEY WORDS]alpha-synuclein; Parkinson disease; mice, transgenic; ganglia, spinal
帕金森病(PD)是一種主要影響運動功能的神經(jīng)退行性疾病,其發(fā)病率隨著年齡增加而逐漸上升[1-3]。目前,PD發(fā)生的確切原因和機制仍不完全清楚,但大量研究表明,基因突變是重要的因素之一[4-7]。A53T轉(zhuǎn)基因(A53T)小鼠是一種常見的PD模型小鼠,其體內(nèi)攜帶的人類A53T突變型α-突觸核蛋白(α-Syn)基因可改變α-Syn的結(jié)構(gòu),使原本可溶性的α-Syn單體轉(zhuǎn)變?yōu)椴蝗苄缘亩嗑垠w,可在動物體內(nèi)重現(xiàn)由α-Syn聚集起始的PD病理過程[8-12]。根據(jù)BRAAK學(xué)說可知,胃腸道可能是α-Syn發(fā)生病變的起始部位[13-16],且這些病理性α-Syn會通過外周神經(jīng)系統(tǒng)逐漸向中樞傳播[17]。已有大量實驗證實迷走神經(jīng)在α-Syn的腸-腦傳播中承擔(dān)主要作用,但是消化道與中樞之間還存在其他神經(jīng)聯(lián)絡(luò),如交感神經(jīng),其傳入纖維的胞體主要匯聚在脊髓背根神經(jīng)節(jié)(DRG)中。為明確DRG中是否也存在著α-Syn高表達(dá),本實驗觀察了不同月齡A53T小鼠DRG中α-Syn的含量變化,從而為交感神經(jīng)傳入纖維參與α-Syn從胃腸道傳播至中樞的可能作用提供證據(jù)?,F(xiàn)將結(jié)果報告如下。
1材料和方法
1.1實驗材料
1.1.1實驗動物A53T小鼠(品系名稱:B6;C3-Tg(Prnp-SNCA*A53T)83Vle/J),SPF級,購于南京大學(xué)模式動物研究所。小鼠飼養(yǎng)于清潔級動物房中,可自由進(jìn)食飲水,飼養(yǎng)環(huán)境為光照模擬自然晝夜節(jié)律,12 h明暗交替,溫度保持在20~24 ℃,相對濕度保持在40%~60%。選用6月齡和12月齡的純合子A53T小鼠作為實驗組,同窩相同月齡的野生型(WT)小鼠作為對照組。
1.1.2試劑α-Syn抗體、β-tubulin抗體購于美國Cell Signaling Technology公司;山羊抗兔和山羊抗鼠抗體購于英國Thermo Fisher Scientific公司;0.45 μm PVDF轉(zhuǎn)印膜、ECL化學(xué)發(fā)光液均購于美國Millipore公司:RIPA裂解液購于中國Com Win Biotech公司。A53T小鼠基因型鑒定PCR試劑盒購于中國Vazyme生物科技有限公司。
1.2實驗方法
1.2.1A53T小鼠基因鑒定A53T純合子小鼠由A53T雜合子小鼠配種育得,飼養(yǎng)至1月齡進(jìn)行分籠和鑒定。于尾尖部截取0.5 cm長鼠尾組織提取DNA,按照試劑盒(Taq Pro HS U+Probe Master Mix,Vazyme生物科技有限公司)說明配制實時熒光定量PCR反應(yīng)體系并進(jìn)行實驗。根據(jù)PCR數(shù)據(jù)計算△Ct值,通過比較實驗組與對照組純合子目的基因的△Ct值,確定基因型。
1.2.2蛋白免疫印跡法檢測DRG中α-Syn表達(dá)小鼠經(jīng)烏拉坦腹腔麻醉處死后取出脊柱,于體視顯微鏡下取出胸段、腰段和薦段的DRG組織放入EP管中,先用剪刀將組織剪碎,再加入配制好的RIPA裂解液,充分磨碎組織。冰上靜置裂解30 min后,應(yīng)用高速離心機在4 ℃下以12 000 r/min離心20 min,吸取上清液轉(zhuǎn)移至新的1.5 mL EP管中,利用BCA試劑盒和酶標(biāo)儀進(jìn)行蛋白質(zhì)定量,計算上樣量。按比例加入loading buffer,充分混勻,100 ℃煮沸10 min使蛋白充分變性,-20 ℃凍存。蛋白樣品經(jīng)SDS-PAGE電泳(90 V、30 min,120 V、60 min)分離后,濕法轉(zhuǎn)至孔徑為0.45 μm的PVDF膜上,按蛋白Marker將目標(biāo)蛋白裁剪出來,經(jīng)脫脂奶粉封閉、一抗孵育、HRP-IgG二抗孵育后,用TBST緩沖液洗凈,將膜與ECL超敏發(fā)光液反應(yīng)后置于凝膠成像系統(tǒng)內(nèi)進(jìn)行觀察并拍攝圖像。采用Image J分析軟件對蛋白條帶進(jìn)行灰度計算,目的蛋白表達(dá)水平以α-Syn和β-tubuling條帶灰度值的比值表示。
1.3統(tǒng)計學(xué)處理
應(yīng)用SPSS 25.0軟件進(jìn)行統(tǒng)計學(xué)處理。小鼠DRG中α-Syn的表達(dá)量以±s表示,不同月齡WT和A53T小鼠DRG中α-Syn表達(dá)水平比較采用析因設(shè)計的方差分析,P<0.05表示差異具有統(tǒng)計學(xué)意義。
2結(jié)果
2.1A53T小鼠鑒定
PCR結(jié)果顯示,對照組和實驗組純合子目的基因△Ct平均值分別為5.84±0.57和6.11±0.47。△Ct值大于對照組純合子目的基因△Ct值的小鼠為A53T純合子小鼠。共選取10只A53T純合子小鼠進(jìn)行實驗。
2.2不同月齡WT和A53T小鼠DRG中α-Syn表達(dá)比較
蛋白免疫印跡法檢測結(jié)果顯示,6月齡WT組(n=6)、6月齡A53T組(n=6)、12月齡WT組(n=4)和12月齡A53T組(n=4)小鼠DRG中α-Syn表達(dá)水平分別為0.18±0.07、1.09±0.21、0.46±0.22和1.63±0.35。析因設(shè)計方差分析結(jié)果顯示:F月齡=17.417,P<0.01;F組別=112.168,P<0.01;F月齡×組別=1.727,P>0.05。與同月齡WT組小鼠相比,6月齡、12月齡A53T組小鼠DRG中α-Syn表達(dá)量顯著增高,分別增加了505.56%和254.35%,差異均具有統(tǒng)計學(xué)意義(F=59.164、55.681,P<0.01);12月齡A53T組小鼠DRG中α-Syn表達(dá)量比6月齡A53T組小鼠增加了50.46%,兩組相比差異具有統(tǒng)計學(xué)意義(F=13.802,P<0.05)。表明A53T小鼠DRG中α-Syn的表達(dá)遠(yuǎn)高于同月齡WT小鼠,且隨年齡的增長,其表達(dá)量增加。
3討論
大量臨床數(shù)據(jù)表明,在典型的PD運動癥狀出現(xiàn)之前,胃腸道功能障礙就已經(jīng)在PD病人身上長期存在,包括便秘、胃輕癱等[18-24]。德國的BRAAK教授于2003年提出了經(jīng)典的PD分期學(xué)說,該學(xué)說指出胃腸道是病理性α-Syn蛋白傳播的起源地,并且通過腸腦軸逐漸蔓延至中樞神經(jīng)系統(tǒng)[25-26]。其中,α-Syn通過迷走神經(jīng)傳播進(jìn)入迷走神經(jīng)運動背核(DMV)是腸腦軸傳播的重要組成部分。后續(xù)有實驗表明,迷走神經(jīng)切斷術(shù)可以使PD的發(fā)展進(jìn)程大幅減緩,并且使PD的患病風(fēng)險大大降低[27-30]。但該法仍不能完全杜絕PD,這提示α-Syn在胃腸與中樞之間傳播可能還有其他的通道。支配消化道的神經(jīng)除迷走神經(jīng)外,還有交感神經(jīng),其傳入纖維的胞體主要匯聚在脊髓DRG中,可感受消化道內(nèi)機械刺激(如管壁擴張、胃腸道蠕動等)、化學(xué)刺激(如管腔內(nèi)毒性物質(zhì)、酸堿度等)以及溫度的變化等,并將這些信息傳入中樞神經(jīng)系統(tǒng)。與迷走神經(jīng)類似,交感神經(jīng)在消化道和中樞神經(jīng)系統(tǒng)之間也起橋梁作用,那么它是否在α-Syn的傳播過程中起某些作用呢?本研究對此進(jìn)行了探討。
本實驗選取小鼠胸椎、腰椎和薦椎處的DRG組織進(jìn)行檢測,來自消化道的交感神經(jīng)傳入纖維主要通過以上部位進(jìn)入脊髓,可充分反映交感神經(jīng)傳入纖維在病理性α-Syn腸腦傳播中的作用。實驗結(jié)果顯示,與同月齡WT組小鼠相比,6月齡、12月齡A53T組小鼠DRG中α-Syn表達(dá)量顯著增加,且隨年齡的增長,A53T小鼠DRG中α-Syn表達(dá)量會進(jìn)一步增加,表明交感神經(jīng)中確實存在病理性α-Syn。值得注意的是,本實驗所取組織來源于A53T小鼠,該小鼠是一種攜帶人類A53T突變型α-Syn基因的PD模型小鼠,其體內(nèi)存在廣泛的人A53T突變型α-Syn過表達(dá)。那么,本實驗中小鼠DRG中α-Syn增多的原因,是否僅與該部位的基因突變相關(guān)呢?已有實驗表明,3月齡A53T小鼠小腸組織中α-Syn的表達(dá)已經(jīng)明顯升高,且出現(xiàn)了消化道功能障礙,但此時中樞神經(jīng)系統(tǒng)內(nèi)并未出現(xiàn)病理性的α-Syn,此種情況甚至?xí)掷m(xù)到6月齡以后,提示老齡A53T小鼠中樞病理性α-Syn的增多可能亦與該蛋白從外周至中樞的傳播有關(guān)[31-33]。故作者推測A53T小鼠DRG中α-Syn的增多也可能與交感神經(jīng)在此傳播過程中的作用相關(guān)。有其他研究也報道了交感神經(jīng)的可能作用,如PD病人腎上腺中存在α-Syn的沉積,腎上腺髓質(zhì)中包含由交感神經(jīng)胞體組成的神經(jīng)節(jié),在這些神經(jīng)節(jié)及發(fā)出的神經(jīng)纖維中均觀察到α-Syn聚集的現(xiàn)象[34-35];在膀胱和生殖器官附近的交感神經(jīng)神經(jīng)節(jié)中同樣出現(xiàn)了路易小體[24,36]。這些證據(jù)均表明交感神經(jīng)可能參與了PD進(jìn)展,并且可能與病理性α-Syn的傳播有關(guān)。
綜上所述,A53T小鼠DRG中α-Syn的表達(dá)量顯著增加,且其表達(dá)量隨年齡的增長同步上升,提示交感神經(jīng)在PD進(jìn)展中可能發(fā)揮作用。本實驗結(jié)果可為PD發(fā)生機制研究提供實驗依據(jù),同時為通過阻斷α-Syn由外周向中樞傳播來治療PD提供了新的思路。
[參考文獻(xiàn)]
[1]WERNER M H, OLANOW C W. Parkinsons disease modification through abl kinase inhibition: an opportunity[J].? Movement Disorders: Official Journal of the Movement Disorder Society, 2022,37(1):6-15.
[2]TOLOSA E, GARRIDO A, SCHOLZ S W, et al. Challenges in the diagnosis of Parkinsons disease[J].? The Lancet Neuro-logy, 2021,20(5):385-397.
[3]LI G, MA J F, CUI S S, et al. Parkinsons disease in China: a forty-year growing track of bedside work[J].? Translational Neurodegeneration, 2019,8:22.
[4]FARROW S L, SCHIERDING W, GOKULADHAS S, et al. Establishing gene regulatory networks from Parkinsons di-sease risk loci[J].? Brain: a Journal of Neurology, 2022,145(7):2422-2435.
[5]ZHOU S Q, TIAN Y, SONG X J, et al. Brain proteome-wide and transcriptome-wide asso-ciation studies, Bayesian coloca-lization, and Mendelian randomization analyses reveal causal genes of Parkinsons disease[J].? The Journals of Gerontology Series A, Biological Sciences and Medical Sciences, 2023,78(4):563-568.
[6]YI M H, LI J X, JIAN S J, et al. Quantitative and causal analysis for inflammatory genes and the risk of Parkinsons di-sease[J].? Frontiers in Immunology, 2023,14:1119315.
[7]YE H, ROBAK L A, YU M G, et al. Genetics and pathoge-nesis of Parkinsons syndrome[J].? Annual Review of Pathology, 2023,18:95-121.
[8]KILPELINEN T, JULKU U H, SVARCBAHS R, et al. Behavioural and dopaminergic changes in double mutated human A30P*A53T alpha-synuclein transgenic mouse model of Parkinsons disease[J].? Scientific Reports, 2019,9(1):17382.
[9]ZHONG J X, TANG G, ZHU J C, et al. Single-cell brain atlas of Parkinsons disease mouse model[J].? Journal of Gene-tics and Genomics, 2021,48(4):277-288.
[10]ABELIOVICH A, RHINN H. Parkinsons disease: guilt by genetic association[J].? Nature, 2016,533(7601):40-41.
[11]HARVEY B K, WANG Y, HOFFER B J. Transgenic rodent models of Parkinsons disease[J].? Acta Neurochirurgica Supplement, 2008,101:89-92.
[12]GIASSON B I, DUDA J E, QUINN S M, et al. Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein[J].? Neuron, 2002,34(4):521-533.
[13]ZENG J Q, WANG X C, PAN F, et al. The relationship between Parkinsons disease and gastrointestinal diseases[J].? Frontiers in Aging Neuroscience, 2022,14:955919.
[14]JONES J D, RAHMANI E, GARCIA E, et al. Gastrointestinal symptoms are predictive of trajectories of cognitive functioning in de novo Parkinsons disease[J].? Parkinsonism & Related Disorders, 2020,72:7-12.
[15]PIETRUCCI D, CERRONI R, UNIDA V, et al. Dysbiosis of gut microbiota in a selected population of Parkinsons patients[J].? Parkinsonism & Related Disorders, 2019,65:124-130.
[16]VAN DEN BERGE N, FERREIRA N, GRAM H, et al. Evidence for bidirectional and trans-synaptic parasympathetic andsympathetic propagation of alpha-synuclein in rats[J].? Acta Neuropathologica, 2019,138(4):535-550.
[17]ZHU X L, LI B, LOU P C, et al. The relationship between the gut microbiome and neurodegenerative diseases[J].? Neuroscience Bulletin, 2021,37(10):1510-1522.
[18]WISHART S, MACPHEE G J A. Evaluation and management of the non-motor features of Parkinsons disease[J].? Therapeutic Advances in Chronic Disease, 2011,2(2):69-85.
[19]HEIMRICH K G, SCHNENBERG A, SANTOS-GARCA D, et al. The impact of nonmotor symptoms on health-related quality of life in Parkinsons disease: a network analysis approach[J].? Journal of Clinical Medicine, 2023,12(7):2573.
[20]SEPPI K, RAY CHAUDHURI K, COELHO M, et al. Update on treatments for nonmotor symptoms of Parkinsons disease-an evidence-based medicine review[J].? Movement Di-sorders: Official Journal of the Movement Disorder Society, 2019,34(2):180-198.
[21]ZIEMSSEN T, REICHMANN H. Non-motor dysfunction in Parkinsons disease[J].? Parkinsonism & Related Disorders, 2007,13(6):323-332.
[22]WAKABAYASHI K, TAKAHASHI H, TAKEDA S, et al. Parkinsons disease: the presence of Lewy bodies in Auerbachs and Meissners plexuses[J].? Acta Neuropathologica, 1988,76(3):217-221.
[23]ZHOU Y T, SU Y S, XU W H, et al. Constipation increases disability and decreases dopamine levels in the nigrostriatal system through gastric inflammatory factors in Parkinsons disease[J].? Current Neurovascular Research, 2019,16(3):241-249.
[24]ZHONG C B, CHEN Q Q, HAIKAL C, et al. Age-dependent alpha-synuclein accumulation and phosphorylation in the ente-ric nervous system in a transgenic mouse model of Parkinsons disease[J].? Neuroscience Bulletin, 2017,33(5):483-492.
[25]HAWKES C H, DEL TREDICI K, BRAAK H. Parkinsons disease: a dual-hit hypothesis[J].? Neuropathology and Applied Neurobiology, 2007,33(6):599-614.
[26]ARMSTRONG M J, OKUN M S. Diagnosis and treatment of Parkinson disease: a review[J].? JAMA, 2020,323(6):548-560.
[27]KIM S, KWON S H, KAM T I, et al. Transneuronal propagation of pathologic α-synuclein from the gut to the brain mo-dels Parkinsons disease[J].? Neuron, 2019,103(4):627-641.e7.
[28]SVENSSON E, HORVTH-PUH E, THOMSEN R W, et al. Vagotomy and subsequent risk of Parkinsons disease[J].? Annals of Neurology, 2015,78(4):522-529.
[29]REDDYMASU S C, BONINO J, MCCALLUM R W. Gastroparesis secondary to a demyelinating disease: a case series[J].? BMC Gastroenterology, 2007,7:3.
[30]LIU B J, FANG F, PEDERSEN N L, et al. Vagotomy and Parkinson disease: a Swedish register-based matched-cohort study[J].? Neurology, 2017,88(21):1996-2002.
[31]SALAWU F K, DANBURAM A, OLOKOBA A B. Non-motor symptoms of Parkinsons disease: diagnosis and management[J].? Nigerian Journal of Medicine: Journal of the Natio-nal Association of Resident Doctors of Nigeria, 2010,19(2):126-131.
[32]KUO Y M, LI Z S, JIAO Y, et al. Extensive enteric nervous system abnormalities in mice transgenic for artificial chromosomes containing Parkinson disease-associated alpha-synuclein gene mutations precede central nervous system changes[J].? Human Molecular Genetics, 2010,19(9):1633-1650.
[33]ROTA L, PELLEGRINI C, BENVENUTI L, et al. Constipation, deficit in colon contractions and alpha-synuclein inclusions within the colon precede motor abnormalities and neurodegeneration in the central nervous system in a mouse model of alpha-synucleinopathy[J].? Translational Neurodegeneration, 2019,8:5.
[34]WAKABAYASHI K, HANSEN L A, MASLIAH E. Cortical Lewy body-containing neurons are pyramidal cells: laser confocal imaging of double-immunolabeled sections with anti-ubi-quitin and SMI32[J].? Acta Neuropathologica, 1995,89(5):404-408.
[35]FUMIMURA Y, IKEMURA M, SAITO Y, et al. Analysis of the adrenal gland is useful for evaluating pathology of the peripheral autonomic nervous system in lewy body disease[J].? Journal of Neuropathology and Experimental Neurology, 2007,66(5):354-362.
[36]BEACH T G, ADLER C H, SUE L I, et al. Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders[J].? Acta Neuropathologica, 2010,119(6):689-702.
(本文編輯馬偉平)