国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

Boros-Moll多項(xiàng)式序列遞推關(guān)系的代數(shù)證明

2023-09-14 13:13:34竇裕杰王佳合鄧曉明呂侖
關(guān)鍵詞:構(gòu)造法

竇裕杰 王佳合 鄧曉明 呂侖

摘 要:為了拓展Boros Moll多項(xiàng)式序列遞推關(guān)系的基本理論,研究了Boros Moll多項(xiàng)式序列遞推關(guān)系新的證明方法。首先,對(duì)Boros Moll多項(xiàng)式序列滿足的遞推關(guān)系進(jìn)行適當(dāng)變形、分拆;其次,將滿足的遞推關(guān)系式構(gòu)造為3個(gè)部分和的差式;最后,運(yùn)用代數(shù)方法、構(gòu)造法等數(shù)學(xué)方法得出3個(gè)部分的和均為零,進(jìn)一步得到Boros Moll多項(xiàng)式序列遞推關(guān)系的一個(gè)新的證明方法。結(jié)果表明,在Boros Moll多項(xiàng)式序列遞推關(guān)系中,對(duì)其結(jié)構(gòu)進(jìn)行巧妙變形、分拆,再證明相應(yīng)的引理成立,可得出一個(gè)新的證明方法。研究結(jié)果豐富了Boros Moll多項(xiàng)式序列遞推關(guān)系的相關(guān)理論,為Boros Moll多項(xiàng)式序列在組合數(shù)學(xué)、社會(huì)科學(xué)、信息論等領(lǐng)域的應(yīng)用提供了理論參考。

關(guān)鍵詞:組合數(shù)學(xué);Boros Moll多項(xiàng)式序列;遞推關(guān)系;代數(shù)證明;構(gòu)造法

中圖分類(lèi)號(hào):O157?? 文獻(xiàn)標(biāo)識(shí)碼:A??DOI:10.7535/hbkd.2023yx04005

Algebraic proof of recursive relation for Boros Moll polynomial sequence

DOU Yujie, WANG Jiahe, DENG Xiaoming, LYU Lun

(School of Sciences, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China)

Abstract: In order to expand the basic theory of the recurrence relationship of Boros Moll polynomial sequence, a new proof method for the recurrence relationship of Boros Moll polynomial sequence was studied. Firstly, the recurrence relationship satisfied by the Boros Moll polynomial sequence was appropriately deformed and partitioned. Secondly, the recursive relationship that satisfies as the difference of the sum of three parts was constructed. Finally, mathematical methods such as algebraic method and structured approach were used to find that the sum of the three parts is all zero. Furthermore, a new proof method for the recurrence relationship of Boros Moll polynomial sequence was obtained. The results indicate that in the Boros Moll polynomial sequence recurrence relationship, the recurrence relationship is cleverly deformed and partitioned, and the corresponding lemma is proved to be corrected, thus obtaining a new proof method. The research results enrich the relevant theory of recurrence relationship of the Boros Moll polynomial sequence, and provide a certain theoretical reference value for the application of the Boros Moll polynomial sequence in combinatorics, social science, information theory and other fields.

Keywords: combinatorics; Boros Moll polynomial sequence; recursive relation; algebraic proof; structured approach

Boros Moll多項(xiàng)式序列是在研究一個(gè)四次積分求值時(shí)[1 2]產(chǎn)生的:

稱(chēng)為Boros Moll多項(xiàng)式。令di(m)是Pm(a)中ai項(xiàng)的系數(shù),當(dāng)0≤i≤m時(shí),有

Pm(a)=∑mi=0di(m)ai,

其中,

di(m)=2-2m∑mk=i2k[JB((]2m-2km-k[JB))]

[JB((]m+kk[JB))][JB((]ki,

稱(chēng)為Boros Moll序列。

BOROS等[3]證明了當(dāng)m≥0時(shí),序列{di(m)}0≤i≤m具有單峰性;MOLL

[4]猜想當(dāng)m≥2時(shí),這個(gè)序列具有對(duì)數(shù)凹性,即di(m)2≥di-1(m)di+1(m)(1≤i≤m-1);之后,國(guó)內(nèi)外對(duì)Boros Moll序列性質(zhì)的研究取得了大量成果,參見(jiàn)文獻(xiàn)[5]—文獻(xiàn)[14]。LIU[15]給出了Boros Moll序列的斜對(duì)數(shù)凹性;CHEN等[16]證明了Boros Moll序列的逆超對(duì)數(shù)凹性,證明了{(lán)di(m)}0≤i≤m的2 對(duì)數(shù)凹性[17],給出了Boros Moll多項(xiàng)式序列正性的組合證明[18];HAN等[19]研究了Boros Moll多項(xiàng)式的對(duì)稱(chēng)分解,證明了Boros Moll多項(xiàng)式的交替雙γ 正性。國(guó)外關(guān)于Boros Moll多項(xiàng)式序列問(wèn)題的相關(guān)研究參見(jiàn)文獻(xiàn)[20]—文獻(xiàn)[21]。

2007年,KAUERS等[22]用機(jī)器證明的方法給出了Boros Moll序列滿足遞推關(guān)系,進(jìn)而證實(shí)了MOLL[4]猜想。機(jī)器證明可以快速地用計(jì)算機(jī)自動(dòng)推理生成定理的證明方法,但缺少?lài)?yán)格的數(shù)學(xué)證明,本文給出定理的嚴(yán)格數(shù)學(xué)證明。

定理1[22] 當(dāng)m≥2,0≤i≤m+1時(shí),有

-(-2+i-m)(-1+i+m)di-2(m)-(i-1)(2m+1)di-1(m)+i(i-1)di(m)=0 。(1)

基于代數(shù)方法,本文給出定理1的代數(shù)證明。

1 對(duì)遞推關(guān)系的變形、分拆

為了證明式(1)的遞推關(guān)系,對(duì)該式作適當(dāng)變形、分拆,構(gòu)造出3個(gè)部分和為零的差式,進(jìn)而證明定理。PANG等[23]在證明Boros Moll系數(shù)序列最大下界的過(guò)程中,得到如下結(jié)論:

證畢。

引理2

證明:根據(jù)式(3),能夠得到:

證畢。

引理3

證明:顯然,將式(5)中的i-1替換為i,即可得到式(7),證畢。

2 對(duì)定理1的證明

為了證明遞推關(guān)系式(1),建立用Di(m)表示的等價(jià)形式。利用式(2)遞推式,式(1)可以表示為

(m+i)Di(m)+(m-i+2)Di-2(m)-(2m+1)Di-1(m)=0 ,(8)

因此,定理1證明如下。

證明:根據(jù)式(4),有:

由式(5)—式(7),可得:

證畢。

3 結(jié) 語(yǔ)

1)本文基于KAUERS等研究Boros Moll多項(xiàng)式序列對(duì)數(shù)凹性時(shí)提出的一個(gè)遞推關(guān)系,研究了Boros Moll多項(xiàng)式序列遞推關(guān)系的代數(shù)證明方法。通過(guò)對(duì)其遞推關(guān)系進(jìn)行巧妙變形、分拆,證明了相應(yīng)的引理,進(jìn)而給出了代數(shù)證明方法。

2)所得結(jié)果在一定程度上豐富了Boros Moll多項(xiàng)式序列遞推關(guān)系的相關(guān)理論,為Boros Moll多項(xiàng)式序列在組合數(shù)學(xué)、社會(huì)科學(xué)、信息論等領(lǐng)域的應(yīng)用提供了一定的理論參考價(jià)值。

鑒于證明方法的多樣性,本研究方法主要考慮了Boros Moll多項(xiàng)式遞推關(guān)系的代數(shù)證明,將遞推關(guān)系式寫(xiě)成了3個(gè)式子的和。未來(lái)可以考慮更加簡(jiǎn)便、直觀的研究方法,如組合分析法、賦權(quán)組合結(jié)構(gòu)法,賦予3個(gè)式子組合解釋?zhuān)g接給出遞推關(guān)系的組合證明,增加遞推關(guān)系運(yùn)用的靈活性。

參考文獻(xiàn)/References:

[1]

BOROS G,MOLL V H.An integral hidden in Gradshteyn and Ryzhik[J].Journal of Computational and Applied Mathematics,1999,106(2):361 368.

[2] BOROS G,MOLL V H.The double square root,Jacobi polynomials and Ramanujan's master theorem[J].Journal of Computational and Applied Mathematics,2001,130(1/2):337 344.

[3] BOROS G,MOLL V H.A criterion for unimodality[J].The Electronic Journal of Combinatorics,1999,6:10 11.

[4] MOLL V H.The evaluation of integrals:A personal story[J].Notices of the American Mathematical Society,2002,49(3):311 317.

[5] AMDEBERHAN T,MANNA D V,MOLL V H.The 2 adic valuation of a sequence arising from a rational integral[J].Journal of Combinatorial Theory,Series A,2008,115(8):1474 1486.

[6] AMDEBERHAN T,MOLL V H.A formula for a quartic integral:A survey of old proofs and some new ones[J].The Ramanujan Journal,2009,18(1):91 102.

[7] CHEN W Y C,DOU D Q J,YANG A L B.Brndén's conjectures on the Boros Moll polynomials[J].International Mathematics Research Notices,2013(20):4819 4828.

[8] CHEN W Y C,WANG L X W,XIA E X W.Interlacing log concavity of the Boros Moll polynomials[J].Pacific Journal of Mathematics,2011,254(1):89 99.

[9] LYU L.A short proof of Moll's minimal conjecture[J].The Electronic Journal of Combinatorics,2017,24(4): 4 7.

[10]MOLL V H.Combinatorial sequences arising from a rational integral[J].Online Journal of Analytic Combinatorics,2007,2(2):456 473.

[11]MOLL V H,MANNA D V.A remarkable sequence of integers[J].Expositiones Mathematicae,2009,27(4):289 312.

[12]SUN Xinyu,MOLL V H.A binary tree representation for the 2 adic valuation of a sequence arising from a rational integral[J].Integers,2010,10(2):211 222.

[13]XIA E X W.The concavity and convexity of the Boros Moll sequences[J].The Electronic Journal of Combinatorics,2015,22(1):1 8.

[14]CHEN W Y C,XIA E X W.The ratio monotonicity of the Boros Moll polynomials[J].Mathematics of Computation,2009,78(268):2269 2282.

[15]LIU E H.Skew log concavity of the Boros Moll sequences[J].Journal of Inequalities and Applications,2017(1):117 121.

[16]CHEN W Y C,GU C Y.The reverse ultra log concavity of the Boros Moll polynomials[J].Proceedings of the American Mathematical Society,2009,137(12):3991 3998.

[17]CHEN W Y C,XIA E X W.2 log concavity of the Boros Moll polynomials[J].Proceedings of the Edinburgh Mathematical Society,2013,56(3):701 722.

[18]CHEN W Y C,PANG S X M,QU E X Y.On the combinatorics of the Boros Moll polynomials[J].The Ramanujan Journal,2010,21(1):41 51.

[19]HAN Guoniu,MA Shimei,YEH Y N.A Symmetric Decomposition of the Boros Moll Polynomials[DB/OL].https://arxiv.org/abs/2212.14501,2022 12 30.

[20]SAGAN B E.Log concave sequences of symmetric functions and analogs of the Jacobi Trudi determinants[J].Transactions of the American Mathematical Society,1992,329(2):795 811.

[21]MCNAMARA P R W,SAGAN B E.Infinitelog concavity:Developments and conjectures[J].Advances in Applied Mathematics,2010,44(1):1 15.

[22]KAUERS M,PAULE P.A computer proof of Moll's log concavity conjecture[J].Proceedings of the American Mathematical Society,2007,135(12):3847 3856.

[23]PANG S X M,LYU L,WANG J X.The greatest lower bound of a Boros Moll sequence[J].Mathematical Notes,2022,111(1):115 123.

猜你喜歡
構(gòu)造法
高中數(shù)學(xué)一道數(shù)列典型題解法的探究
淺談如何在高中數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的構(gòu)造能力
由遞推公式求通項(xiàng)公式的解題策略
淺析“構(gòu)造法”在高中數(shù)學(xué)解題中的實(shí)踐應(yīng)用
巧構(gòu)輔助圓,解法天然成
構(gòu)造法,數(shù)學(xué)解題的一把利刃
淺論高中數(shù)學(xué)解題過(guò)程中構(gòu)造法的運(yùn)用
考試周刊(2016年10期)2017-01-12 06:42:39
基于“構(gòu)造法”的高中數(shù)學(xué)解題思路探索
淺談構(gòu)造法在不等式證明中的應(yīng)用
函數(shù)凹凸性在不等式中的應(yīng)用
含山县| 兴业县| 长治县| 溧水县| 玛沁县| 平昌县| 龙门县| 加查县| 新乡市| 墨脱县| 台安县| 张家界市| 静海县| 松阳县| 长泰县| 栖霞市| 五莲县| 黔西县| 安陆市| 合山市| 望城县| 新丰县| 慈利县| 淮南市| 报价| 东兴市| 深圳市| 逊克县| 西乡县| 衡南县| 洱源县| 浦江县| 惠东县| 内丘县| 芦山县| 神池县| 太康县| 松桃| 安吉县| 沭阳县| 舟山市|