国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

肺結(jié)節(jié)動(dòng)物模型的研究進(jìn)展*

2023-10-11 03:28:22趙亞昆邵棟鄭瑜佳張珂煜田燕歌李建生
中國(guó)病理生理雜志 2023年9期
關(guān)鍵詞:肉芽腫動(dòng)物模型腺瘤

趙亞昆, 邵棟, 鄭瑜佳, 張珂煜, 田燕歌, 李建生△

肺結(jié)節(jié)動(dòng)物模型的研究進(jìn)展*

趙亞昆1,2, 邵棟1, 鄭瑜佳1, 張珂煜1, 田燕歌1,3, 李建生1,2△

(1河南中醫(yī)藥大學(xué)呼吸疾病中醫(yī)藥防治省部共建協(xié)同創(chuàng)新中心,河南省中醫(yī)藥防治呼吸病重點(diǎn)實(shí)驗(yàn)室,河南 鄭州 450046;2河南中醫(yī)藥大學(xué)第一附屬醫(yī)院,河南 鄭州 450046;3河南中醫(yī)藥大學(xué)中醫(yī)藥科學(xué)院,河南 鄭州 450046)

肺結(jié)節(jié);動(dòng)物模型;肉芽腫性結(jié)節(jié);非典型腺瘤樣增生;腺癌

近年來(lái),隨著多層計(jì)算機(jī)斷層掃描的普遍應(yīng)用和肺癌篩查的廣泛實(shí)施,肺結(jié)節(jié)在全球的檢出率顯著提高[1-2]。臨床上對(duì)于進(jìn)展緩慢或長(zhǎng)期不變化的結(jié)節(jié)多以隨訪觀察為主,缺乏有效預(yù)防和治療藥物[3]。穩(wěn)定且可重復(fù)的、接近臨床病理特征的肺結(jié)節(jié)動(dòng)物模型不僅是肺結(jié)節(jié)發(fā)病機(jī)制研究的關(guān)鍵工具,而且在治療肺結(jié)節(jié)、預(yù)防肺癌的藥物研發(fā)中有著無(wú)可替代的地位。臨床上常見(jiàn)的肺結(jié)節(jié)類型包括肉芽腫性結(jié)節(jié)、腺瘤、非典型腺瘤樣增生(atypical adenomatous hyperplasia, AAH)、早期腺癌等,肺結(jié)節(jié)動(dòng)物模型也以此類型多見(jiàn)[4]。因此,本文總結(jié)了以上常見(jiàn)肺結(jié)節(jié)動(dòng)物模型,對(duì)其制備方法、模型特點(diǎn)進(jìn)行綜述,為肺結(jié)節(jié)發(fā)病機(jī)制和尋找有效治療藥物與方法提供參考。

1 肉芽腫性結(jié)節(jié)動(dòng)物模型

肉芽腫性結(jié)節(jié)可累及任何器官,但超過(guò)90%的結(jié)節(jié)病患者肺部明顯受累。肉芽腫性肺結(jié)節(jié)由巨噬細(xì)胞及其演變的多核巨細(xì)胞、上皮樣細(xì)胞聚集而成,呈非干酪樣肉芽腫,可見(jiàn)成纖維細(xì)胞的膠原帶,伴有不同程度的Th1淋巴細(xì)胞炎癥或纖維化[5]。研究表明,大多肉芽腫模型通過(guò)給予結(jié)核分枝桿菌(mycobacterium tuberculosis, MTB)及相關(guān)因子、痤瘡丙酸桿菌(propionibacterium acnes, P.acnes)及相關(guān)制劑,碳納米管(multi-walled carbon nanotubes, MWCNTs)等方法建立。見(jiàn)表1。

表1 肉芽腫性結(jié)節(jié)主要?jiǎng)游锬P偷姆诸惡捅容^

mKatG:catalase-peroxidase; SodA: superoxide dismutase A peptide;.:; MWCNTs: multiwalled carbon nanotubes.

1.1結(jié)核分枝桿菌及其相關(guān)因子誘導(dǎo)的肺結(jié)節(jié)動(dòng)物模型有研究檢測(cè)臨床結(jié)節(jié)病標(biāo)本,大量結(jié)節(jié)病患者肺部存在MTB DNA和其他分枝桿菌DNA,認(rèn)為MTB感染很可能是結(jié)節(jié)病的病因之一[6]。在不少探究肉芽腫性肺結(jié)節(jié)發(fā)病機(jī)制的研究中,使用了結(jié)核分枝桿菌及其相關(guān)因子誘導(dǎo)實(shí)驗(yàn)動(dòng)物產(chǎn)生肺結(jié)節(jié)模型。向雌性Lewis大鼠或C57BL/6小鼠腹腔注射重組結(jié)核分枝桿菌過(guò)氧化氫酶-過(guò)氧化物酶(M.tuberculosis catalase-peroxidase, mKatG)后將瓊脂糖珠與mKatG偶聯(lián)并通過(guò)氣管滴注給藥,產(chǎn)生上皮樣非干酪性肉芽腫伴活化的CD4+T細(xì)胞和巨噬細(xì)胞、高度極化的輔助T細(xì)胞1(Th1)型,T-helpere 1,細(xì)胞因子表達(dá),以及局部產(chǎn)生免疫調(diào)節(jié)細(xì)胞因子的免疫病理學(xué)特征,成功誘導(dǎo)肉芽腫。然而瓊脂糖珠與mKatG偶聯(lián)形成的結(jié)合珠誘導(dǎo)肉芽腫缺乏直接的臨床相關(guān)性,可能會(huì)限制該模型更廣泛的應(yīng)用[7]。除了mKatG外,與結(jié)節(jié)病肉芽腫相關(guān)的分枝桿菌超氧化物歧化酶A(superoxide dismutase A peptide, SodA)也用于建立肉芽腫性結(jié)節(jié)病的動(dòng)物模型,活化的巨噬細(xì)胞產(chǎn)生趨化因子,進(jìn)一步募集促進(jìn)肉芽腫的免疫細(xì)胞以支持結(jié)節(jié)病肉芽腫的形成,該肉芽腫性肺結(jié)節(jié)以Th1肺泡炎,伴有CD4+T細(xì)胞增多為特征,在組織學(xué)和免疫學(xué)上與人類結(jié)節(jié)病相似[8]。

1.2痤瘡丙酸桿菌及其相關(guān)制劑誘導(dǎo)的肺結(jié)節(jié)動(dòng)物模型根據(jù)對(duì)肺結(jié)節(jié)患者的免疫學(xué)檢查,也是一種肉芽腫結(jié)節(jié)的致病微生物[9]。Nishiwaki等[10]將熱滅活的與完全弗氏佐劑皮下注射到小鼠足墊中進(jìn)行反復(fù)免疫,從小鼠腹股溝淋巴結(jié)中獲得致敏的CD4+T細(xì)胞,并將其注射到正常小鼠的尾靜脈,通過(guò)Th1型細(xì)胞因子干擾素-γ(Interferon-γ, IFN-γ)表達(dá)淋巴細(xì)胞和CD4+T細(xì)胞數(shù)量的增加在肝臟和肺部發(fā)生上皮樣和單核細(xì)胞聚集,進(jìn)而產(chǎn)生肉芽腫,該免疫模型與結(jié)節(jié)病患者的組織病理學(xué)特征具有相當(dāng)大的相似性,但該模型無(wú)肺部病變特異性。Kishi等[11]向C57BL/6小鼠靜脈注射熱滅活的后,小鼠Th1趨化因子CXC配體9(C-X-C motif chemokine ligand 9, CXCL9)和CXCL10 mRNA表達(dá)受到的刺激而升高,進(jìn)而產(chǎn)生與臨床結(jié)節(jié)病的組織學(xué)和生化檢查結(jié)果相似的肉芽腫,該肉芽腫性結(jié)節(jié)模型在建立兩周后開(kāi)始緩解。Werner等[12]將從結(jié)節(jié)病患者氣管內(nèi)分離出的滴注進(jìn)小鼠氣管,經(jīng)局部Th1細(xì)胞因子IFN-γ和CD4+T細(xì)胞數(shù)量升高,產(chǎn)生由上皮樣細(xì)胞和淋巴細(xì)胞聚集的致密肉芽腫組織。然而,該模型所產(chǎn)生的肺泡內(nèi)肉芽腫與過(guò)敏性肺炎有較大相似性[13],且模型在28 d出現(xiàn)自限性[14],故經(jīng)支氣管給予痤瘡丙酸桿菌的模型仍然存在爭(zhēng)議。

1.3碳納米管誘導(dǎo)的肺結(jié)節(jié)動(dòng)物模型MWCNTs呼吸暴露可引起實(shí)驗(yàn)動(dòng)物肺部炎癥和纖維化,出現(xiàn)局部肉芽腫和間質(zhì)瘤的風(fēng)險(xiǎn)大大提高。Huizar等[15]建立了一種MWCNTs誘導(dǎo)慢性肉芽腫性炎癥的小鼠模型,MWCNTs損傷導(dǎo)致炎性細(xì)胞因子釋放,隨后巨噬細(xì)胞和T細(xì)胞募集、附著并轉(zhuǎn)化。肉芽腫內(nèi)的骨橋蛋白被基質(zhì)金屬蛋白酶(metalloproteinases, MMP)結(jié)合并實(shí)現(xiàn)巨噬細(xì)胞裂解,骨橋蛋白和MMP的持續(xù)表達(dá),隨后巨噬細(xì)胞轉(zhuǎn)化為上皮樣和多核巨細(xì)胞,形成肉芽腫。該模型肉芽腫持續(xù)長(zhǎng)達(dá)90 d,填補(bǔ)了慢性肉芽腫模型的空白。Mohan等[16]使用該模型時(shí),認(rèn)為MWCNTs誘導(dǎo)由肺泡巨噬細(xì)胞介導(dǎo)的適應(yīng)性免疫失調(diào),導(dǎo)致肉芽腫形成。模型顯示病變主要是巨噬細(xì)胞浸潤(rùn),其中許多免疫細(xì)胞呈梭形,與人類結(jié)節(jié)病中成熟肉芽腫的特征相似,模型小鼠縱隔淋巴結(jié)有明顯的淋巴結(jié)病變,通過(guò)轉(zhuǎn)錄組學(xué)對(duì)小鼠和人類肺泡免疫細(xì)胞進(jìn)行的通路富集分析,MWCNTs小鼠模型和人類慢性肉芽腫性肺結(jié)節(jié)病之間的多個(gè)機(jī)制相似,但口咽給藥和相對(duì)高劑量的MWCNTs與人類現(xiàn)實(shí)生活中的環(huán)境暴露明顯不同,可能限制該模型的應(yīng)用[17]。

1.4-/-小鼠肺結(jié)節(jié)動(dòng)物模型編碼載脂蛋白E,是一種與脂質(zhì)顆粒相關(guān)的蛋白質(zhì)。內(nèi)源性表達(dá)的缺乏導(dǎo)致巨噬細(xì)胞中膽固醇負(fù)荷的不平衡,刺激細(xì)胞因子和蛋白酶的分泌,并引發(fā)隨后的炎癥和細(xì)胞外基質(zhì)降解[18]。ApoE小鼠在含膽酸高脂肪飲食中表現(xiàn)出類似于人類結(jié)節(jié)病的肉芽腫性肺炎癥[19]。Samokhin等[20]使用含膽酸高脂肪飲食飼養(yǎng)缺陷小鼠建立肉芽腫性肺結(jié)節(jié)模型小鼠,肉芽腫由上皮樣細(xì)胞、巨噬細(xì)胞和T細(xì)胞組成,一些肉芽腫含有成纖維細(xì)胞和多核巨細(xì)胞,其形成與再吸收可能與組織蛋白酶K存在聯(lián)系。然而,該模型一般用于動(dòng)脈粥樣硬化等心血管疾?。?1]。

2 肺腺瘤、AAH和肺腺癌動(dòng)物模型

肺癌是目前世界上發(fā)病率和死亡率最高的惡性腫瘤,早期肺癌往往表現(xiàn)為肺部結(jié)節(jié)。肺癌中最常見(jiàn)的組織類型是非小細(xì)胞肺癌(non-small cell lung cancer, NSCLC),而肺腺癌是最常見(jiàn)的NSCLC類型。大多數(shù)肺腺癌是沿著AAH發(fā)展成原位腺癌,再演變到微浸潤(rùn)腺癌,接著逐步發(fā)展成具有貼壁樣生長(zhǎng)模式的浸潤(rùn)性腺癌[22]。所以肺腺癌動(dòng)物模型通常伴隨著AAH、肺腺瘤、增生等病變,大多由化合物或基因突變誘導(dǎo)產(chǎn)生,見(jiàn)表2。

表2 肺腺瘤、AAH、肺腺癌肺結(jié)節(jié)動(dòng)物模型總結(jié)

B(a)p: benzo(a)pyrene; NNK: 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone; LPS: lipopolysaccharides; As: Arsenic; CS: cigarette smoke; BHT: butylated hydroxytoluene; DEN: diethylnitrosamine; MNNG:-methyl-'-nitro--nitrosoguanidine; AAH: atypical adenomatous hyperplasia.

2.1化合物誘導(dǎo)肺結(jié)節(jié)動(dòng)物模型空氣污染是亞洲地區(qū)主要發(fā)病原因,室內(nèi)污染包括烹飪煙霧、石棉、砷、氡和多環(huán)芳烴等,都是公認(rèn)的致癌物[23]。因此,肺結(jié)節(jié)模型的誘導(dǎo)物主要以致癌物,如苯并芘[benzo(a)pyrene, B(a)p]、4-(甲基亞硝胺)-1-(3-吡啶基)-1-丁醇[4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone, NNK]、氨基甲酸乙酯等為主。

2.1.1B(a)p誘導(dǎo)肺結(jié)節(jié)動(dòng)物模型B(a)p是一種由5個(gè)苯環(huán)構(gòu)成的多環(huán)芳烴,從煤煙、焦油、瀝青、香煙煙霧中都可以查出,有強(qiáng)烈的致癌作用,可以誘發(fā)肺癌[24],其在大氣中的含量已經(jīng)列入環(huán)境監(jiān)測(cè)的常規(guī)項(xiàng)目。

在一項(xiàng)研究膳食藥物對(duì)B(a)p誘導(dǎo)肺癌的抗癌作用研究中[25],通過(guò)B(a)p的脂質(zhì)過(guò)氧化反應(yīng)和炎癥反應(yīng)等抑制肺泡基底上皮細(xì)胞的抗癌能力,凋亡細(xì)胞特征性減少,產(chǎn)生肺結(jié)節(jié)。組織病理學(xué)顯示癌變病灶在肺泡上皮細(xì)胞廣泛增殖中存在大量的深染核。該模型被多次使用,但肺部結(jié)節(jié)具體病變類型尚不明確。Yan等[26]單次腹腔注射B(a)p,通過(guò)磷脂酰肌醇3-激酶(phosphoinositide 3-kinase, PI3K)/蛋白激酶B(protein Kinase B, Akt)信號(hào)傳導(dǎo)促進(jìn)DNA損傷,2肺外觀可見(jiàn)明顯肺結(jié)節(jié),但未對(duì)形成的結(jié)節(jié)進(jìn)行病理診斷且模型不穩(wěn)定。

2.1.2NNK誘導(dǎo)肺結(jié)節(jié)動(dòng)物模型NNK,4-(N-甲基亞硝胺基)-1-(3-吡啶基)-1-丁酮,是卷煙致癌的主要標(biāo)志物。在嚙齒動(dòng)物中,NNK誘發(fā)肺腺癌的劑量和一個(gè)吸煙者一生吸入NNK總量相當(dāng),通過(guò)促進(jìn)有絲分裂相關(guān)mRNA表達(dá)的增殖性病變,影響細(xì)胞周期與細(xì)胞分裂[27]。在使用NNK誘導(dǎo)肺腺癌模型時(shí),動(dòng)物選擇多為來(lái)自Jackson實(shí)驗(yàn)室的A/J小鼠。

Rao等[28]的研究表明NNK推動(dòng)腺瘤向腺癌的進(jìn)展,可能與下調(diào)的活化,促進(jìn)腫瘤細(xì)胞的轉(zhuǎn)化有關(guān)。有研究表明,在腹腔注射NNK誘導(dǎo)A/J小鼠產(chǎn)生肺腺癌的動(dòng)物模型中,雌鼠對(duì)NNK更敏感,與雌激素的推動(dòng)作用存在聯(lián)系[29]。對(duì)NNK誘導(dǎo)出現(xiàn)肺癌動(dòng)物進(jìn)行基因分析,均發(fā)生了基因突變[30]。

2.1.3氨基甲酸乙酯誘導(dǎo)肺結(jié)節(jié)動(dòng)物模型氨基甲酸乙酯是實(shí)驗(yàn)化學(xué)致癌反應(yīng)中廣泛使用的致癌物。通過(guò)注射給藥,在短時(shí)間內(nèi)可產(chǎn)生腫瘤[31-32]。然而,杜振華等[33]使用氨基甲酸乙酯誘導(dǎo)ICR雌性小鼠,通過(guò)抑制M1型巨噬細(xì)胞和M2型巨噬細(xì)胞的轉(zhuǎn)變阻抑其高吞噬活性,阻止肺泡巨噬細(xì)胞對(duì)肺部損傷的修復(fù),進(jìn)而打破局部免疫穩(wěn)態(tài),產(chǎn)生局部病變。在造模后未觀察到明顯結(jié)節(jié),但肺組織炎癥浸潤(rùn)和損傷面積增加,組織病理學(xué)觀察有癌變的發(fā)生。因此,在氨基甲酸乙酯誘導(dǎo)小鼠產(chǎn)生結(jié)節(jié)的實(shí)驗(yàn)中,實(shí)驗(yàn)動(dòng)物不具一致性,肺結(jié)節(jié)發(fā)生率不穩(wěn)定。

2.1.4多種化合物聯(lián)合誘導(dǎo)肺結(jié)節(jié)動(dòng)物模型Hudlikar等[34]使用B(a)p聯(lián)合NNK多次對(duì)雄性A/J小鼠進(jìn)行腹腔注射,通過(guò)絲裂原活化蛋白激酶p38和Akt的磷酸化抑制細(xì)胞凋亡并促進(jìn)細(xì)胞增殖誘導(dǎo)肺腺癌發(fā)生。在一項(xiàng)探究炎癥驅(qū)動(dòng)的肺癌小鼠發(fā)病機(jī)制的研究中[35],使用B(a)p聯(lián)合脂多糖(lipopolysaccharides, LPS)通過(guò)激活核因子κB(nuclear factor-κB, NF-κB)和NOD樣受體蛋白3(NLRP3)信號(hào)通路誘導(dǎo)肺部炎癥反應(yīng)成功誘導(dǎo)肺結(jié)節(jié)小鼠動(dòng)物模型,其病理類型為肺腺瘤、鱗狀細(xì)胞癌、肺腺癌,且LPS可以增強(qiáng)B(a)p誘導(dǎo)的肺腫瘤發(fā)生。

砷和B(a)p都是公認(rèn)的人類致癌物,會(huì)導(dǎo)致肺癌和其他類型的腫瘤。由于飲用水以及油煙污染,砷和B(a)p共同接觸可能在人類中很常見(jiàn)。王志山等[36]使用砷和B(a)p共同誘導(dǎo)肺部腫瘤。砷和B(a)p共同作用下調(diào)腫瘤抑制性細(xì)胞因子信號(hào)(SOCS3)的表達(dá),從而增強(qiáng)Akt和細(xì)胞外調(diào)節(jié)蛋白激酶1/2(Erk1/2)的活化以促進(jìn)腫瘤發(fā)生和腫瘤細(xì)胞轉(zhuǎn)化。該模型更還原重工業(yè)環(huán)境污染嚴(yán)重地區(qū)患者的發(fā)病過(guò)程,但是對(duì)其他臟器影響不可忽視。

Melkamu等[37]研究表明LPS可促進(jìn)NNK誘導(dǎo)肺腺瘤、AAH以及腺癌發(fā)生,加快肺癌進(jìn)展,與PI3K/Akt、NF-κB和信號(hào)轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄激活蛋白3(STAT3)三個(gè)信號(hào)通路的激活密切相關(guān),促進(jìn)細(xì)胞增殖、存活、侵襲和血管生成,從而增強(qiáng)腫瘤發(fā)生。該報(bào)告成功建立了炎癥驅(qū)動(dòng)腫瘤動(dòng)物模型,由于煙草煙霧中除致癌物外還含有其他促炎化合物,現(xiàn)有的僅基于致癌物的肺癌動(dòng)物模型可能無(wú)法完全反映吸煙者的情況,因此該模型的進(jìn)一步發(fā)展可以更好地反映吸煙者的暴露情況,進(jìn)而開(kāi)發(fā)更有效的針對(duì)肺癌的化學(xué)預(yù)防和化療藥物。Kameyama等[38]研究表明,間隔香煙暴露聯(lián)合NNK與持續(xù)香煙暴露聯(lián)合NNK及NNK單獨(dú)使用比較,肺癌發(fā)生率顯著增加,發(fā)病機(jī)制與M2極化巨噬細(xì)胞存在聯(lián)系,本模型適用于慢性阻塞性肺疾病合并肺癌的基礎(chǔ)研究。

2.1.5其他化合物誘導(dǎo)肺結(jié)節(jié)動(dòng)物模型丘建燊等[39]直接向肺內(nèi)注入血鋇混合物,通過(guò)CT圖像分析鋇濃度質(zhì)量與結(jié)節(jié)內(nèi)部實(shí)性成分面積百分率之間的關(guān)系,該模型適合模擬不同比例實(shí)性成分的肺磨玻璃結(jié)節(jié),不適合作為活體動(dòng)物模型研究藥物作用及機(jī)制研究。何鵬等[40]為檢測(cè)樺木塵水提取液和有機(jī)提取液的致癌性,分別使用樺木塵水提取液或有機(jī)提取液嘗試誘導(dǎo)小鼠肺癌產(chǎn)生。腹腔注射樺木塵水提取液且飲食中伴二丁基羥基甲苯(butylated hydroxytoluene, BHT)的植物油誘導(dǎo)時(shí)腫瘤發(fā)生率最高。鏡下所見(jiàn)肺腫瘤均為良性腺瘤,然而該模型在機(jī)制研究中應(yīng)用較少,且誘導(dǎo)產(chǎn)生肺結(jié)節(jié)數(shù)量少。石英能夠誘導(dǎo)大鼠發(fā)生增生、腺瘤和腺癌[41],由于石英誘導(dǎo)的毒性或炎癥反應(yīng),肺泡巨噬細(xì)胞對(duì)石英清除作用增強(qiáng)了巨噬細(xì)胞和中性粒細(xì)胞產(chǎn)生細(xì)胞因子、趨化因子、活性氧、活性氮以及羥基自由基,進(jìn)而導(dǎo)致上皮細(xì)胞損傷和增殖,肺外觀可見(jiàn)白色結(jié)節(jié),有明顯炎癥損傷,但長(zhǎng)期石英暴露會(huì)影響大鼠肺和腎臟的完整性。Man等[42]向雄性Wistar大鼠注射二乙基亞硝胺(diethylnitrosamine, DEN),誘導(dǎo)大鼠MMP-9表達(dá)增加和人基質(zhì)金屬蛋白酶抑制因子2水平上調(diào),進(jìn)而產(chǎn)生肺腺癌,肺外觀可見(jiàn)結(jié)節(jié)。但DEN誘導(dǎo)大鼠肺腺癌模型存在明顯肝毒性。肖時(shí)滿等[43]為雌性KM小鼠皮下注射甲基硝基亞硝基胍(N-methyl-N'-nitro-N-nitrosoguanidine, MNNG),建立了一種早期肺腺癌小鼠模型,肺腺癌發(fā)生率達(dá)到100%,腫瘤大小主要在0.5 mm以內(nèi),該模型穩(wěn)定且肺部結(jié)節(jié)發(fā)生率高。

2.2基因突變小鼠肺結(jié)節(jié)動(dòng)物模型約3/4的GGN術(shù)后病理組織經(jīng)基因檢測(cè)為、或基因突變[44]。激活基因表達(dá)或肺腺癌細(xì)胞中持續(xù)的EGF信號(hào)傳導(dǎo)促進(jìn)肺腺癌的發(fā)展,誘導(dǎo)肺結(jié)節(jié)產(chǎn)生[45]。

2.2.1突變小鼠肺結(jié)節(jié)動(dòng)物模型與肺癌發(fā)生有關(guān)的研究廣泛的基因之一是[46]。突變存在于(10%~40%)的人肺腺癌中[47],幾乎所有突變都發(fā)生在密碼子12和13結(jié)合位點(diǎn)上[48]。許多肺癌發(fā)病機(jī)制或藥物治療機(jī)制研究中常常使用突變小鼠,通過(guò)鼻內(nèi)滴注AdenoCre腺病毒將表達(dá)并使隨后的腫瘤形成靶向肺部,且腺病毒和CaPO形成的共沉淀物可以提高肺上皮感染的效率[49]。成年小鼠在感染AdenoCre腺病毒[50]后,2周后突變蛋白開(kāi)始表達(dá),6周后可觀察肺部具有鵝卵石樣小結(jié)節(jié)。KI/creERT小鼠腹腔注射他莫昔芬,2周開(kāi)始出現(xiàn)小腺瘤,在14周內(nèi)逐漸發(fā)展至腺癌[51]。在此模型中,干細(xì)胞基因激活后產(chǎn)生具有克拉拉細(xì)胞和肺泡Ⅱ型細(xì)胞特征的細(xì)胞類型,或由干細(xì)胞直接發(fā)育為克拉拉細(xì)胞或肺泡Ⅱ型細(xì)胞。這些細(xì)胞類型的增生可引起細(xì)支氣管上皮增生和腺瘤。

2.2.2突變小鼠肺結(jié)節(jié)動(dòng)物模型是繼之后肺腺癌中第二常發(fā)生的突變基因[52-53]。Ehrhardt[54]利用包含表面活性蛋白C(surfactant protein C,)啟動(dòng)子調(diào)控序列的基因建立了靶向過(guò)表達(dá)到呼吸道上皮的轉(zhuǎn)基因小鼠模型,該模型啟動(dòng)子的激活僅限于呼吸道上皮,EGF過(guò)表達(dá),導(dǎo)致上皮細(xì)胞增生。Borlak等[53]使用同樣的轉(zhuǎn)基因小鼠建立AAH模型,探究其發(fā)病機(jī)制與腫瘤抑制因子以及單核細(xì)胞和巨噬細(xì)胞的遷移相關(guān)。Valentina等[55]用多西環(huán)素誘導(dǎo)雙轉(zhuǎn)基因小鼠,2周內(nèi),小鼠發(fā)生局灶性AAH,誘導(dǎo)后4周迅速發(fā)展為廣泛的彌漫性非粘液腺癌,內(nèi)部呈鱗狀樣,第6周出現(xiàn)細(xì)支氣管肺泡腺瘤,第8周進(jìn)展為更實(shí)性的腺瘤和腺癌(直徑>0.5 mm),所有雙轉(zhuǎn)基因小鼠的肺中均有>30%的高增殖病變區(qū)域?;谕蛔兘⒌膬煞N模型中,轉(zhuǎn)基因小鼠自發(fā)產(chǎn)生AAH、腺癌時(shí)間較長(zhǎng)。

3 小結(jié)

最常見(jiàn)的動(dòng)物模型是肉芽腫性結(jié)節(jié),但是該模型具有自限性,與有癌變趨勢(shì)的肺結(jié)節(jié)患者發(fā)病機(jī)制相差較大。除肉芽腫性結(jié)節(jié)之外,誘導(dǎo)肺腺瘤、AAH、腺癌的動(dòng)物模型也是建立肺結(jié)節(jié)動(dòng)物模型的一個(gè)較好選擇,可選用B(a)p、NNK等誘導(dǎo)物進(jìn)行誘導(dǎo)。肺腺瘤、AAH、腺癌的動(dòng)物模型最終可能會(huì)發(fā)生突變,因此基因突變小鼠有可能成為建立肺腺癌早期病變性質(zhì)肺結(jié)節(jié)的最佳選擇。在模型評(píng)價(jià)方面,大多數(shù)實(shí)驗(yàn)觀察肺外觀,對(duì)結(jié)節(jié)數(shù)量、大小對(duì)比。其次是病理組織學(xué)觀察,部分使用了“小鼠腫瘤國(guó)際分類”標(biāo)準(zhǔn)[56]對(duì)病變組織分類計(jì)數(shù),有利于模型評(píng)價(jià)標(biāo)準(zhǔn)化,規(guī)范化。研究者可根據(jù)研究方向選擇不同的動(dòng)物模型建立方法,比如探究炎癥驅(qū)動(dòng)的肺結(jié)節(jié)可選擇肉芽腫性肺結(jié)節(jié)或B(a)p/NNK聯(lián)合LPS誘導(dǎo);探究肺結(jié)節(jié)合并COPD相關(guān)機(jī)制可選擇NNK聯(lián)合香煙煙霧暴露等??傊?,建立有效且穩(wěn)定的肺結(jié)節(jié)動(dòng)物模型可節(jié)省成本、縮短周期等,為日后開(kāi)展肺結(jié)節(jié)相關(guān)基礎(chǔ)研究提供更多可靠依據(jù)。

[1] Zhang ZX, Lv L, Shi AH, et al. Implementation of sodium alginate-Fe3O4 to localize undiagnosed small pulmonary nodules for surgical management in a preclinical rabbit model[J]. Sci Rep, 2022, 12(1):9979.

[2] Yu Lee-Mateus A, Reisenauer J, Garcia-Saucedo JC, et al. Robotic-assisted bronchoscopy versus CT-guided transthoracic biopsy for diagnosis of pulmonary nodules[J]. Respirology, 2023, 28(1):66-73.

[3]王璐,洪群英. 肺結(jié)節(jié)診治中國(guó)專家共識(shí)(2018年版)解讀[J]. 中國(guó)實(shí)用內(nèi)科雜志, 2019, 39(5):440-442.

Wang L, Hong QY. Interpretation of Chinese expert consensus on the diagnosis and treatment of pulmonary nodules (2018 version)[J]. Chin J Pract Intern Med, 2019, 39(5):440-442.

[4]李媛,謝惠康,武春燕. WHO胸部腫瘤分類(第5版)中肺腫瘤部分解讀[J]. 中國(guó)癌癥雜志, 2021, 31(7):574-580.

Li Y, Xie HK, Wu CY. Interpretation of lung tumours in the WHO classification of thoracic tumours (5th edition)[J]. China Oncol, 2021, 31(7):574-580.

[5] Chopra A, Avadhani V, Tiwari A, et al. Granulomatous lung disease: clinical aspects[J]. Expert Rev Respir Med, 2020, 14(10):1045-1063.

[6] Inaoka PT, Shono M, Kamada M, et al. Host-microbe interactions in the pathogenesis and clinical course of sarcoidosis[J]. J Biomed Sci, 2019, 26(1):45.

[7] Chen ES, Song Z, Willett MH, et al. Serum amyloid A regulates granulomatous inflammation in sarcoidosis through Toll-like receptor-2[J]. Am J Respir Crit Care Med, 2010, 181(4):360-373.

[8] Gon?ales RA, Bastos HN, Duarte-Oliveira C, et al. Pentraxin 3 inhibits complement-driven macrophage activation to restrain granuloma formation in sarcoidosis[J]. Am J Respir Crit Care Med, 2022, 206(9):1140-1152.

[9] Kraaijvanger R, Veltkamp M. The role of cutibacterium acnes in sarcoidosis: from antigen to treatable trait?[J]. Microorganisms, 2022 ,10(8):1649.

[10] Nishiwaki T, Yoneyama H, Eishi Y,et al. Indigenous pulmonary Propionibacterium acnes primes the host in the development of sarcoid-like pulmonary granulomatosis in mice[J]. Am J Pathol, 2004, 165(2):631-639.

[11] Kishi J, Nishioka Y, Kuwahara T, et al. Blockade of Th1 chemokine receptors ameliorates pulmonary granulomatosis in mice[J]. Eur Respir J, 2011, 8(2):415-424.

[12] Werner JL, Escolero SG, Hewlett JT, et al. Induction of pulmonary granuloma formation by propionibacterium acnes is regulated by MyD88 and Nox2[J]. Am J Respir Cell Mol Biol, 2017, 56(1):121-130.

[13] Eishi Y. Etiologic aspect of sarcoidosis as an allergic endogenous infection caused by Propionibacterium acnes[J]. Biomed Res Int, 2013, 2013:935289.

[14] Tsiligianni I, Antoniou KM, Kyriakou D, et al. Th1/Th2 cytokine pattern in bronchoalveolar lavage fluid and induced sputum in pulmonary sarcoidosis[J]. BMC Pulm Med, 2005, 24(5):8.

[15] Huizar I, Malur A, Midgette YA, et al.Novel murine model of chronic granulomatous lung inflammation elicited by carbon nanotubes[J]. Am J Respir Cell Mol Biol, 2011, 45(4):858-866.

[16] Mohan A, Malur A, McPeek M, et al. Transcriptional survey of alveolar macrophages in a murine model of chronic granulomatous inflammation reveals common themes with human sarcoidosis[J]. Am J Physiol Lung Cell Mol Physiol, 2018, 314(4):L617-L625.

[17] Lu X, Zhu Y, Bai R, et al. Long-term pulmonary exposure to multi-walled carbon nanotubes promotes breast cancer metastatic cascades[J]. Nat Nanotechnol, 2019, 14(7):719-727.

[18] Shaw PX. Rethinking oxidized low-density lipoprotein, its role in atherogenesis and the immune responses associated with it[J]. Arch Immunol Ther Exp (Warsz), 2004, 52:225-239.

[19] Samokhin AO, Bühling F, Theissig F, et al. ApoE-deficient mice on cholate-containing high-fat diet reveal a pathology similar to lung sarcoidosis[J]. Am J Pathol, 2010, 176(3):1148-1156.

[20] Samokhin AO, Gauthier JY, Percival MD, et al. Lack of cathepsin activities alter or prevent the development of lung granulomas in a mouse model of sarcoidosis[J]. Respir Res, 2011, 12(1):13.

[21] Cremer S, Michalik KM, Fischer A, et al. Hematopoietic deficiency of the long noncoding RNA MALAT1 promotes atherosclerosis and plaque inflammation[J]. Circulation, 2019, 139(10):1320-1334.

[22] Zhang RJ, Lei Y. Advances in the study of clinical pathological and molecular characteristics of earlylung adenocarcinoma[J]. Mod. Oncol, 2021, 29(23):4246-4250.

[23] McEachan RRC, Rashid R, Santorelli G, et al. Evaluating the life-course health impact of a city-wide system approach to improve air quality in Bradford, UK: a quasi-experimental study with implementation and process evaluation[J]. Environ Health, 2022, 21(1):122.

[24] Abd El-Fattah EE, Abdelhamid AM. Benzo[a]pyrene immunogenetics and immune archetype reprogramming of lung[J]. Toxicology, 2021, 463:152994.

[25] Gong C, Qi L, Huo Y, et al. Anticancer effect of Limonin against benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice and the inhibition of A549 cell proliferation through apoptotic pathway[J]. J Biochem Mol Toxicol, 2019, 33(12):e22374.

[26] Yan Y, Wang Y, Tan Q,et al. Efficacy of deguelin and silibinin on benzo(a)pyrene-induced lung tumorigenesis in A/J mice[J]. Neoplasia, 2005, 7(12):1053-1057.

[27] Yokohira M, Hashimoto N, Yamakawa K, et al. Lung proliferative lesion-promoting effects of left pulmonary ligation in A/J female mice[J]. Pathol Int, 2020, 70(6):340-347.

[28] Rao CV, Patlolla JM, Qian L, et al. Chemopreventive effects of the p53-modulating agents CP-31398 and Prima-1 in tobacco carcinogen-induced lung tumorigenesis in A/J mice[J]. Neoplasia, 2013, 15(9):1018-1027.

[29] Ninomiya F, Yokohira M, Kishi S, et al. Gender-dependent effects of gonadectomy on lung carcinogenesis by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in female and male A/J mice[J]. Oncol Rep, 2013, 30(6):2632-2638.

[30] Anandakumar P, Kamaraj S, Jagan S, et al. Capsaicin inhibits benzo(a)pyrene-induced lung carcinogenesis in anmouse model[J]. Inflamm Res, 2012, 61(11):1169-1175.

[31] Rudyanto RD, Bastarrika G, de Biurrun G, et al. Individual nodule tracking in micro-CT images of a longitudinal lung cancer mouse model[J]. Med Image Anal, 2013, 17(8):1095-1105.

[32] Paceli RB, Cal RN, dos Santos CH, et al. The influence of physical activity in the progression of experimental lung cancer in mice[J]. Pathol Res Pract, 2012, 208(7):377-381.

[33] 杜振華. 苦瓜苷G調(diào)節(jié)巨噬細(xì)胞阻止肺損傷和肺癌前病變作用[D]. 鄭州:河南大學(xué), 2019:19-20.

Du ZH. Momordicoside G regulates macrophage to prevent lung injury and lung pre-carcinoma lesions[D].Zhengzhou: Henan University, 2019:19-20.

[34] Hudlikar RR, Venkadakrishnan VB, Kumar R, et al. Polymeric black tea polyphenols (PBPs) inhibit benzo(a)pyrene and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung carcinogenesis potentially through down-regulation of p38 and Akt phosphorylation in A/J mice[J]. Mol Carcinog, 2017, 56(2):625-640.

[35] Huang L, Duan S, Shao H, et al. NLRP3 deletion inhibits inflammation-driven mouse lung tumorigenesis induced by benzo(a)pyrene and lipopolysaccharide[J]. Respir Res, 2019, 20(1):20.

[36] Wang ZS, Yang P, Xie J, et al. Arsenic and benzo[a]pyrene co-exposure acts synergistically in inducing cancer stem cell-like property and tumorigenesis by epigenetically down-regulating SOCS3 expression[J]. Environ Int, 2020, 137:105560.

[37] Melkamu T, Qian X, Upadhyaya P, et al. Lipopolysaccharide enhances mouse lung tumorigenesis: a model for inflammation-driven lung cancer[J]. Vet Pathol, 2013, 50(5):895-902.

[38] Kameyama N, Chubachi S, Hegab AE, et al. Intermittent exposure to cigarette smoke increases lung tumors and the severity of emphysema more than continuous exposure[J]. Am J Respir Cell Mol Biol, 2018, 59(2):179-188.

[39] 丘建燊,鄭航,張芨,等. 肺磨玻璃結(jié)節(jié)建模方法[J]. 臨床肺科雜志, 2019, 24(11):2068-2072.

Qiu JS, Zheng H, Zhang J, et al. Modeling method of ground glass nodules in lung[J]. J Clin Pulm Med, 2019, 24(11):2068-2072.

[40] 何鵬,吳德生,董奇男. 應(yīng)用小鼠肺腫瘤短期誘發(fā)實(shí)驗(yàn)檢測(cè)樺木塵提取液的致癌性[J]. 中華勞動(dòng)衛(wèi)生職業(yè)病雜志, 2002,(2):39-41.

He P, Wu DS, Dong QN. The model of mouse lung tumor short-term induction test for assaying the carcinogencity induced by extracts of birch wood dust[J].Chin J Ind Hyg Occup Dis, 2002,(2):39-41.

[41] Nakano-Narusawa Y, Yokohira M, Yamakawa K, et al. Single intratracheal quartz instillation induced chronic inflammation and tumourigenesis in rat lungs[J]. Sci Rep, 2020, 10(1):6647.

[42] Man S, Li J, Fan W, et al. Inhibition of pulmonary adenoma in diethylnitrosamine-induced rats by Rhizoma paridis saponins[J]. J Steroid Biochem Mol Biol, 2015, 154:62-67.

[43] 肖時(shí)滿,張玉,強(qiáng)金偉. 小鼠早期肺腺癌模型的建立[J]. 中國(guó)實(shí)驗(yàn)動(dòng)物學(xué)報(bào), 2015, 23(3):227-232.

Xiao SM, Zhang Y, Qiang JW. Establishment of a mouse model of early lung adenocarcinoma[J]. Acta Lab Anim Sci Sin, 2015, 23(3):227-232.

[44] Kobayashi Y, Mitsudomi T, Sakaoy, et al. Genetic features of pulmonary adenocarcinoma presenting with ground glass nodules: the differences between nodules with and without growth[J]. Ann Oncol, 2015, 26(1):156-161.

[45] Lin C, Song H, Huang C,et al. Alveolar type II cells possess the capability of initiating lung tumor development[J]. PLoS One, 2012, 7(12):e53817.

[46] Ahrendt S, Decker?PA, Alawi?EA, et al. Cigarette smoking is strongly associated with mutation of the K-ras gene in patients with primary adenocarcinoma of the lung[J]. Cancer, 2001, 92:1525-1530

[47] Brose MS, Volpe P, Feldman M, et al. BRAF and RAS mutations in human lung cancer and melanoma[J]. Cancer Res, 2002, 62:6997-7000.

[48] Riely GJ, Kris MG, Rosenbaum D, et al. Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma[J]. Clin Cancer Res, 2008, 14:5731-5734.

[49] Fasbender A, Lee JH, Walters RW, et al. Incorporation of adenovirus in calcium phosphate precipitates enhances gene transfer to airway epitheliaand[J]. J Clin Invest, 1998, 102(1):184-193.

[50] Jackson EL, Willis N, Mercer K, et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras[J]. Genes Dev, 2001, 15(24):3243-3248.

[51] Xu X, Rock JR, Lu Y, Futtner C, et al. Evidence for type II cells as cells of origin of K-Ras-induced distal lung adenocarcinoma[J]. Proc Natl Acad Sci U S A, 2012, 109(13):4910-4915.

[52] Li H, Sun Z, Xiao R, et al. Stepwise evolutionary genomics of early-stage lung adenocarcinoma manifesting as pure, heterogeneous and part-solid ground-glass nodules[J]. Br J Cancer, 2022, 127(4):747-756.

[53] Borlak J, L?nger F, Chatterji B. Serum proteome mapping of EGF transgenic mice reveal mechanistic biomarkers of lung cancer precursor lesions with clinical significance for human adenocarcinomas[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(10):3122-3144.

[54] Ehrhardt A, Bartels T, Geick A, et al. Development of pulmonary bronchiolo-alveolar adenocarcinomas in transgenic mice overexpressing murine c-myc and epidermal growth factor in alveolar type II pneumocytes[J]. Br J Cancer, 2001, 84(6):813-818.

[55] Valentina E. Schneeberger, Yuan Ren,et al. Inhibition of Shp2 suppresses mutant EGFR-induced lung tumors in transgenic mouse model of lung adenocarcinoma[J]. Oncotarget, 2015, 6(8):6191-6202.

[56] Nikitin AY, Alcaraz A, Anver MR, et al. Classification of proliferative pulmonary lesions of the mouse: recommendations of the mouse models of human cancers consortium[J]. Cancer Res, 2004, 64(7):2307-2316.

Progress in animal models of pulmonary nodules

ZHAO Yakun1,2, SHAO Dong1, ZHENG Yujia1, ZHANG Keyu1, TIAN Yange1,3, LI Jiansheng1,2△

(1,,450046,;2,450046,;3,450046,)

A pulmonary nodule (PN) is characterized by a round or irregular lesion in the lung with a diameter ≤3 cm. PN is characterized by the following features upon imaging: heightened density, clear or unclear boundaries, without atelectasis, hilar lymph node enlargement, and pleural effusion. However, the pathogenesis of PN remains unclear, and the current treatment measures have failed to meet the clinical demands. Therefore, animal models of PN are of great significance for investigating its pathogenesis and discovering or optimizing effective drugs and methods for its prevention and treatment. This paper summarizes the widely used animal models of PNs. Previous research has shown that the most common animal models were used for granulomas, lung adenomas, atypical adenomatous hyperplasia (AAH), and adenocarcinomas. The experimental animals utilized were A/J mice, C57BL/6 mice, and mice with predominantly EGFR and Kras mutations. Moreover, the chief inducers included carcinogenic compounds, such as benzo(a)pyrene and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Furthermore, the preparation methods and model characteristics of PNs were systematically and comprehensively reviewed to provide a strong basis and a valuable reference for the rational selection of animal models for basic research and drug developent.

pulmonary nodules; animal model; granulomatous nodules; atypical adenomatous hyperplasia; adenocarcinoma

R563; R363

A

10.3969/j.issn.1000-4718.2023.09.018

1000-4718(2023)09-1683-08

2023-01-04

2023-04-17

河南省高等學(xué)校重點(diǎn)科研項(xiàng)目(No. 21A360007);河南省中醫(yī)藥科學(xué)研究專項(xiàng)課題(No. 2021JDZY029)

Tel: 13703717893; E-mail: li_js8@163.com

(責(zé)任編輯:李淑媛,羅森)

猜你喜歡
肉芽腫動(dòng)物模型腺瘤
肥胖中醫(yī)證候動(dòng)物模型研究進(jìn)展
胃癌前病變動(dòng)物模型復(fù)制實(shí)驗(yàn)進(jìn)展
潰瘍性結(jié)腸炎動(dòng)物模型研究進(jìn)展
后腎腺瘤影像及病理對(duì)照分析
韋格納肉芽腫以慢性中耳炎首發(fā)1例
早期多發(fā)幼年黃色肉芽腫1例
糖尿病性視網(wǎng)膜病變動(dòng)物模型研究進(jìn)展
姜兆俊治療甲狀腺腺瘤經(jīng)驗(yàn)
胸腺瘤放射治療研究進(jìn)展
肉芽腫性多血管炎兼結(jié)核潛伏感染者一例
克山县| 唐河县| 昌平区| 龙岩市| 枝江市| 鹰潭市| 枣强县| 青浦区| 兰考县| 莎车县| 元阳县| 武乡县| 太康县| 新竹县| 江阴市| 汪清县| 石棉县| 剑阁县| 麻栗坡县| 翼城县| 萝北县| 唐山市| 泾川县| 石嘴山市| 湟中县| 绩溪县| 隆化县| 军事| 洪江市| 洪泽县| 东乌珠穆沁旗| 阿城市| 贡嘎县| 栾川县| 赫章县| 阜新市| 清丰县| 衡山县| 小金县| 博白县| 阜南县|