張杰, 陸仲夏, 李欣宇, 劉路馨, 路新枝
固定與透膜方法對(duì)免疫熒光檢測(cè)肝臟冷凍切片中胰島素的影響*
張杰, 陸仲夏, 李欣宇, 劉路馨, 路新枝△
(中國(guó)海洋大學(xué)醫(yī)藥學(xué)院,山東 青島 266003)
探討不同的固定與透膜方法對(duì)免疫熒光檢測(cè)小鼠肝臟冷凍切片中胰島素的影響,為研究胰島素在肝臟中的代謝及胰島素與其他分子的相互作用提供技術(shù)支持。采用切片前固定或切片后固定,制作小鼠肝臟組織冷凍切片。通過(guò)間接免疫熒光技術(shù)檢測(cè)5種固定與透膜方案對(duì)小鼠肝臟組織冷凍切片中胰島素?zé)晒馊旧挠绊?。?)方案1采用4%多聚甲醛固定聯(lián)合0.5% Triton X-100透膜檢測(cè),肝血竇和肝索結(jié)構(gòu)清晰,胰島素?zé)晒庑盘?hào)主要分布于細(xì)胞質(zhì)膜和細(xì)胞質(zhì);(2)方案2采用4%多聚甲醛固定聯(lián)合0.5% saponin透膜檢測(cè),肝血竇和肝索結(jié)構(gòu)清晰,切片整體的熒光信號(hào)非常微弱,且熒光信號(hào)主要分布于細(xì)胞質(zhì)膜附近;(3)方案3采用丙酮一步固定與透膜檢測(cè),肝血竇不清晰,部分肝細(xì)胞出現(xiàn)腫脹,胰島素?zé)晒庑盘?hào)主要分布于細(xì)胞質(zhì)膜附近;(4)方案4采用甲醇一步固定與透膜檢測(cè),肝血竇不清晰,細(xì)胞間界限模糊,胰島素?zé)晒庑盘?hào)出現(xiàn)明顯的核易位;(5)方案5采用4%多聚甲醛(含5%冰醋酸)一步固定與透膜檢測(cè),肝血竇和肝索結(jié)構(gòu)清晰,胰島素?zé)晒庑盘?hào)主要分布于細(xì)胞質(zhì)膜和細(xì)胞質(zhì)。方案1和5適于肝臟冷凍切片中胰島素的檢測(cè)。
胰島素;肝臟;固定;透膜;冷凍切片;免疫熒光
在中國(guó),90%以上的糖尿病患者為2型糖尿病患者[1],胰島素抵抗和胰島素分泌不足是2型糖尿病的主要發(fā)病機(jī)制[2]。肝臟與2型糖尿病的發(fā)生息息相關(guān),一方面肝臟是胰島素作用的重要靶器官,胰島素通過(guò)調(diào)控肝糖原合成與分解、以及糖異生途徑來(lái)維持血糖的穩(wěn)定[3];另一方面肝臟是胰島素的主要代謝器官,由胰島組織釋放的胰島素約有80%由肝臟代謝分解[4],因而任何影響肝臟中胰島素生理功能或胰島素代謝的因素都將影響血糖的變化,甚而導(dǎo)致糖尿病的發(fā)生。此外,肝臟作為機(jī)體主要的解毒器官,肩負(fù)著機(jī)體內(nèi)藥物、毒素、病原菌等的脫毒和清除任務(wù),而共同的代謝場(chǎng)所使上述物質(zhì)干擾胰島素代謝或者與胰島素發(fā)生相互作用的機(jī)率大大增加。因此,建立胰島素在肝臟中的檢測(cè)方法,將為評(píng)價(jià)胰島素的代謝以及胰島素與其他分子間的作用提供重要的技術(shù)支撐。
肝細(xì)胞作為胰島素主要的靶細(xì)胞和代謝細(xì)胞,其占肝臟細(xì)胞總數(shù)的60%~80%,直徑為15~30 μm[5-6]。胰島素進(jìn)入肝細(xì)胞的途徑分為受體介導(dǎo)的內(nèi)吞和非受體介導(dǎo)的內(nèi)化過(guò)程,如胞飲[7-8]。通過(guò)使用125I或納米金標(biāo)記的胰島素,證實(shí)進(jìn)入肝細(xì)胞的胰島素可分布于內(nèi)質(zhì)網(wǎng)、高爾基體、線粒體、核膜和細(xì)胞核等處[9-10]。然而,受制于標(biāo)記物對(duì)胰島素結(jié)構(gòu)或生物活性的影響[11],以及實(shí)驗(yàn)動(dòng)物自身產(chǎn)生的胰島素?zé)o法直接進(jìn)行標(biāo)記,建立新的肝臟中胰島素的原位檢測(cè)方法迫在眉睫。
免疫熒光技術(shù)是一種利用熒光標(biāo)記的抗體來(lái)檢測(cè)特定抗原的技術(shù),其將抗原抗體反應(yīng)的特異性和敏感性與顯微示蹤的精確性相結(jié)合。目前,常用免疫熒光染色同時(shí)原位檢測(cè)多種抗原,以熒光顯微圖像的共定位情況對(duì)相關(guān)的生物學(xué)現(xiàn)象進(jìn)行描述[12]。共定位檢測(cè)可將分子間的相互作用、相對(duì)位置關(guān)系、空間距離等數(shù)據(jù)可視化和直觀化,提供了一種推斷體內(nèi)分子間相互作用的方法[13]。因此,通過(guò)免疫熒光技術(shù)檢測(cè)生理?xiàng)l件下胰島素的空間分布和可能的分子間相互作用,將有利于詮釋2型糖尿病的發(fā)生機(jī)制。
固定、透膜和染色是免疫熒光實(shí)驗(yàn)的三個(gè)主要步驟。在免疫熒光實(shí)驗(yàn)中,有效的透膜和保留細(xì)胞結(jié)構(gòu)之間存在著微妙的平衡[14]。除了抗體的品質(zhì),固定劑和透膜劑的選擇也會(huì)明顯影響染色結(jié)果[15-16]。本研究中,我們主要探究5種固定和透膜組合對(duì)肝臟組織冷凍切片中胰島素?zé)晒馊旧挠绊?,為體內(nèi)研究胰島素的分布、代謝和其他分子間的相互作用提供技術(shù)支持。
SPF級(jí)C57BL/6小鼠,雄性,6~8周齡,18~20 g,由濟(jì)南朋悅實(shí)驗(yàn)動(dòng)物繁育有限公司提供,許可證號(hào)為SCXK(魯)2019-0003。
4%多聚甲醛和抗熒光淬滅劑購(gòu)自武漢賽維爾公司;Triton X-100和山羊血清購(gòu)自北京索萊寶公司;Saponin購(gòu)自上海源葉公司;蔗糖和丙酮購(gòu)自中國(guó)國(guó)藥集團(tuán)化學(xué)試劑公司;甲醇和冰醋酸購(gòu)自天津富宇公司;Optimal cutting temperature compound(OCT)包埋劑和免疫組化筆購(gòu)自Biosharp;重組Anti-Insulin抗體、重組Anti-p53 (acetyl K382)抗體和山羊抗兔IgG抗體(Alexa Fluor?488)購(gòu)自Abcam;4',6-二脒基-2-苯基吲哚(4',6-diamidine-2-phenylindole, DAPI)和重組的人胰島素購(gòu)自Sigma-Aldrich。冷凍切片機(jī)和激光掃描共聚焦顯微鏡購(gòu)自Leica。
3.1動(dòng)物處理小鼠禁食不禁水18 h后,實(shí)驗(yàn)組小鼠腹腔注射葡萄糖溶液,劑量為2 g/kg,8 min后采用頸椎脫臼法處死小鼠并摘取小鼠肝臟組織。陰性對(duì)照組小鼠,不注射葡萄糖溶液。
3.2組織處理將小鼠肝臟組織的左外側(cè)葉切成1 cm×1 cm×1 cm的方塊,采用切片前固定或切片后固定的方式處理肝臟組織塊,使用冷凍切片機(jī)于-20 ℃切片,切片厚度設(shè)置為5 μm。肝臟組織切片的固定與透膜方案詳見(jiàn)表1。
表1 固定與透膜方案
3.2.1方案1和2肝臟組織塊先用4%多聚甲醛溶液于4 ℃固定20 h,隨后將其置于20%蔗糖溶液中過(guò)夜沉淀脫水。使用OCT于-20 ℃包埋組織塊,待包埋劑完全凝固后,進(jìn)行切片。分別使用0.5% Triton X-100或0.5% saponin透膜。當(dāng)使用0.5% saponin透膜時(shí),在切片封閉、抗體孵育和切片清洗過(guò)程中所用的溶液均需要添加saponin。
3.2.2方案3和4將肝臟組織塊立即置于OCT包埋劑中,使用液氮迅速使包埋劑凝固。包埋后的組織塊置于冷凍切片機(jī)中,待其溫度降至-20 ℃時(shí),進(jìn)行切片。使用在4 ℃冰箱預(yù)冷的丙酮或甲醇處理組織切片,進(jìn)行一步固定與透膜。
3.2.3方案5肝臟組織塊先用4%多聚甲醛溶液(含5%冰醋酸)于室溫固定4 h,隨后將其置于20%蔗糖溶液中過(guò)夜沉淀脫水。使用OCT于-20 ℃包埋組織塊,待包埋劑完全凝固后,進(jìn)行切片。
3.3免疫熒光染色方案
3.3.1方案1~4的染色步驟10%山羊血清封閉1 h。然后滴加稀釋后的胰島素Ⅰ抗(1∶200),將切片于4 ℃過(guò)夜孵育。使用PBS緩沖液搖洗7 min,重復(fù)6次后,滴加稀釋后的熒光Ⅱ抗(1∶200),將切片于室溫避光孵育2.5 h。使用PBS緩沖液搖洗7 min,重復(fù)6次后,滴加DAPI染色液,室溫孵育10 min。使用PBS緩沖液搖洗7 min,重復(fù)4次后,滴加少量抗熒光淬滅劑并封片。使用激光掃描共聚焦熒光顯微鏡觀察切片,并拍照記錄。
3.3.2方案5的染色步驟將Ⅰ抗的孵育方式調(diào)整為室溫14 h;將Ⅱ抗的孵育方式調(diào)整為室溫6 h。其余步驟與3.3.1中的相同。
3.4抗體特異性檢測(cè)利用抗原阻斷法,即將抗Insulin抗體與重組人胰島素按照摩爾比1∶2預(yù)先孵育后再檢測(cè)切片中胰島素,以確定胰島素Ⅰ抗的特異性,并采用重組抗p53(acetyl K382)抗體作為同型對(duì)照,以檢測(cè)抗體Fc片段的非特異性結(jié)合。通過(guò)僅加熒光Ⅱ抗,不加胰島素Ⅰ抗,以檢測(cè)熒光Ⅱ抗的非特異性結(jié)合。
3.5圖像獲取切片使用Leica TCS SP8 STED 3X激光掃描共聚焦顯微鏡(Leica Microsystems)和LAS X軟件(Leica Microsystems CMS GmbH)進(jìn)行拍攝和調(diào)節(jié),軟件版本3.5.5.19976。圖像處理使用Adobe Photoshop 2021軟件(Adobe Systems)和ImageJ 8.0軟件(National Institutes of Health)進(jìn)行處理。
如圖1所示,與陽(yáng)性對(duì)照組相比,陰性對(duì)照組未檢測(cè)到明顯的熒光,表明重組Anti-Insulin抗體特異性良好;同型對(duì)照組的陰性結(jié)果說(shuō)明重組Anti-Insulin抗體Fc段無(wú)非特異性結(jié)合,表明封閉方法是合適的;熒光Ⅱ抗對(duì)照組也未檢測(cè)到明顯的熒光,可以排除熒光Ⅱ抗的非特異性結(jié)合;自發(fā)熒光對(duì)照組同樣未檢測(cè)到明顯的熒光,可以排除組織切片自發(fā)熒光的影響。
Figure 1. Antibodies specificity verification. A~B: positive control group; C: negative control group; D: fluorescent secondary antibody control group; E: isotype control group; F: autofluorescence control group. Compared with the positive control group, the images in the negative control group, fluorescent secondary antibody control group, isotype control group, and autofluorescence control group exhibited significantly weaker fluorescence intensity. The sections were immunostained with anti-insulin antibody (A~C), anti-p53 antibody (E), goat anti-rabbit IgG (Alexa Fluor? 488) antibody (A~E), and DAPI (A~F). n=3.
方案1的檢測(cè)結(jié)果如圖2所示,肝細(xì)胞大小正常,肝血竇和肝索結(jié)構(gòu)清晰。肝細(xì)胞中胰島素?zé)晒庑盘?hào)主要分布于細(xì)胞質(zhì)膜和細(xì)胞質(zhì)中,細(xì)胞核內(nèi)存在較弱的熒光信號(hào)。
Figure 2. Immunofluorescence staining of insulin using the 4% paraformaldehyde fixation and 0.5% Triton X-100 permeabilization protocol. The sections were immunostained with anti-insulin antibody, goat anti-rabbit IgG (Alexa Fluor? 488) antibody, and DAPI (green, insulin; blue, nucleus). The images on right provide a magnified view of the images on left. n=3.
方案2的檢測(cè)結(jié)果如圖3所示,肝細(xì)胞大小正常,肝血竇和肝索結(jié)構(gòu)清晰。組織切片整體熒光非常弱,胰島素?zé)晒庑盘?hào)主要分布在肝細(xì)胞質(zhì)膜附近,胞質(zhì)中有微弱的胰島素?zé)晒庑盘?hào),細(xì)胞核內(nèi)未檢測(cè)到胰島素?zé)晒庑盘?hào)。
Figure 3. Immunofluorescence staining of insulin using the 4% paraformaldehyde fixation and 0.5% saponin permeabilization protocol. The sections were immunostained with anti-insulin antibody, goat anti-rabbit IgG (Alexa Fluor? 488) antibody, and DAPI (green, insulin; blue, nucleus). The images on right provide a magnified view of the images on left. n=3.
方案3的檢測(cè)結(jié)果如圖4所示,部分肝細(xì)胞出現(xiàn)腫脹,肝血竇結(jié)構(gòu)不清晰,可見(jiàn)少量冰晶造成的孔洞。胰島素?zé)晒庑盘?hào)主要分布于肝細(xì)胞質(zhì)膜附近,細(xì)胞質(zhì)和細(xì)胞核有微弱的胰島素?zé)晒庑盘?hào)。
Figure 4. Immunofluorescence staining of insulin using the acetone one-step fixation and permeabilization protocol. The sections were immunostained with anti-insulin antibody, goat anti-rabbit IgG (Alexa Fluor? 488) antibody, and DAPI (green, insulin; blue, nucleus). The images on right provide a magnified view of the images on left. n=3.
方案4的檢測(cè)結(jié)果如圖5所示,肝血竇結(jié)構(gòu)不清晰,細(xì)胞間界限模糊,細(xì)胞大小較難確定。胰島素?zé)晒庑盘?hào)廣泛分布于組織切片中,細(xì)胞核中存在強(qiáng)烈的點(diǎn)狀熒光信號(hào)。
Figure 5. Immunofluorescence staining of insulin using the methanol one-step fixation and permeabilization protocol. The sections were immunostained with anti-insulin antibody, goat anti-rabbit IgG (Alexa Fluor? 488) antibody, and DAPI (green, insulin; blue, nucleus). The images on right provide a magnified view of the images on left. n=3.
方案5的檢測(cè)結(jié)果如圖6所示,肝細(xì)胞比方案1和2組織切片中的肝細(xì)胞略大,肝血竇和肝索結(jié)構(gòu)清晰。胰島素?zé)晒庑盘?hào)分布于肝細(xì)胞質(zhì)膜和細(xì)胞質(zhì),細(xì)胞核處也能檢測(cè)到少量胰島素?zé)晒庑盘?hào),且熒光信號(hào)具有聚集性。
Figure 6. Immunofluorescence staining of insulin using the 4% paraformaldehyde (containing 5% glacial acetic acid) one-step fixation and permeabilization protocol. The sections were immunostained with anti-insulin antibody, goat anti-rabbit IgG (Alexa Fluor? 488) antibody, and DAPI (green, insulin; blue, nucleus). The images on right provide a magnified view of the images on left. n=3.
染色結(jié)果比較見(jiàn)表2和表3,從組織形態(tài)來(lái)看,采用方案3和4時(shí),肝血竇結(jié)構(gòu)均不清晰,采用方案3時(shí),部分肝細(xì)胞出現(xiàn)腫脹,采用方案4時(shí),細(xì)胞間界限模糊。采用方案1、2和5時(shí),組織形態(tài)良好。從染色效果來(lái)看,采用方案3時(shí),細(xì)胞質(zhì)中的胰島素?zé)晒庑盘?hào)出現(xiàn)明顯丟失;采用方案4時(shí),胰島素?zé)晒庑盘?hào)被明顯重新分布至細(xì)胞核中;采用方案2時(shí),切片整體熒光非常微弱。采用方案1和5時(shí),染色效果較好。
表2 組織形態(tài)比較
表3 熒光染色結(jié)果比較
本研究采用免疫熒光技術(shù)探索肝臟中胰島素的檢測(cè)方法,該方法可以克服預(yù)標(biāo)記技術(shù)對(duì)胰島素結(jié)構(gòu)和生理活性的影響[11],同時(shí)該方法既適于檢測(cè)外源胰島素,也適于檢測(cè)機(jī)體釋放的內(nèi)源胰島素。由于免疫熒光技術(shù)不僅能定量抗原分子,還能推斷分子間相互作用[13],因而本研究可為評(píng)價(jià)藥物、毒素或其他分子對(duì)胰島素在肝臟中的代謝、與胰島素的相互作用提供了技術(shù)支撐。
免疫熒光實(shí)驗(yàn)中,為了使熒光染色結(jié)果準(zhǔn)確反映抗原的亞細(xì)胞定位,必須滿足兩個(gè)要求:一是抗原必須保留在標(biāo)本內(nèi)的原始位置;二是抗原表位必須充分暴露以結(jié)合抗體。迄今,已有多種固定和透膜方案被用于免疫熒光實(shí)驗(yàn),通常認(rèn)為這些方法能滿足抗原保留和表位可及性的要求。然而,Hannah等[17]指出實(shí)際上這兩個(gè)要求很少能同時(shí)滿足。因此,固定劑和透膜劑的選擇將影響抗原的分布和檢測(cè)效果。
多聚甲醛固定聯(lián)合Triton X-100透膜是免疫熒光實(shí)驗(yàn)中常用的方法之一。多聚甲醛的醛基通過(guò)形成亞甲基橋來(lái)固定蛋白質(zhì),且不改變蛋白質(zhì)的三維結(jié)構(gòu)[18]。但是多聚甲醛的這種交聯(lián)作用降低了細(xì)胞膜的通透性,因此必須使用適當(dāng)?shù)耐改┰诩?xì)胞膜上打孔,以使大分子抗體進(jìn)入細(xì)胞內(nèi)。Triton X-100作為透膜劑能溶解細(xì)胞膜上的脂質(zhì)[19],其對(duì)核膜也有一定的通透作用[20],從而使抗體既能夠識(shí)別細(xì)胞質(zhì)內(nèi)抗原,也能識(shí)別細(xì)胞核內(nèi)的抗原。此外,由于Triton X-100是一種強(qiáng)去污劑,它具有溶解某些蛋白質(zhì)的能力,如脂肪分化相關(guān)蛋白、47 kD尾連蛋白、牛血清白蛋白和乳酸脫氫酶等[15,17,21],進(jìn)而影響它們的細(xì)胞定位,造成這些蛋白定位異常。根據(jù)文獻(xiàn)報(bào)道,Triton X-100能結(jié)合胰島素[22],同時(shí)細(xì)胞核中存在胰島素的結(jié)合位點(diǎn)[23],這也可能導(dǎo)致在細(xì)胞核處檢測(cè)到假陽(yáng)性熒光信號(hào)。因此,對(duì)于Triton X-100處理檢測(cè)到細(xì)胞核中存在微弱的胰島素?zé)晒庑盘?hào),目前尚無(wú)法確定是屬于正常分布還是被重新分布至細(xì)胞核。
Saponin是一種溫和的非離子型去污劑,可以溶解細(xì)胞膜上的膽固醇。Saponin主要影響膽固醇含量高的細(xì)胞膜,如細(xì)胞質(zhì)膜,而膽固醇含量低的內(nèi)質(zhì)網(wǎng)膜、核膜和線粒體膜,受影響較?。?9]。此外,saponin的透膜過(guò)程是可逆的,在抗體孵育和洗滌的溶液中必須加入saponin,否則細(xì)胞膜將會(huì)重新閉合[24],而過(guò)多的saponin使用也會(huì)導(dǎo)致某些蛋白被溶解丟失或重新分配[25-27]。在本研究中,采用方案2檢測(cè)時(shí),切片整體熒光明顯下降。我們推測(cè)主要原因是saponin透膜能力弱造成的,也不排除saponin對(duì)胰島素具有溶解作用,使其隨清洗液一起被清除。
有機(jī)試劑如丙酮和甲醇也常用于免疫熒光實(shí)驗(yàn)。有機(jī)試劑在凝結(jié)蛋白質(zhì)的同時(shí),可以溶解細(xì)胞膜上的脂質(zhì),因而可以同時(shí)完成細(xì)胞固定和細(xì)胞膜通透[19]。與Triton X-100相似,丙酮和甲醇也能破壞細(xì)胞核膜[28],可以用于細(xì)胞質(zhì)和細(xì)胞核內(nèi)的抗原檢測(cè)。無(wú)論是丙酮還是甲醇都存在提取某些蛋白質(zhì)的作用[19]。例如丙酮能提取出細(xì)胞核內(nèi)的含纈酪肽蛋白,相反甲醇則會(huì)使某些抗原優(yōu)先集中在細(xì)胞核周圍[21],但是相關(guān)機(jī)理目前尚不清楚。本研究觀測(cè)到了丙酮和甲醇對(duì)胰島素的提取作用,丙酮處理導(dǎo)致細(xì)胞質(zhì)中胰島素的熒光信號(hào)降低,而甲醇使部分胰島素重新分布至細(xì)胞核內(nèi)。肝臟組織存在較多的水分,采用方案3和4檢測(cè)時(shí),發(fā)現(xiàn)細(xì)胞出現(xiàn)腫脹和界限模糊,推測(cè)可能是由于組織未經(jīng)過(guò)脫水處理,在液氮速凍過(guò)程中細(xì)胞內(nèi)液膨脹造成細(xì)胞體積增大[29-30],也可能與有機(jī)溶劑的使用溫度有關(guān)[31],但確切機(jī)制有待闡明。
短鏈脂肪族羧酸可以調(diào)節(jié)醛類固定劑對(duì)蛋白質(zhì)的交聯(lián)作用,使多聚甲醛形成的亞甲基交聯(lián)橋更為松散,從而增加細(xì)胞的通透性[18]。多聚甲醛與短鏈脂肪酸尤其是冰醋酸聯(lián)合使用同樣能達(dá)到一步固定和透膜作用。同時(shí),該方法也避免了使用去污劑和有機(jī)溶劑的干擾。相較于方案1的結(jié)果,本方案檢測(cè)到部分的胰島素?zé)晒庑盘?hào)具有聚集性,證明Triton X-100確有溶解胰島素的作用。同時(shí),由于Triton X-100容易破壞內(nèi)體的結(jié)構(gòu)[32],方案5適合檢測(cè)內(nèi)體中的胰島素。
綜上所述,本研究通過(guò)制作肝臟組織冷凍切片,探究了5種固定與透膜組合對(duì)胰島素免疫熒光染色的影響,結(jié)果顯示4%多聚甲醛固定聯(lián)合Triton X-100透膜或4%多聚甲醛(含5%冰醋酸)一步固定與透膜比較適合于檢測(cè)內(nèi)源性的胰島素在肝臟組織冷凍切片中的空間分布。
[1]中華醫(yī)學(xué)會(huì)糖尿病學(xué)分會(huì). 中國(guó)2型糖尿病防治指南(2020年版)[J]. 中華糖尿病雜志, 2021, 13(4):315-409.
Diabetes Society of Chinese Medical Association. Chinese guidelines for the prevention and treatment of type 2 diabetes (2020 Edition)[J]. Chin J Diabetes, 2021, 13(4):315-409.
[2]楊坡,李艷紅,韓揚(yáng)卓,等. 禁食療法減輕2型糖尿病作用機(jī)制的研究進(jìn)展[J]. 中國(guó)病理生理雜志, 2021, 37(6):1146-1152.
Yang P, Li YH, Han YZ, et al. Mechanism of fasting treatment to attenuate type 2 diabetes mellitus[J]. Chin J Pathophysiol, 2021, 37(6):1146-1152.
[3]張利眾,趙瑞景,劉建坤,等. 吡咯烷二硫代氨基甲酸酯對(duì)2型糖尿病大鼠肝糖原合成的影響[J]. 中國(guó)病理生理雜志, 2010, 26(12):2442-2446.
Zhang LZ, Zhao RJ, Liu JK, et al. Effects of pyrrolidine dithiocarbamate on synthesis of hepatic in diabetic rats[J]. Chin J Pathophysiol, 2010, 26(12):2442-2446.
[4] Najjar SM, Perdomo G. Hepatic insulin clearance: mechanism and physiology[J]. Physiology (Bethesda), 2019, 34(3):198-215.
[5] Li J, Chen C, Xia T. Understanding nanomaterial-liver interactions to facilitate the development of safer nanoapplications[J]. Adv Mater, 2022, 34(11):e2106456.
[6]李繼承,曾園山. 組織學(xué)與胚胎學(xué)[M]. 第9版. 北京:人民衛(wèi)生出版社, 2018:149-151.
Li JC, Zeng YS. Histology and embryology[M]. 9th ed. Beijing: People's Medical Publishing House, 2018:149-151.
[7] Mcclain DA. Mechanism and role of insulin receptor endocytosis[J]. Am J Med Sci, 1992, 304(3):192-201.
[8] Harada S, Loten EG, Smith RM, et al. Nonreceptor mediated nuclear accumulation of insulin in H35 rat hepatoma cells[J]. J Cell Physiol, 1992, 153(3):607-613.
[9] Goldfine I D, Jones AL, Hradek GT, et al. Electron microscope autoradiographic analysis of [125I]iodoinsulin entry into adult rat hepatocytes: evidence for multiple sites of hormone localization[J]. Endocrinology, 1981, 108(5):1821-1828.
[10] Harada S, Smith RM, Jarett L. Mechanisms of nuclear translocation of insulin[J]. Cell Biochem Biophys, 1999, 31(3):307-319.
[11] Vu T, Taylor MJ, Singh H,et al. Synthesis and identification of biologically active mono-labelled FITC-insulin conjugate[J]. J Fluoresc, 2022, 32(2):569-582.
[12] Zinchuk V, Zinchuk O, Okada T. Quantitative colocalization analysis of multicolor confocal immunofluorescence microscopy images: pushing pixels to explore biological phenomena[J]. Acta Histochem Cytochem, 2007, 40(4):101-111.
[13] 關(guān)苑君,容嬋,梁翠莎,等. 共聚焦和超分辨率顯微熒光圖像的共定位分析淺談[J].電子顯微學(xué)報(bào), 2020, 39(1):90-99.
Guan WJ, Rong C, Liang CS, et al. Colocalization analysis of confocal and super resolution microscopy fluorescence images[J]. J Chin Electr Microsc Soc, 2020, 39(1):90-99.
[14] Stadler C, Skogs M, Brismar H, et al. A single fixation protocol for proteome-wide immunofluorescence localization studies[J]. J Proteomics, 2010, 73(6):1067-1078.
[15] Ohsaki Y, Maeda T, Fujimoto T. Fixation and permeabilization protocol is critical for the immunolabeling of lipid droplet proteins[J]. Histochem Cell Biol, 2005, 124(5):445-452.
[16] Shibata T, Tanaka T, Shimizu K, et al. Immunofluorescence imaging of the influenza virus M1 protein is dependent on the fixation method[J]. J Virol Methods, 2009, 156(1-2):162-165.
[17] Hannah M J, Weiss U, Huttner W B. Differential extraction of proteins from paraformaldehyde-fixed cells: lessons from synaptophysin and other membrane proteins[J]. Methods, 1998, 16(2):170-181.
[18] Fernández J, Fuentes R. Fixation/permeabilization: new alternative procedure for immunofluorescence and mRNAhybridization of vertebrate and invertebrate embryos[J]. Dev Dyn, 2013, 242(5):503-517.
[19] Jamur MC, Oliver C. Permeabilization of cell membranes[J]. Methods Mol Biol, 2010, 588:63-66.
[20] Goidl JA. Insulin binding to isolated liver nuclei from obese and lean mice[J]. Biochemistry, 1979, 18(17):3674-3679.
[21] Melan MA, Sluder G. Redistribution and differential extraction of soluble proteins in permeabilized cultured cells. Implications for immunofluorescence microscopy[J]. J Cell Sci, 1992, 101(4):731-743.
[22] Siposova K, Sedlak E, Kozar T, et al. Dual effect of non-ionic detergent Triton X-100 on insulin amyloid formation[J]. Colloids Surf B Biointerfaces, 2019, 173:709-718.
[23] Goldfine ID, Smith GJ. Binding of insulin to isolated nuclei[J]. Proc Natl Acad Sci U S A, 1976, 73(5):1427-1431.
[24] Fischer AH, Jacobson KA, Rose J, et al. Fixation and permeabilization of cells and tissues[J]. CSH Protoc, 2008, 2008:pdb.top36.
[25] Ciechomska IA, Tolkovsky AM. Non-autophagic GFP-LC3 puncta induced by saponin and other detergents[J]. Autophagy, 2007, 3(6):586-590.
[26] Krutzik PO, Nolan GP. Intracellular phospho-protein staining techniques for flow cytometry: monitoring single cell signaling events[J]. Cytometry A, 2003, 55(2):61-70.
[27] Pillion DJ, Recchia J, Wang P, et al. DS-1, a modifiedsaponin, enhances ocular and nasal absorption of insulin[J]. J Pharm Sci, 1995, 84(11):1276-1279.
[28] Hoetelmans RW, Prins FA, Cornelese-Ten Velde I, et al. Effects of acetone, methanol, or paraformaldehyde on cellular structure, visualized by reflection contrast microscopy and transmission and scanning electron microscopy[J]. Appl Immunohistochem Mol Morphol, 2001, 9(4):346-351.
[29] 胡錦林,王燦銘,郭振英. 固定液對(duì)冷凍切片質(zhì)量的影響[J].臨床與實(shí)驗(yàn)病理學(xué)雜志, 2015, 31(6):706-707.
Hu JL, Wang CM, Guo ZY. Effect of the fixed solution on the quality of frozen sections[J]. J Clin Exp Pathol, 2015, 31(6):706-707.
[30] 胥維勇,楊群. 影響冷凍切片質(zhì)量因素的分析[J]. 中國(guó)組織化學(xué)與細(xì)胞化學(xué)雜志, 2003, 12(2):228-229.
Xu WY, Yang Q. Analysis of factors affecting the quality of frozen sections[J]. Chin J Histochem Cytochem, 2003, 12(2):228-229.
[31] Cinar O, Semiz O, Can A. A microscopic survey on the efficiency of well-known routine chemical fixatives on cryosections[J]. Acta Histochem, 2006, 108(6):487-496.
[32] Scheffler JM, Schiefermeier N, Huber LA. Mild fixation and permeabilization protocol for preserving structures of endosomes, focal adhesions, and actin filaments during immunofluorescence analysis[J]. Methods Enzymol, 2014, 535:93-102.
Effects of fixation and permeabilization protocols on immunofluorescence detection of insulin in liver frozen sections
ZHANG Jie, LU Zhongxia, LI Xinyu, LIU Luxin, LU Xinzhi△
(,,266003,)
To investigate the impacts of various fixation and permeabilization methods on the immunofluorescence detection of insulin in frozen sections of mouse liver, as well as to offer technical assistance for investigating insulin metabolism and the interactions between insulin and other molecules in the liver.Frozen sections of mouse liver were obtained using either pre-sectioning or post-sectioning fixation. The effects of five different fixation and permeabilization protocols on insulin fluorescence staining were examined in these liver sections using the indirect immunofluorescence technique.(1) In protocol 1, using 4% paraformaldehyde fixation paired with 0.5% Triton X-100 permeabilization resulted in well-defined structures of hepatic sinuses and hepatic cords. Insulin fluorescence signals were predominantly found in the cytoplasmic membrane and the cytoplasm. (2) In protocol 2, following 4% paraformaldehyde fixation coupled with 0.5% saponin permeabilization, clear structures of hepatic sinuses and hepatic cords were seen. However, fluorescence signals across the sections were relatively weak and primarily localized near the cytoplasmic membrane. (3) With protocol 3, utilizing the one-step fixation and permeabilization with acetone led to unclear hepatic sinuses and some hepatocytes exhibiting swelling. Insulin fluorescence signals were mainly concentrated near the cytoplasmic membrane. (4) For protocol 4, using the one-step fixation and permeabilization with methanol resulted in indistinct hepatic sinuses, unclear cellular boundaries, and noticeable nuclear translocation of insulin fluorescence signals. (5) In protocol 5, employing the one-step fixation and permeabilization with 4% paraformaldehyde (inclusive of 5% acetic acid) resulted in sharply outlined structures of hepatic sinuses and hepatic cords. Insulin fluorescence signals were primarily located in the cytoplasmic membrane and the cytoplasm.Protocols 1 and 5 are deemed suitable for detecting insulin in liver frozen sections.
insulin; liver; fixation; permeabilization; frozen section; immunofluorescence
R587.1; R363
A
10.3969/j.issn.1000-4718.2023.09.023
1000-4718(2023)09-1716-08
2023-06-25
2023-09-01
國(guó)家重點(diǎn)研發(fā)計(jì)劃專項(xiàng)(No. 2018YFC0311105)
Tel: 0532-82032067; E-mail: luxinzhi@ouc.edu.cn
(責(zé)任編輯:宋延君,李淑媛)