賈閔羽
摘要:在乳腺癌的研究中,盡管雄激素受體(AR) 在三陰性乳腺癌 (TNBC)中的預(yù)后價(jià)值存在爭(zhēng)議,但已有研究表明,缺乏AR表達(dá)會(huì)加劇疾病進(jìn)展。并且在TNBC亞型中,與AR(+)TNBC相比,AR(-)TNBC會(huì)因缺乏預(yù)后生物標(biāo)志物和治療靶點(diǎn)更具侵襲性。隨著磷脂酰肌醇3-激酶/蛋白激酶B、S期激酶相關(guān)蛋白2信號(hào)通路等新型治療靶點(diǎn)以及新興免疫療法的深入研究,TNBC的治療可選擇方案也在不斷增加。關(guān)于AR在TNBC中的作用機(jī)制,目前AR(-)TNBC腫瘤生物學(xué)的研究和新的生物標(biāo)志物的文獻(xiàn)仍然很少。本文總結(jié)了AR在TNBC中的研究現(xiàn)狀,提出了TNBC未來研究的途徑、潛在生物標(biāo)志物和治療策略。
關(guān)鍵詞:三陰性乳腺癌;雄激素受體;雄激素受體拮抗劑;腫瘤生物標(biāo)志物
中圖分類號(hào): R737.9文獻(xiàn)標(biāo)志碼: A文章編號(hào):1000-503X(2023)02-0303-08
DOI:10.3881/j.issn.1000-503X.14943
Research Progress in Androgen Receptor and Triple Negative Breast Cancer
JIA Minyu
ABSTRACT:The research on androgen receptor (AR) in breast cancer is advancing.Although the prognostic value of AR in triple negative breast cancer (TNBC) is controversial,a variety of studies have demonstrated that the lack of AR expression exacerbates disease progression.Moreover,the TNBC subtype of AR(-) is more aggressive than that of AR(+) due to the lack of prognostic biomarkers and therapeutic targets.With the discovery and deepening research of novel therapeutic targets such as phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin and S-phase kinase-associated protein 2 signaling pathways,as well as the emerging of immunotherapies,the treatment options for TNBC are increasing.Regarding the role of AR in TNBC,the studies about the tumor biology of AR(-)TNBC and novel biomarkers for improved management of the disease remain insufficient.In this review,we summarize the research progress of AR in TNBC,put forward avenues for future research on TNBC,and propose potential biomarkers and therapeutic strategies that warrant investigation.
Key words:triple negative breast cancer;androgen receptor;androgen receptor antagonist;tumor biomarker
Acta Acad Med Sin,2023,45(2):303-310
三陰性乳腺癌(triple negative breast cancer,TNBC)是指雌激素受體(estrogen receptor,ER)、孕激素受體(progesterone receptor,PR)和人表皮生長(zhǎng)因子受體2(human epidermal growth factor receptor 2,HER2)均陰性的一種乳腺癌亞型[1]。TNBC是一種高度惡性乳腺癌,因其缺乏特定分子靶點(diǎn)(ER和HER2),內(nèi)分泌和抗HER2治療對(duì)其無效,化療被認(rèn)為是目前唯一有效的治療方式。盡管TNBC具有更高的化療敏感性,但晚期患者化療后復(fù)發(fā)是目前亟待解決的問題[2-3]。因?yàn)榇_定可靠的預(yù)后生物標(biāo)志物和新的治療靶點(diǎn)具有非常重要的臨床意義,所以目前更多的研究轉(zhuǎn)向在乳腺癌中陽性表達(dá)位居第3(70%~90%)的雄激素受體(androgen receptor,AR) 上[4]。
根據(jù)AR表達(dá),TNBC可細(xì)分為AR(+)TNBC和AR(-)TNBC。與其他非TNBC的乳腺癌亞型相比,TNBC侵襲性更強(qiáng),預(yù)后更差,在確診后5年內(nèi)局部復(fù)發(fā)率和遠(yuǎn)處轉(zhuǎn)移率更高[5]。有證據(jù)表明,包括種族、年齡、體重指數(shù)、社會(huì)地位、高脂飲食等在內(nèi)的非生物因素也是TNBC的重要病因,個(gè)體差異和腫瘤的明顯異質(zhì)性使得TNBC治療更具有挑戰(zhàn)性[1,6]。為了實(shí)現(xiàn)精準(zhǔn)治療,依據(jù)基因表達(dá)將TNBC分為4種不同的分子亞型,包括2種基底樣亞型(basal-like subtype,BL1和BL2)、間充質(zhì)型和管腔雄激素受體型(luminal androgen receptor,LAR)[7]。一項(xiàng)回顧性分析顯示,不同亞型對(duì)新輔助化療的反應(yīng)有顯著差異,LAR的反應(yīng)較差,而BL1的反應(yīng)較好[8]。
進(jìn)一步研究發(fā)現(xiàn),AR在乳腺癌中的陽性表達(dá)率介于7%~75%[9]。目前正在進(jìn)行臨床試驗(yàn)的AR拮抗劑,如苯扎魯胺和比卡魯胺,在AR(+)的TNBC患者中取得較好的結(jié)果,越來越多的證據(jù)支持AR是AR(+)TNBC的治療靶點(diǎn)[10-12]。然而,其余缺乏AR表達(dá)的TNBC,不能從AR拮抗劑中受益。有研究顯示,與AR(+) TNBC患者相比,AR(-)TNBC的預(yù)后更差[13-14]。
AR(-)TNBC在分子和基因組成上與AR(+)TNBC不同,需要對(duì)AR的作用機(jī)制進(jìn)行更深入的研究。本文總結(jié)了AR在乳腺癌中的研究現(xiàn)狀,以及 AR(-)TNBC可能存在的靶點(diǎn),為TNBC治療方案及管理提供新方向與新思路。
AR與TNBC
AR是一種Ⅰ型核受體,屬于類固醇激素受體家族的成員。在不同性別的各種組織中AR都有表達(dá),在女性中扮演著重要的角色[15],敲除AR基因的小鼠表現(xiàn)出排卵功能障礙和卵泡生長(zhǎng)受損,進(jìn)一步證實(shí)在正常生育中AR是不可或缺的[16]。此外,雄激素在女性乳房發(fā)育中起重要作用,女性卵巢和腎上腺合成睪酮,睪酮在乳腺組織中轉(zhuǎn)化為雙氫睪酮或17-雌二醇,分別與AR或ER-α結(jié)合,起抑制或刺激乳腺細(xì)胞增殖的作用[17]。研究表明,睪酮優(yōu)先轉(zhuǎn)化為雙氫睪酮,在缺乏雌激素的情況下,被代謝為17-雌二醇,維持乳腺內(nèi)的荷爾蒙平衡。敲除AR基因的小鼠表現(xiàn)出乳腺上皮細(xì)胞及導(dǎo)管增殖減緩[18]。種種研究表明AR在正常乳腺組織發(fā)育中發(fā)揮作用。
4種不同的TNBC分子亞型中,在LAR中AR表達(dá)較高,且對(duì)AR靶向治療更敏感[19]。但AR對(duì)TNBC的預(yù)后作用尚無定論,一些基于免疫組織化學(xué)的研究證實(shí)AR(+)TNBC預(yù)后較好[20-21];也有研究顯示AR表達(dá)增強(qiáng),但TNBC仍有較差的預(yù)后[22-24];更有研究發(fā)現(xiàn)AR與TNBC預(yù)后沒有直接的相關(guān)性[25-28]。這些差異可能是由于研究中樣本獲取方法、染色、計(jì)分方法、抗體和AR陽性分界值不同造成的[29]。一項(xiàng)多機(jī)構(gòu)研究通過評(píng)估不同人群中AR的表達(dá)發(fā)現(xiàn),即使排除上述因素,預(yù)后差異性仍然存在[30],這種差異性可能是由于AR轉(zhuǎn)錄過程中的結(jié)構(gòu)重排或選擇性剪接而產(chǎn)生的AR剪切變異體(AR splice variants,AR-Vs)造成的[31]。到目前為止,已發(fā)現(xiàn)15種不同的AR-Vs[31-33]。 AR-V7亞型是目前研究的熱點(diǎn),其表達(dá)與預(yù)后不良相關(guān)[34-35]。研究不同的AR-Vs可能是解決TNBC患者中AR表達(dá)差異性的關(guān)鍵。此外,研究顯示AR(+)(無論表達(dá)高低)可促進(jìn)腫瘤干細(xì)胞的生長(zhǎng),導(dǎo)致化療耐藥和腫瘤復(fù)發(fā)[20]。
AR(-)TNBC治療靶點(diǎn)的檢測(cè) 蛋白質(zhì)及基因表達(dá)測(cè)序可為AR(+) TNBC提供新的治療靶點(diǎn)[36],但遺憾的是,目前對(duì)AR(-)TNBC全基因組差異的研究極少。那些在AR(+) TNBC中過度表達(dá)的藥物靶點(diǎn)能否在AR(-)TNBC中表達(dá)還需要進(jìn)一步研究。與AR(+) TNBC相比,AR(-)TNBC中表皮生長(zhǎng)因子受體和拓?fù)洚悩?gòu)酶Ⅱα的表達(dá)更高,受體酪氨酸激酶和胸苷酸合成酶(thymidylatesynthase,TS)的表達(dá)也顯著更高[37]。已有研究證實(shí),在AR(+) TNBC中受體酪氨酸激酶[38]與胸苷酸合成酶[39]水平較其余亞型顯著升高,并提示其預(yù)后較差。對(duì)AR(-)乳腺癌的進(jìn)一步檢測(cè)發(fā)現(xiàn),一些免疫相關(guān)基因也存在差異表達(dá),包括E2F1、PDK1、CCL2、CEBPB、NFKBIL2、TGFB3、IL12RB2、IL2RA和SOS1[40]。
E2F1與血管生成標(biāo)志物 E2F1是參與G1/S轉(zhuǎn)換,導(dǎo)致乳腺癌轉(zhuǎn)移的主要調(diào)節(jié)因子[41]。已有研究表明,E2F1影響缺氧和血管生成兩個(gè)癌癥生成的信號(hào)通路,E2F1促進(jìn)血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)調(diào)節(jié)血管生成[42],而表皮生長(zhǎng)因子受體對(duì)VEGF的上調(diào)在AR(-)TNBC中高于AR(+)TNBC[43-44]。在轉(zhuǎn)移性乳腺癌和TNBC臨床試驗(yàn)中,VEGF抑制劑(如貝伐單抗)聯(lián)合化療或其他藥物可明顯改善患者無病生存期及總生存期(overall survive,OS)[45]。除VEGF外,其他血管生成標(biāo)志物,如成纖維細(xì)胞生長(zhǎng)因子、缺氧誘導(dǎo)因子(hypoxia-inducible factor,HIF)和胰島素生長(zhǎng)因子等作為AR(-)TNBC潛在治療靶點(diǎn),需進(jìn)一步研究其作用機(jī)制。
缺氧介質(zhì) 為了適應(yīng)缺氧,腫瘤中的HIF-1α和HIF-2α和碳酸酐酶IX(carbonic anhydrase IX,CAIX)表達(dá)上調(diào),參與細(xì)胞存活、增殖、血管生成、侵襲、轉(zhuǎn)移等[46-47],并在TNBC中表達(dá)較高[48-49]。CAIX高表達(dá)與AR(-)/ER(-)患者的無病生存期、OS較差相關(guān)[50]。HIF-1α下調(diào)促進(jìn)細(xì)胞凋亡,降低細(xì)胞侵襲性和遷移能力,抑制CAIX的表達(dá)促進(jìn)原位乳腺腫瘤消退[51]。有關(guān)HIF和CAIX抑制劑和單克隆抗體目前正在進(jìn)行早期臨床測(cè)試,以明確在缺氧誘導(dǎo)蛋白作用下AR(+)TNBC和AR(-)TNBC之間是否存在差異,可確定靶向HIF1-α和CAIX是否對(duì)AR(-)TNBC有效[57]。
3-磷脂酰肌醇依賴的蛋白激酶-1 3-磷脂酰肌醇依賴的蛋白激酶-1(3-phosphoinositide-dependent protein kinase-1,PDK-1)是PI3K的下游效應(yīng)器,依賴磷脂酰肌醇3-激酶-蛋白激酶B(phosphatidylinositol 3 kinase,PI3K/protein kinase B,PKB)信號(hào)途徑在腫瘤發(fā)揮作用[40];但在乳腺癌中,PDK-1是以PI3K/PKB 不依賴的方式激活的[52],研究表明PDK-1的缺失可以延緩腫瘤進(jìn)展和轉(zhuǎn)移[53],并且通過PI3K/PKB途徑參與乳腺癌分子亞型的獲得性耐藥機(jī)制,誘導(dǎo)TNBC化療耐藥[54-55]。GSK2334470(英國(guó)制藥公司葛蘭素史克)、OXIDs(拉波塞利實(shí)驗(yàn)室)和MP7(默克公司)等PDK-1抑制劑[55],有望成為AR(-)TNBC新的治療藥物。
Micro-RNA 通過研究153個(gè)在AR(-)TNBC和AR(+)TNBC分子亞型之間差異表達(dá)的微小RNA (microRNA,miRNA),顯示miRNA參與腫瘤細(xì)胞增殖和侵襲的幾條信號(hào)通路[56]。另一項(xiàng)使用TCGA數(shù)據(jù)的研究發(fā)現(xiàn)了40個(gè)在AR(-)TNBC中差異表達(dá)的miRNA,這些miRNA與種族和乳腺癌分子亞型相關(guān)[57]。目前正在開發(fā)的miRNA模擬物和miRNA抑制劑,可用于治療癌癥和其他疾病。識(shí)別出AR(-)TNBC特異性的miRNA可能改善TNBC檢測(cè)指標(biāo)及預(yù)后評(píng)價(jià)。
轉(zhuǎn)錄因子 CCAAT增強(qiáng)子結(jié)合蛋白β是一種調(diào)控炎癥反應(yīng)的轉(zhuǎn)鐵蛋白,通過參與19miRNA (C19MC)的表達(dá),而間接參與TNBC發(fā)生[36]。CCAAT增強(qiáng)子結(jié)合蛋白β在缺氧條件下誘發(fā)進(jìn)一步證實(shí)缺氧在AR(-)TNBC中起重要作用[58]。通過對(duì)TCGA數(shù)據(jù)集的分析,發(fā)現(xiàn)17個(gè)在TNBC中上調(diào)的TF,如同源盒蛋白轉(zhuǎn)錄因子Engrailed-1(EN1)的下調(diào)顯著降低TNBC存活率[59]。此外,EN1高表達(dá)促進(jìn)AR(-)TNBC細(xì)胞的增殖和遷移,與腦轉(zhuǎn)移和OS不良相關(guān)[60]。EN1的多功能納米顆粒用于治療耐藥TNBC已取得良好結(jié)果[61],AR(-)TNBC作為一種特殊類型的TNBC,可能也同樣有效。
S期激酶相關(guān)蛋白2 S期激酶相關(guān)蛋白2(S-phase kinase-associated protein 2 Skp-2)作為泛素連接酶復(fù)合體的一部分,參與p21、p27和p57(屬于細(xì)胞周期蛋白依賴性激酶抑制劑)等蛋白的降解,在S期參與DNA復(fù)制[62]。與非TNBC相比,Skp-2是TNBC中表達(dá)的關(guān)鍵基因之一[36],但Skp-2在AR(-)TNBC和AR(+)TNBC中差異性表達(dá)機(jī)制尚不清楚。研究已證實(shí)AR是前列腺癌中Skp-2的上游調(diào)節(jié)因子,Skp-2過度表達(dá)導(dǎo)致AR活性降低[63-65]。這一研究為Skp-2成為AR(-)TNBC治療靶點(diǎn)奠定了基礎(chǔ),需要進(jìn)一步研究證實(shí)其有效性。
免疫治療 趨化因子基因CCL-2通過促進(jìn)單核細(xì)胞和腫瘤相關(guān)巨噬細(xì)胞(tumor-associated macrophage,TAM)參與腫瘤的發(fā)生和發(fā)展[66]。CCL-2的過度表達(dá)與腫瘤患者預(yù)后不良有關(guān),但使用CCL-2的抗體進(jìn)行干預(yù)并沒有達(dá)到預(yù)期效果[67]。TAM和腫瘤相關(guān)中性粒細(xì)胞在TNBC中明顯高于非TNBC[68-69]。目前已知TAM和腫瘤相關(guān)中性粒細(xì)胞參與抗腫瘤免疫,但它們也可以轉(zhuǎn)變?yōu)橛H腫瘤細(xì)胞表型[70]。與AR (+)TNBC相比,AR(-)TNBC中CD4+和CD8+T細(xì)胞標(biāo)志以及程序性死亡受體-1、程序性死亡受體-配體1(programmed cell death-Ligand 1,PD-L1)和細(xì)胞毒性T淋巴細(xì)胞相關(guān)蛋白4(cytotoxic T lymphocyte-associated antigen-4,CTLA-4)的表達(dá)顯著升高[40]。除了PD-L1抑制劑,針對(duì)CTLA-4和淋巴細(xì)胞活化基因-3的免疫檢查點(diǎn)抑制劑,如易普利姆瑪(ipilimumab)等正在進(jìn)行的Ⅲ期和Ⅰ/Ⅱ期臨床試驗(yàn)[71]。系統(tǒng)研究AR(-)TNBC免疫狀況對(duì)于后期免疫治療非常有價(jià)值。
AR與TNBC的治療
比卡魯胺、恩扎魯胺作為AR靶向治療第1、2代藥物,抗腫瘤效果取得陽性結(jié)果[9,72]。比卡魯胺耐藥的患者通常對(duì)恩扎魯胺更敏感[73-74]。達(dá)魯他胺是一種新型AR拮抗劑,能夠在抗雄激素治療中阻斷突變AR的活性,特別是雄激素相關(guān)配體結(jié)合域中對(duì)苯扎魯胺耐藥的F876L突變,并且不會(huì)引起血清睪酮水平增加,其穿透血腦屏障的作用也可以忽略不計(jì)[75]。新型AR拮抗劑,如奧特龍、醋酸阿比特龍和VT-464均屬于細(xì)胞色素P450c17α抑制劑,分別作用于雄激素生成和加工過程,從而抑制TNBC和HER-2(+)乳腺癌中腫瘤細(xì)胞的生長(zhǎng),在患者臨床獲益率及中位無進(jìn)展生存期取得陽性結(jié)果[76-77]。
一些新型AR拮抗劑也正在開發(fā)中。研究表明,選擇性AR調(diào)節(jié)劑能夠在5周內(nèi)將腫瘤重量減少90%,并減少腫瘤誘導(dǎo)的惡病質(zhì)[78]。新型口服非甾體選擇性AR調(diào)節(jié)劑、GTx-024對(duì)雄激素作用減弱,對(duì)體外和體內(nèi)的乳腺癌細(xì)胞生長(zhǎng)具有抑制作用[79]。此外,GT0918可以有效抑制 AR(+)乳腺腫瘤的生長(zhǎng),并且耐受性良好,因此可能為 AR 陽性乳腺癌提供臨床益處[80]。
展望
AR(-)TNBC可能是較AR(+)TNBC更具侵襲性、預(yù)后更差的分子亞型。目前的研究顯示,將TNBC視為一種亞型是對(duì)這種復(fù)雜疾病的狹隘看法。評(píng)估乳腺癌中生物標(biāo)志物的差異性,有利于發(fā)現(xiàn)TNBC獨(dú)有的治療靶點(diǎn)。有證據(jù)表明,AR(-)TNBC具有高度的增殖和免疫原性,可能從化療和免疫治療中獲益,但其對(duì)紫杉烷類的耐藥也很明顯。因此,化療聯(lián)合AR(-)TNBC相關(guān)標(biāo)志物藥物,可能會(huì)改善預(yù)后。
絕大多數(shù)標(biāo)志物可以通過免疫組織化學(xué)等方法進(jìn)行評(píng)估。血液中的循環(huán)腫瘤細(xì)胞,是轉(zhuǎn)移性腫瘤中檢測(cè)AR的方法之一,可用于隨訪和治療期間評(píng)估乳腺癌患者AR的差異表達(dá)[77,81-82]。乳腺癌循環(huán)腫瘤細(xì)胞還可用來評(píng)估AR-V7的表達(dá),其表達(dá)與骨轉(zhuǎn)移增加有直接關(guān)系,也可能成為預(yù)測(cè)阿比特龍和苯扎魯胺療效的指標(biāo)[34]。除了AR蛋白的表達(dá),AR基因表達(dá)特征和AR磷酸化狀態(tài)可能是預(yù)測(cè)AR靶向治療有效的預(yù)測(cè)因子[83-84]。在前列腺癌中,血清、血漿、尿液中AR濃度已證實(shí)與診斷和預(yù)測(cè)預(yù)后有關(guān)[85]。
AR表達(dá)的分界值是AR(-)TNBC患者制定治療方案的關(guān)鍵,但目前尚未制定AR狀態(tài)評(píng)估的專家共識(shí)。在許多研究中,暫且將美國(guó)臨床腫瘤學(xué)會(huì)/美國(guó)病理學(xué)家學(xué)院指南用于AR。解決這一問題需要使用更可靠的雄激素驅(qū)動(dòng)基因信號(hào)來檢測(cè)AR水平,確定AR依賴蛋白(可能因乳腺癌亞型不同而有所不同)將更好地揭示AR作用機(jī)制和預(yù)后價(jià)值。免疫療法如程序性死亡受體-1、PD-L1和CTLA-4,靶向TAM或?qū)⒕奘杉?xì)胞引導(dǎo)至腫瘤微環(huán)境的細(xì)胞因子也是癌癥治療的潛在目標(biāo),將成為具有免疫特征的AR(-)TNBC患者的選擇[67,86]。
目前,傳統(tǒng)的靶向治療不能用于TNBC亞型患者,尋求該類患者有效的治療方法是目前面臨的挑戰(zhàn)之一。隨著研究水平的不斷發(fā)展,特異性靶點(diǎn)的篩選及靶向藥物的研究,將會(huì)為現(xiàn)有乳腺癌分型及治療帶來新的啟示。
參 考 文 獻(xiàn)
[1]Bianchini G,Balko JM,Mayer IA,et al.Triple-negative breast cancer:challenges and opportunities of a heterogeneous disease[J].Nat Rev Clin Oncol,2016,13(11):674-690.DOI:10.1038/nrclinonc.2016.66.
[2]Bonotto M,Gerratana L,Poletto E,et al.Measures of outcome in metastatic breast cancer:insights from a real-world scenario[J].Oncologist,2014,19(6):608-615.DOI:10.1634/theoncologist.2014-0002.
[3]Kohler BA,Sherman RL,Howlader N,et al.Annual report to the nation on the status of cancer,1975-2011,featuring incidence of breast cancer subtypes by race/ethnicity,poverty,and state[J].J Natl Cancer Inst,2015,107(6):djv048.DOI:10.1093/jnci/djv048.
[4]Traina TA,Miller K,Yardley DA,et al.Enzalutamide for the treatment of androgen receptor-expressing triple-negative breast cancer[J].J Clin Oncol,2018,36(9):884-890.DOI:10.1200/JCO.2016.71.3495.
[5]Malorni L,Shetty PB,De Angelis C,et al.Clinical and biologic features of triple-negative breast cancers in a large cohort of patients with long-term follow-up[J].Breast Cancer Res Treat,2012,136(3):795-804.DOI:10.1007/s10549-012-2315-y.
[6]Wright N,Rida PCG,Aneja R.Tackling intra- and inter-tumor heterogeneity to combat triple negative breast cancer[J].Front Biosci (Landmark Ed),2017,22:1549-1580.DOI:10.2741/4558.
[7]Lehmann BD,Jovanovic B,Chen X,et al.Refinement of triple-negative breast cancer molecular subtypes:implications for neoadjuvant chemotherapy selection[J].PLoS One,2016,11(6):e0157368.DOI:10.1371/journal.pone.0157368.
[8]Echavarria I,Lopez-Tarruella S,Picornell A,et al.Pathological response in a triple-negative breast cancer cohort treated with neoadjuvant carboplatin and docetaxel according to lehmanns refined classification[J].Clin Cancer Res,2018,24(8):1845-1852.DOI:10.1158/1078-0432.CCR-17-1912.
[9]Hon JD,Singh B,Sahin A,et al.Breast cancer molecular subtypes:from TNBC to QNBC[J].Am J Cancer Res,2016,6(9):1864-1872.
[10]Barton VN,Damato NC,Gordon MA,et al.Androgen receptor biology in triple negative breast cancer:a case for classification as AR+ or quadruple negative disease[J].Horm Cancer,2015,6(5-6):206-213.DOI:10.1007/s12672-015-0232-3.
[11]Caiazza F,Murray A,Madden SF,et al.Preclinical evaluation of the AR inhibitor enzalutamide in triple-negative breast cancer cells[J].Endocr Relat Cancer,2016,23(4):323-334.DOI:10.1530/ERC-16-0068.
[12]Traina TA,Miller K,Yardley DA,et al.Enzalutamide for the treatment of androgen receptor-expressing triple-negative breast cancer[J].J Clin Oncol,2018,36(9):884-890.DOI:10.1200/JCO.2016.71.3495.
[13]He J,Peng R,Yuan Z,et al.Prognostic value of androgen receptor expression in operable triple-negative breast cancer:a retrospective analysis based on a tissue microarray[J].Med Oncol,2012,29(2):406-410.DOI:10.1007/s12032-011-9832-0.
[14]Luo X,Shi YX,Li ZM,et al.Expression and clinical significance of androgen receptor in triple negative breast cancer[J].Chin J Cancer,2010,29(6):585-590.DOI:10.5732/cjc.009.10673.
[15]Zhou X.Roles of androgen receptor in male and female reproduction:lessons from global and cell-specific androgen receptor knockout (ARKO) mice[J].J Androl,2010,31(3):235-243.DOI:10.2164/jandrol.109.009266.
[16]Walters KA,Simanainen U,Handelsman DJ.Molecular insights into androgen actions in male and female reproductive function from androgen receptor knockout models[J].Hum Reprod Update,2010,16(5):543-558.DOI:10.1093/humupd/dmq003.
[17]Dimitrakakis C,Zhou J,Wang J,et al.A physiologic role for testosterone in limiting estrogenic stimulation of the breast[J].Menopause,2003,10(4):292-298.DOI:10.1097/01.GME.0000055522.67459.89.
[18]Yeh S,Hu YC,Wang PH,et al.Abnormal mammary gland development and growth retardation in female mice and MCF7 breast cancer cells lacking androgen receptor[J].J Exp Med,2003,198(12):1899-1908.DOI:10.1084/jem.20031233.
[19]Lehmann BD,Bauer JA,Chen X,et al.Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies[J].J Clin Invest,2011,121(7):2750-2767.DOI:10.1172/JCI45014.
[20]Asano Y,Kashiwagi S,Goto W,et al.Expression and clinical significance of androgen receptor in triple-negative breast cancer[J].Cancers (Basel),2017,9(1):4.DOI:10.3390/cancers9010004.
[21]Kucukzeybek BB,Bayoglu IV,Kucukzeybek Y,et al.Prognostic significance of androgen receptor expression in HER2-positive and triple-negative breast cancer[J].Pol J Pathol,2018,69(2):157-168.DOI:10.5114/pjp.2018.76699.
[22]Choi JE,Kang SH,Lee SJ,et al.Androgen receptor expression predicts decreased survival in early stage triple-negative breast cancer[J].Ann Surg Oncol,2015,22(1):82-89.DOI:10.1245/s10434-014-3984-z.
[23]Constantinou C,Papadopoulos S,Karyda E,et al.Expression and clinical significance of claudin-7,PDL-1,PTEN,c-Kit,c-Met,c-Myc,ALK,CK5/6,CK17,p53,EGFR,Ki67,p63 in triple-negative breast cancer-a single centre prospective observational study[J].In Vivo,2018,32(2):303-311.DOI:10.21873/invivo.11238.
[24]Guiu S,Mollevi C,Charon-Barra C,et al.Prognostic value of androgen receptor and FOXA1 co-expression in non-metastatic triple negative breast cancer and correlation with other biomarkers[J].Br J Cancer,2018,119(1):76-79.DOI:10.1038/s41416-018-0142-6.
[25]Zaborowski M,Pearson A,Sioson L,et al.Androgen receptor immunoexpression in triple-negative breast cancers:is it a prognostic factor[J].Pathology,2019,51(3):327-329.DOI:10.1016/j.pathol.2018.09.063.
[26]Nimeus E,F(xiàn)olkesson E,Nodin B,et al.Androgen receptor in stage I-II primary breast cancer-prognostic value and distribution in subgroups[J].Anticancer Res,2017,37(12):6845-6853.DOI:10.21873/anticanres.12146.
[27]Liu YX,Zhang KJ,Tang LL.Clinical significance of androgen receptor expression in triple negative breast cancer-an immunohistochemistry study[J].Oncol Lett,2018,5(6):10008-10016.DOI:10.3892/ol.2018.8548.
[28]Jongen L,F(xiàn)loris G,Wildiers H,et al.Tumor characteristics and outcome by androgen receptor expression in triple-negative breast cancer patients treated with neo-adjuvant chemotherapy[J].Breast Cancer Res Treat,2019,176(3):699-708.DOI:10.1007/s10549-019-05252-6.
[29]Vera-Badillo FE,Templeton AJ,De-Gouveia P,et al.Androgen receptor expression and outcomes in early breast cancer:a systematic review and meta-analysis[J].J Natl Cancer Inst,2014,106(1):djt319.DOI:10.1093/jnci/djt319.
[30]Bhattarai S,Klimov S,Mittal K,et al.Prognostic role of androgen receptor in triple negative breast cancer:a multi-institutional study[J].Cancers (Basel),2019,11(7):995.DOI:10.3390/cancers11070995.
[31]Dehm SM,Tindall DJ.Alternatively spliced androgen receptor variants[J].Endocr Relat Cancer,2011,18(5):R183-R196.DOI:10.1530/ERC-11-0141.
[32]Zhan Y,Zhang G,Wang X,et al.Interplay between cytoplasmic and nuclear androgen receptor splice variants mediates castration resistance[J].Mol Cancer Res,2017,15(1):59-68.DOI:10.1158/1541-7786.MCR-16-0236.
[33]Liu C,Armatrong CM,Ning S,et al.ARVib suppresses growth of advanced prostate cancer via inhibition of androgen receptor signaling[J].Oncogene,2021,40(35):5379-5392.DOI:10.1038/s41388-021-01914-2.
[34]Antonarakis ES,Lu C,Wang H,et al.AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer[J].N Engl J Med,2014,371(11):1028-1038.DOI:10.1056/NEJMoa1315815.
[35]Hickey TE,Robinson JL,Cllarro JS,et al.Minireview:The androgen receptor in breast tissues:growth inhibitor,tumor suppressor,oncogene[J].Mol Endocrinol,2012,26(8):1252-1267.DOI:10.1210/me.2012-1107.
[36]Naorem LD,Muthaiyan M,Venkatesan A.Integrated network analysis and machine learning approach for the identification of key genes of triple-negative breast cancer[J].J Cell Biochem,2019,120(4):6154-6167.DOI:10.1002/jcb.27903.
[37]Xiu J,Obeid E,Gatalica Z,et al.Abstract P3-07-26:biomarker comparison between androgen receptor-positive-triple-negative breast cancer (AR+ TNBC) and quadruple-negative breast cancer(QNBC)[J].Cancer Res,2016,76(4 Supplement):P3-07-26.DOI:10.1158/1538-7445.SABCS15-P3-07-26.
[38]Rahimi M,Behjati F,Hamid-Reza KK,et al.The relationship between KIT copy number variation,protein expression,and angiogenesis in sporadic breast cancer[J].Rep Biochem Mol Biol,2020,9(1):40-49.DOI:10.29252/rbmb.9.1.40.
[39]Dass SA,Tan KL,Selva R,et al.Triple negative breast cancer:a review of present and future diagnostic modalities[J].Medicina (Kaunas),2021,57(1):62.DOI:10.3390/medicina57010062.
[40]Davis M,Tripathi S,Hughley R,et al.AR negative triple negative or “quadruple negative breast cancers in African American women have an enriched basal and immune signature[J].PLoS One,2018,13(6):e0196909.DOI:10.1371/journal.pone.0196909.
[41]Hollern DP,Swiatnicki MR,Rennhack JP,et al.E2F1 drives breast cancer metastasis by regulating the target gene FGF13 and altering cell migration[J].Sci Rep,2019,9(1):10718.DOI:10.1038/s41598-019-47218-0.
[42]Goody D,Gupta SK,Engelmann D,et al.Drug repositioning inferred from E2F1-coregulator interactions studies for the prevention and treatment of metastatic cancers[J].Theranostics,2019,9(5):1490-1509.DOI:10.7150/thno.29546.
[43]Wang C,Li J,Ye S,et al.Oestrogen inhibits VEGF expression and angiogenesis in triple-negative breast cancer by activating GPER-1 [J].J Cancer,2018,9(20):3802-3811.DOI:10.7150/jca.29233.
[44]Wang L,Aatone M,Alam SK,et al.Suppressing STAT3 activity protects the endothelial barrier from VEGF-mediated vascular permeability[J].Dis Model Mech,2021,14(11):dmm 049029.DOI:10.1242/dmm.049029.
[45]姜戰(zhàn)勝,潘李.貝伐珠單抗治療三陰性乳腺癌相關(guān)進(jìn)展[J].中國(guó)腫瘤臨床,2015,2015:716-719.DOI:10.3969/j.issn.1000-8179.20150579.
[46]Semenza GL.Hypoxia-inducible factors:coupling glucose metabolism and redox regulation with induction of the breast cancer stem cell phenotype[J].EMBO J,2017,36(3):252-259.DOI:10.15252/embj.201695204.
[47]Koyasu S,Kobayashi M,Goto Y,et al.Regulatory mechanisms of hypoxia-inducible factor 1 activity:Two decades of knowledge[J].Cancer Sci,2018,109(3):560-571.DOI:10.1111/cas.13483.
[48]Boddy JL,F(xiàn)ox SB,Han C,et al.The androgen receptor is significantly associated with vascular endothelial growth factor and hypoxia sensing via hypoxia-inducible factors HIF-1a,HIF-2a,and the prolyl hydroxylases in human prostate cancer[J].Clin Cancer Res,2005,11(21):7658-7663.DOI:10.1158/1078-0432.CCR-05-0460.
[49]Godet I,Mamo M,Thurnheer A,et al.Post-hypoxic cells promote metastatic recurrence after chemotherapy treatment in TNBC[J].Cancers (Basel),2021,13(21):5509.DOI:10.3390/Cancers 13215509.
[50]Noh S,Kim JY,Koo JS.Metabolic differences in estrogen receptor-negative breast cancer based on androgen receptor status[J].Tumour Biol,2014,35(8):8179-8192.DOI:10.1007/s13277-014-2103-x.
[51]Wang F,Chang M,Shi Y,et al.Down-regulation of hypoxia-inducible factor-1 suppresses malignant biological behavior of triple-negative breast cancer cells[J].Int J Clin Exp Med,2014,7(11):3933-3940.
[52]Nassan MA,Soliman MM,Ismail SA,et al.effect of taraxacum officinale extract on PI3K/Akt pathway in DMBA-induced breast cancer in albino rats[J].Biosci Rep,2018,38(6):BSR20180334.DOI:10.1042/BSR20180334.
[53]Du J,Yang M,Chen S,et al.PDK1 promotes tumor growth and metastasis in a spontaneous breast cancer model[J].Oncogene,2016,35(25):3314-3323.DOI:10.1038/onc.2015.393.
[54]Thulasiraman P,Mcandrews DJ,Mohiudddin IQ.Curcumin restores sensitivity to retinoic acid in triple negative breast cancer cells[J].BMC Cancer,2014,14:724.DOI:10.1186/1471-2407-14-724.
[55]Emmanouilidi A,F(xiàn)alasca M.Targeting PDK1 for chemosensitization of cancer cells[J].Cancers (Basel),2017,9(10):140.DOI:10.3390/cancers9100140.
[56]Shi Y,Yang F,Sun Z,et al.Differential microRNA expression is associated with androgen receptor expression in breast cancer[J].Mol Med Rep,2017,15(1):29-36.DOI:10.3892/mmr.2016.6019.
[57]Angajala A,Hughley R,Shweta T,et al.Abstract A04:identification of differentially expressed micro-RNAs in African American women with quadruple-negative breast cancer[J].Cancer Epidemiol Biomarkers Prev,2018,27 (7_Supplement):A04.DOI:10.1158/1538-7755.DISP17-A04.
[58]Sun S,Ma J,Xie P,et al.Hypoxia-responsive miR-141-3p is involved in the progression of breast cancer via mediating the HMGB1/HIF-1alpha signaling pathway[J].J Gene Med,2020,22(10):e3230.DOI:10.1002/jgm.3230.
[59]Peluffo G,Subedee A,Harper NW,et al.EN1 is a transcriptional dependency in triple-negative breast cancer associated with brain metastasis[J].Cancer Res,2019,79(16):4173-4183.DOI:10.1158/0008-5472.CAN-18-3264.
[60]Kim YJ,Sung M,Oh E,et al.Engrailed 1 overexpression as a potential prognostic marker in quintuple-negative breast cancer[J].Cancer Biol Ther,2018,19(4):335-345.DOI:10.1080/15384047.2018.1423913.
[61]Sorolla A,Wang E,Clemons TD,et al.Triple-hit therapeutic approach for triple negative breast cancers using docetaxel nanoparticles,EN1-iPeps and RGD peptides[J].Nanomedicine,2019,20:102003.DOI:10.1016/j.nano.2019.04.006.
[62]Wang Z,F(xiàn)ukushima H,Inuzuka H,et al.Skp2 is a promising therapeutic target in breast cancer[J].Front Oncol,2012,1(57):57.DOI:10.3389/fonc.2011.00057.
[63]Li B,Lu W,Yang Q,et al.Skp2 regulates androgen receptor through ubiquitin-mediated degradation independent of Akt/mTOR pathways in prostate cancer[J].Prostate,2014,74(4):421-432.DOI:10.1002/pros.22763.
[64]Sun YJ,Wang XK,Li BJ.S-phase kinase-associated protein 2 expression interference inhibits breast cancer cell proliferation[J].Genet Mol Res,2015,14(3):9244-9252.DOI:10.4238/2015.August.10.4.
[65]Wu T,Gu X,Cui H.Emerging roles of SKP2 in cancer drug resistance[J].Cells,2021,10(5):1147.DOI:10.3390/cells10051147.
[66]Zhang F,Wang JH,Zhao MS.Dynamic monocyte chemoattractant protein-1 level as predictors of perceived pain during first and second phacoemulsification eye surgeries in patients with bilateral cataract[J].BMC Ophthalmol,2021,21(1):133.DOI:10.1186/12886-021-01880-z.
[67]Fang WB,Yao M,Brummer G,et al.Targeted gene silencing of CCL2 inhibits triple negative breast cancer progression by blocking cancer stem cell renewal and M2 macrophage recruitment[J].Oncotarget,2016,7(31):49349-49367.DOI:10.18632/oncotarget.9885.
[68]Soto E,Chavarri GY,Leon RE,et al.Tumor-associated neutrophils in breast cancer subtypes[J].Asian Pac J Cancer Prev,2017,18(10):2689-2693.DOI:10.22034/APJCP.2017.18.10.2689.
[69]Sousa S,Brion R,Lintunen M,et al.Human breast cancer cells educate macrophages toward the M2 activation status[J].Breast Cancer Res,2015,17:101.DOI:10.1186/s13058-015-0621-0.
[70]Dannenmann SR,Thielicke J,Stockli M,et al.Tumor-associated macrophages subvert T-cell function and correlate with reduced survival in clear cell renal cell carcinoma[J].Oncoimmunology,2013,2(3):e23562.DOI:10.4161/onci.23562.
[71]Rangel-Sosa MM,Aguilar-Cordova E,Rojas-Martinez A.Immu-notherapy and gene therapy as novel treatments for cancer[J].Colomb Med (Cali),2017,48(3):138-147.DOI:10.25100/cm.v48i3.2997.
[72]Gucalp A,Tolaney S,Isakoff SJ,et al.Phase Ⅱ trial of bicalutamide in patients with androgen receptor-positive,estrogen receptor-negative metastatic breast cancer[J].Clin Cancer Res,2013,19(19):5505-5512.DOI:10.1158/1078-0432.CCR-12-3327.
[73]Farrow JM,Yang JC,Evans CP.Autophagy as a modulator and target in prostate cancer[J].Nat Rev Urol,2014,11(9):508-516.DOI:10.1038/nrurol.2014.196.
[74]Tran C,Ouk S,Clegg N J,et al.Development of a second-generation antiandrogen for treatment of advanced prostate cancer[J].Science,2009,324(5928):787-790.DOI:10.1126/science.1168175.
[75]Moilanen AM,Riikonen R,Oksala R,et al.Discovery of ODM-201,a new-generation androgen receptor inhibitor targeting resistance mechanisms to androgen signaling-directed prostate cancer therapies[J].Sci Rep,2015,5:12007.DOI:10.1038/srep12007.
[76]Agarwal N,Di Lorenzo G,Sonpavde G,et al.New agents for prostate cancer[J].Ann Oncol,2014,25(9):1700-1709.DOI:10.1093/annonc/mdu038.
[77]De-Kruijff IE,Sieuwerts AM,Onstenk W,et al.Androgen receptor expression in circulating tumor cells of patients with metastatic breast cancer[J].Int J Cancer,2019,145(4):1083-1089.DOI:10.1002/ijc.32209.
[78]Narayanan R,Ahn S,Cheney MD,et al.Selective androgen receptor modulators (SARMs) negatively regulate triple-negative breast cancer growth and epithelial:mesenchymal stem cell signaling[J].PLoS One,2014,9(7):e103202.DOI:10.1371/journal.pone.0103202.
[79]Vontela N,Koduri V,Schwartzberg LS,et al.Selective androgen receptor modulator in a patient with hormone-positive metastatic breast cancer[J].J Natl Compr Canc Netw,2017,15(3):284-287.DOI:10.6004/jnccn.2017.0029.
[80]Li H,Song G,Zhou Q,et al.Activity of preclinical and phase I clinical trial of a novel androgen receptor antagonist GT0918 in metastatic breast cancer[J].Breast Cancer Res Treat,2021,189(3):725-736.DOI:10.1007/s10549-021-06345-x.
[81]Prekovic S,Van den Broeck T,Moris L,et al.Treatment-induced changes in the androgen receptor axis:Liquid biopsies as diagnostic/prognostic tools for prostate cancer[J].Mol Cell Endocrinol,2018,462(PtA):56-63.DOI:10.1016/j.mce.2017.08.020.
[82]Baccelli I,Schneeweiss A,Riethdorf S,et al.Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay[J].Nat Biotechnol,2013,31(6):539-544.DOI:10.1038/nbt.2576.
[83]Kono M,F(xiàn)ujii T,Lyons GR,et al.Impact of androgen receptor expression in fluoxymesterone-treated estrogen receptor-positive metastatic breast cancer refractory to contemporary hormonal therapy[J].Breast Cancer Res Treat,2016,160(1):101-109.DOI:10.1007/s10549-016-3986-6.
[84]Kono M,F(xiàn)ujii T,Lim B,et al.Androgen receptor function and androgen receptor-targeted therapies in breast cancer:a review[J].JAMA Oncol,2017,3(9):1266-1273.DOI:10.1001/jamaoncol.2016.4975.
[85]De Laere B,Van Dam PJ,Whitington T,et al.Comprehensive profiling of the androgen receptor in liquid biopsies from castration-resistant prostate cancer reveals novel intra-AR structural variation and splice variant expression patterns[J].Eur Urol,2017,72(2):192-200.DOI:10.1016/j.eururo.2017.01.011.
[86]Nanda R,Chow LQ,Dees EC,et al.Pembrolizumab in patients with advanced triple-negative breast cancer:phase Ib KEYNOTE-012 study[J].J Clin Oncol,2016,34(21):2460-2467.DOI:10.1200/JCO.2015.64.8931.
(收稿日期:2022-02-22)
中國(guó)醫(yī)學(xué)科學(xué)院學(xué)報(bào)2023年2期