国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

獼猴桃新型砧木對金梅獼猴桃果實(shí)品質(zhì)的影響

2023-10-27 01:31:29李大衛(wèi)劉小莉韓飛呂海燕解瀟冬張琦田華鐘彩虹
果樹學(xué)報(bào) 2023年10期
關(guān)鍵詞:親和性品質(zhì)砧木

李大衛(wèi) 劉小莉 韓飛 呂海燕 解瀟冬 張琦 田華 鐘彩虹

DOI:10.13925/j.cnki.gsxb.20220633

摘? ? 要:【目的】利用獼猴桃屬豐富的物種資源,研究砧木對接穗品種品質(zhì)的影響,篩選適合獼猴桃產(chǎn)業(yè)應(yīng)用的新型砧木品種?!痉椒ā渴紫纫源笞训?個(gè)長勢強(qiáng)旺的獼猴桃物種為供試材料,通過統(tǒng)一嫁接四倍體黃肉獼猴桃品種金梅,精準(zhǔn)評測接穗金梅的產(chǎn)量、品質(zhì)和砧穗間的親和性。其次,從供試材料中選擇3個(gè)物種共計(jì)10個(gè)不同基因型,進(jìn)一步精準(zhǔn)評估不同基因型對接穗品種品質(zhì)的影響。【結(jié)果】團(tuán)葉、梅葉、對萼和大籽獼猴桃砧木嫁接的金梅平均單果質(zhì)量均超過100 g,顯著高于中華本砧,且大籽等砧木提升了干物質(zhì)含量等關(guān)鍵內(nèi)在品質(zhì)。此外,發(fā)現(xiàn)同物種不同基因型同樣導(dǎo)致金梅的品質(zhì)發(fā)生較大變異?!窘Y(jié)論】大籽621和對萼625等新型砧木能夠提升接穗的生長速度、產(chǎn)量和品質(zhì),且具有較好的親和性。值得注意的是,大籽獼猴桃等候選砧木不同基因型個(gè)體對接穗品種的影響同樣顯著,選育適配接穗品種的砧木需要充分考慮從同類型中選擇最佳的基因型個(gè)體。

關(guān)鍵詞:獼猴桃物種;砧木;產(chǎn)量;品質(zhì);親和性;基因型

中圖分類號:S663.4 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2023)10-2160-10

Effect of new rootstocks on the fruit quality in Jinmei kiwifruit

LI Dawei, LIU Xiaoli, HAN Fei, L? Haiyan, XIE Xiaodong, ZHANG Qi, TIAN Hua, ZHONG Caihong*

(Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, China)

Abstract: 【Objective】 Kiwifruit is a deciduous fruit tree crop whose fruits are rich in nutrients and very popular with consumers. With its rapid development over the past two decades, kiwifruit has become the worlds most dominant fruit. However, the current world kiwifruit industry relies on a few rootstock varieties from seedlings of the Actinidia chinensis var. delicious. The kiwifruit industry is potentially at risk due to the narrow genetic diversity of rootstocks, and it is of great economic value to explore new rootstocks. Actinidia (kiwifruit) species are native to China, which provides rich germplasm resources for rootstock selections. Here, we used kiwifruit species from the National Actinidia Germplasm Repository in China to evaluate rootstock's effect on the fruit quality, so as to screen out new rootstock varieties. 【Methods】 In this study, two assays were designed to screen new rootstock varieties. Firstly, grafting experiments were conducted, applying six candidate Actinidia species with a vigorous root system, including A. macrosperma var. mumoides, A. glaucophylla var. rotunda, A. melanandra, A. chinensis Planch, A. valvata Dunn and A. macrosperma C. F. Liang. Secondly, ten kiwifruit genotypes were further selected based on the results of grafting experiments to determine their effect on the fruit quality of the scion cultivar (Jinmei). To obtain unified rootstock seedlings, tissue culture propagation was adopted to ensure the consistency of experimental materials. The compatibility between rootstock and scion was evaluated by measuring the stem diameter of rootstock as well as scion and grafting union after five years of grafting. Various quality indexes were measured among grafting lines to analyze the impact of rootstocks on scion cultivar, including mean fruit weight, soluble solids content, dry matter content, vitamin C content and fruit firmness. In all experiments, more than three replicates were conducted, with each measuring more than 60 fruits. 【Results】 A total of four conclusions were drawn. (1) The rootstock of different kiwifruit species affected the exterior quality of Jinmei kiwifruit. Jinmei grafted on different rootstocks showed different fruit sizes. The fruit weight exceeded over 100 grams when grafted on A. mumoides, A. rotunda, A. macrosperma and A. valvata rootstocks, while it was only 96.69 grams on A. chinensis rootstock. The analysis of the fruit shape index showed that stion combinations of Jinmei with A. valvata and A. chinensis produced long oval and neat fruit. In contrast, it had partially deviated fruit when grafted on A. macrosperma and A. melanandra rootstocks. (2) Intrinsic quality of Jinmei kiwifruits was affected by different rootstocks. The DFR (Days taken for fruit to ripen at room temperature) were 19-20 days and firmness of Jinmei kiwifruit was between 0.244-0.449 N among different stion combinations. In addition, the contents of soluble solids and dry matter in fruits varied. The Jinmei kiwifruit grafted on A. macrosperma, A. melanandra and A. valvata rootstocks had the highest soluble solids content (16.07%-16.71%) and dry matter content (17.39%-18.18%), which was significantly higher than that on A.chinensis rootstocks (15.57%, 16.98%). (3) The different compatibility existed between various stion combinations. The average stem diameter of both A. macrosperma and A. valvata rootstocks and scions was more than 6.3 cm, showing vigorous growth between these combinations. However, the grafting union of kiwifruit with A. mumoides appeared to be an apparent enlargement, while those on A. chinensis rootstock were the smallest. Further analysis showed that the ratio of scion to rootstock diameter was more than 1, suggesting an obvious grafting incompatibility (commonly called ‘small foot) between the “Jinmei” scion, and A. mumoides and A. rotunda rootstocks. (4) The different genotypes of rootstock significantly influenced the quality characteristics of scion varieties. The fruit firmness of Jinmei at the ripening stage was relatively average among various rootstock genotypes, while the fruit on A. macrosperma 629 rootstock had the highest firmness. The contents of soluble solids, vitamin C and soluble sugar of Jinmei grafted on different genotypes of rootstocks were significantly different. Taking different rootstock genotypes of A. macrosperma as an example, the dry matter content of genotype A. macrosperma 621 (17.08%) was over 10% higher than that on A. macrosperma 627 (15.36%). Genotype A. macrosperma 626 had 25.53% vitamin C content (942.21 mg·kg-1) higher than genotype A. macrosperma 621 (701.57 mg·kg-1). In terms of flavor quality, the fruit on A.deliciosa ML1, A. macrosperma 621 and A. macrosperma 619 had the highest soluble sugar content, which was significantly higher than that on A. macrosperma 629. 【Conclusion】This study examined the impact of different rootstocks of kiwifruit species and genotypes on scion varieties. Compared with traditional A. delicious rootstocks, A. mumoides, A. rotunda, A. macrosperma and A. valvata rootstocks could improve the plant vegetative growth and fruit size of Jinmei, indicating that the new rootstocks had greater potential to increase the yield of kiwifruit. In addition, the scion cultivar Jinmei had good compatibility with the A. macrosperma rootstocks. Finally, a significant increase in dry matter, vitamin C and soluble sugar contents was observed in Jinmei kiwifruit when various genotypes of A.macrosperma rootstock were utilized. New rootstocks, such as A. macrosperma 629 and A. valvata 625 were identified, which will be used for the commercialization of Jinmei to increase its yields and fruit quality. This research will be used to develop new rootstocks for the future production of kiwifruit.

Key words: Actinidia species; Rootstock; Yield; Quality; Compatibility; Genotype

嫁接是一種重要的營養(yǎng)繁殖手段,最早記載于西漢晚期《氾勝之書》[1-2]。園藝作物嫁接技術(shù)歷經(jīng)數(shù)千年發(fā)展,在現(xiàn)代農(nóng)業(yè)發(fā)展中發(fā)揮著不可替代的作用。砧木作為承受接穗的載體,不僅影響接穗開花時(shí)間、成熟期、產(chǎn)量和品質(zhì)等重要農(nóng)藝性狀,而且能夠發(fā)揮抗病免疫、預(yù)防蟲害、實(shí)現(xiàn)果樹矮化或喬化等作用[3-4]。砧木和接穗之間的相互作用涉及復(fù)雜的生理、生化和分子機(jī)制,如砧木的營養(yǎng)和水分傳導(dǎo)、砧穗親和性、植物的生長素和細(xì)胞分裂素等激素水平在嫁接過程中發(fā)揮了關(guān)鍵調(diào)節(jié)作用[5];蛋白質(zhì)、mRNA和小RNA在砧木和接穗之間的傳導(dǎo)水平也能影響其關(guān)鍵的農(nóng)藝性狀[6-9]。

果樹中不乏優(yōu)良砧木使用案例:蘋果、梨、柑橘、杧果、杏、葡萄、桃、柿、李、甜櫻桃和核桃已經(jīng)成功選育出多個(gè)良種砧木,改良了嫁接品種的長勢、抗性、產(chǎn)量與品質(zhì)[10-11]。然而,一些新興水果的砧木研究相對滯后。獼猴桃作為一種原產(chǎn)于我國的雌雄異株落葉果樹,因其營養(yǎng)成分對健康有利而廣受消費(fèi)者的歡迎。獼猴桃歷經(jīng)近20 a(年)的快速發(fā)展已經(jīng)成為世界主流水果類型;但是世界獼猴桃產(chǎn)業(yè)主要依賴于幾個(gè)有限的砧木類型。新西蘭、意大利和智利主要使用美味獼猴桃(Actinidia chinensis var. deliciosa)的實(shí)生砧木布魯諾或者海沃德;中國依賴于米良1號、秦美及本地野生獼猴桃實(shí)生苗。顯而易見的是,將整個(gè)獼猴桃產(chǎn)業(yè)依托于較為狹隘的砧木類型會給整個(gè)產(chǎn)業(yè)帶來巨大風(fēng)險(xiǎn)[12]。近年來,意大利獼猴桃主栽品種因根系排水不良,藤衰退疾病“Moria del kiwi”[13]大量發(fā)生;中國獼猴桃園因極端氣候?qū)е碌膬?nèi)澇和干旱,造成了明顯減產(chǎn)和部分毀園。世界獼猴桃產(chǎn)業(yè)發(fā)達(dá)國家開始重視獼猴桃砧木的研發(fā),新西蘭的Bounty 71砧木、日本耐澇的山梨獼猴桃砧木和中國南方普遍使用的水楊桃給獼猴桃砧木育種帶來了新的契機(jī)。但總體而言,獼猴桃新型砧木的使用和研發(fā)尚處于初步階段,亟待系統(tǒng)評估此類砧木與接穗的親和性及對接穗品種的品質(zhì)、產(chǎn)量和抗性的影響。

優(yōu)質(zhì)砧木是獼猴桃生產(chǎn)的必要載體,獼猴桃良種砧木選育是維持豐產(chǎn)和穩(wěn)產(chǎn)的必要環(huán)節(jié)。中國是獼猴桃的原產(chǎn)地,擁有52個(gè)獼猴桃物種及20余個(gè)種下分類單元[14],為砧木選育提供了豐富的原始材料。筆者在本研究中利用國家獼猴桃資源圃中豐富的獼猴桃物種材料,通過十余年的精準(zhǔn)評價(jià),系統(tǒng)評估了獼猴桃砧木對接穗品種品質(zhì)的影響并篩選出多個(gè)候選的砧木品系,為我國獼猴桃產(chǎn)業(yè)的健康和可持續(xù)發(fā)展提供助力。

1 材料和方法

1.1 材料

供試材料來源于湖北省武漢市國家獼猴桃種質(zhì)資源圃,通過設(shè)計(jì)2個(gè)試驗(yàn)來篩選砧木品種。首先,基于前期初篩獲得的長勢旺盛、根系發(fā)達(dá)的物種材料開展砧木嫁接試驗(yàn),篩選合適的砧木種。候選砧木材料包括梅葉獼猴桃(A. macrosperma var. mumoides)、團(tuán)葉獼猴桃(A. glaucophylla var. rotunda)、黑蕊獼猴桃(A. melanandra)、中華獼猴桃復(fù)合體(A. chinensis var. chinensis)、對萼獼猴桃(A. valvata)、美味獼猴桃(A. chinensis var. delicisoa)和大籽獼猴桃(A. macrosperma)。其次,在初篩的砧木種中挑選更為優(yōu)異的基因型,開展砧木的精準(zhǔn)鑒定。10份候選材料包括2份中華獼猴桃復(fù)合體(中華605和中華610)、1份美味獼猴桃、1份對萼獼猴桃和6份大籽獼猴桃。

本試驗(yàn)開始于2011年,為保證所有砧木的一致性,采用組培方法獲得統(tǒng)一砧木組培苗,經(jīng)過2 a培育成可供嫁接的苗木。2012年冬季,接穗統(tǒng)一采用芽接法進(jìn)行嫁接;嫁接成活的植株于2013年初開始在國家獼猴桃資源圃7區(qū)品種園開展同園評估試驗(yàn)。為保證試驗(yàn)結(jié)果的準(zhǔn)確性,嫁接的品種統(tǒng)一采用四倍體黃肉獼猴桃金梅(品種權(quán)號:CNA20130340.0),所有的施肥、灌溉、修剪及其他日常管理均保持相對一致。試驗(yàn)株系于2015年初始掛果,2017年開始進(jìn)入豐產(chǎn)期。

1.2 方法

1.2.1? ? 砧木及果實(shí)表型測定? ? 本研究從2017年盛果期開始測定,砧木和接穗的親和性采用直接測量砧穗嫁接口部位上下5 cm處的周長,評估其是否產(chǎn)生“大小腳”的現(xiàn)象。產(chǎn)量和果實(shí)外觀品質(zhì)性狀評估在每年10月上旬開始,果實(shí)可溶性固形物含量達(dá)到7%以上采收。成熟果實(shí)置于獼猴桃工程研究中心常溫實(shí)驗(yàn)室(20 ℃)軟熟,評測常溫軟熟時(shí)間及品質(zhì)性狀。果實(shí)形狀采用游標(biāo)卡尺測定,通過計(jì)算縱徑/橫徑和橫徑/側(cè)徑來評估獼猴桃的果形指數(shù),其中橫徑/側(cè)徑接近于1代表具有最佳的果形指數(shù)。

1.2.2? ? 果實(shí)品質(zhì)測定? ? 每株樹至少采集60個(gè)以上果實(shí),分別測量單果質(zhì)量(采收時(shí)測)、軟熟期果實(shí)可溶性固形物含量、干物質(zhì)含量、維生素C含量、硬度等品質(zhì)性狀。測定方法分別如下:單果質(zhì)量使用電子天平測量且保證精確到小數(shù)點(diǎn)后2位。可溶性固形物含量采用ATAGO(PR-32а)折光儀測定,果實(shí)從中間橫切,取一半果實(shí)擠出汁液測定。使用GUSS GS-15水果質(zhì)地分析儀(GUSS,South Africa)測定果實(shí)赤道處的壓力硬度,探頭直徑8 mm,每個(gè)果實(shí)測2次,測定部位互為90°,單位為N。干物質(zhì)含量測定方法為干燥稱質(zhì)量法,在果實(shí)赤道處切取2~3 mm的果片并稱重,在60 ℃下烘干至果實(shí)質(zhì)量恒定,干物質(zhì)含量為干質(zhì)量與鮮質(zhì)量比值。果實(shí)中可溶性總糖含量的測定參考NY/T 2742—2015《水果及制品可溶性糖的測定3, 5-二硝基水楊酸比色法》,以葡萄糖折算可溶性總糖含量(w,后同),單位為%;果實(shí)中維生素C含量的測定參考GB 5009.86—2016《食品安全國家標(biāo)準(zhǔn)食品中抗壞血酸的測定》中的2, 6-二氯靛酚滴定法,使用自動滴定儀(HI931,Hanna)滴定,以鮮質(zhì)量計(jì),單位為mg·kg-1。

1.3 數(shù)據(jù)處理

所有的測定數(shù)據(jù)均具有3個(gè)以上的重復(fù);數(shù)據(jù)總結(jié)采用Excel 2020。數(shù)據(jù)統(tǒng)計(jì)分析采用SPSS 21.0 (IBM SPSS Statistics, New York, USA),結(jié)果以平均值 ± 標(biāo)準(zhǔn)差表示;顯著性統(tǒng)計(jì)分析采用Tukey檢驗(yàn)(0.05水平)。研究數(shù)據(jù)的畫圖采用GraphPad Prism 9.0軟件 (GraphPad Software, San Diego, CA, USA)。

2 結(jié)果與分析

2.1 不同獼猴桃物種砧木對金梅外觀品質(zhì)的影響

外觀品質(zhì)是獼猴桃重要的商品性狀,是吸引消費(fèi)者購買的外在指標(biāo)。筆者在本研究中對不同砧木嫁接的黃肉獼猴桃品種金梅的果肉顏色、大小和其他性狀開展了多重分析。從圖1-A可見,金梅獼猴桃果實(shí)呈橢圓形,整體呈現(xiàn)金黃色果肉,具有優(yōu)良的果肉顏色商品性狀(圖1-A、C)。分析不同砧木嫁接的金梅獼猴桃,發(fā)現(xiàn)果實(shí)大小存在差異,其中團(tuán)葉、梅葉、對萼和大籽的砧木平均單果質(zhì)量均高于100 g,但中華砧木平均單果質(zhì)量僅96.69 g(圖1-B)。進(jìn)一步分析果形指數(shù)發(fā)現(xiàn),對萼和中華砧木具有最大的縱徑/橫徑以及最小的橫徑/側(cè)徑(圖1-D),證明這2種砧木的果實(shí)多呈現(xiàn)長橢圓形,果實(shí)最為整齊。值得注意的是,小提琴圖顯示大籽和黑蕊砧木的果形指數(shù)出現(xiàn)部分偏離,證明在這2種砧木中可能出現(xiàn)部分的畸形果。

2.2 不同獼猴桃砧木對金梅內(nèi)在品質(zhì)的影響

果實(shí)的內(nèi)在品質(zhì)決定了貯藏期、風(fēng)味、營養(yǎng),是獼猴桃最重要的性狀。如表1所示,不同獼猴桃種類作砧木的果實(shí)常溫軟熟時(shí)間基本相近,均在19~20 d,其軟熟時(shí)期的硬度在0.244~0.449 N。然而,果實(shí)的可溶性固形物和干物質(zhì)含量存在一定變異,其中大籽、黑蕊和對萼砧木嫁接的金梅獼猴桃具有較高的可溶性固形物含量(16.07%~16.71%)和干物質(zhì)含量(17.39%~18.18%),大籽砧木顯著高于中華獼猴桃砧木(15.57%,16.98%)。

2.3 不同獼猴桃種類與金梅接穗的親和性

砧木和接穗因來源不同常出現(xiàn)嫁接不親和現(xiàn)象。在嫁接后第5年分別測定砧木、嫁接口和接穗的周長并計(jì)算直徑大小。結(jié)果表明大籽和對萼砧木的平均直徑均超過7 cm,具有明顯更強(qiáng)旺的長勢;同時(shí),嫁接在大籽和對萼上的接穗相較于傳統(tǒng)的中華本砧也具有更粗壯的直徑(圖2-A)。但是,梅葉獼猴桃嫁接后出現(xiàn)明顯的嫁接口膨大現(xiàn)象,而中華獼猴桃嫁接口較小。進(jìn)一步分析發(fā)現(xiàn)團(tuán)葉和梅葉的接穗和砧木直徑部分比值超過1(圖2-B),這暗示出現(xiàn)了明顯的“大小腳”現(xiàn)象,且這2個(gè)砧木的嫁接口和砧木直徑比值最高超過1.5(圖2-C),同樣出現(xiàn)了嫁接口類似“腫瘤”樣的不親和現(xiàn)象。

2.4 獼猴桃不同基因型砧木對嫁接品種的品質(zhì)影響

筆者在本研究中選取了10個(gè)不同基因型的砧木類型,通過評估接穗品種金梅的軟熟期硬度、干物質(zhì)、維生素C和可溶性糖含量以分析不同基因型的砧木對關(guān)鍵品質(zhì)性狀的影響。不同基因型砧木嫁接后金梅軟熟期硬度較為平均(圖3-A),其中大籽629砧木具有最高的硬度。以大籽獼猴桃為例,基因型621的干物質(zhì)含量(17.08%)比627(15.36%)高10%以上(圖3-B);基因型626的維生素C含量(942.21 mg·kg-1)比基因型621(701.57 mg·kg-1)高25.53%(圖3-C)。在風(fēng)味品質(zhì)方面,美味獼猴桃ML1、大籽621和大籽619具有較高的可溶性糖含量,明顯高于大籽629(圖3-D)??梢?,砧木的不同基因型對接穗品種的果實(shí)品質(zhì)性狀具有顯著的影響。

筆者在本研究中進(jìn)一步調(diào)查了不同基因型砧穗之間的親和性(圖4),中華獼猴桃605和610具有最佳的親和性,其砧穗粗度基本一致,且嫁接口平滑一致。此外,大籽和對萼不同基因型嫁接中華品種金梅后,整體親和性較好;同時(shí),研究發(fā)現(xiàn)因這2種砧木長勢更旺盛,形成了砧木稍大于接穗的類型。然而值得注意的是,在眾多基因型中發(fā)現(xiàn)了明顯的小腳現(xiàn)象,即砧木的生長顯著慢于接穗,這導(dǎo)致植株后期出現(xiàn)明顯的生長緩慢,產(chǎn)量低的現(xiàn)象。綜合考慮上述不同砧木對金梅品種的品質(zhì)和嫁接親和性,筆者發(fā)現(xiàn)對萼625和大籽621具有最佳的綜合表型,后續(xù)命名為中科獼砧1號和中科獼砧2號砧木,目前已申請新品種保護(hù)并在全國6個(gè)?。ㄊ校╅_展大規(guī)模中試及推廣應(yīng)用。

3 討 論

改革開放以來,中國果樹產(chǎn)業(yè)取得了飛速的進(jìn)步,大量優(yōu)異品種的育成加速了產(chǎn)業(yè)的革新。據(jù)統(tǒng)計(jì),在近40年間,柑橘、蘋果等11種果樹共選育出1968個(gè)品種(系),但砧木品種(系)僅43個(gè),占比不足2.2%[15]。特別是砧木育種主要集中于蘋果、葡萄、桃等幾個(gè)大樹種。例如,蘋果矮化砧木中砧一號和青砧一號具有良好的矮化潛力[16]。近20年中國獼猴桃產(chǎn)業(yè)發(fā)展迅猛,連續(xù)10年收獲面積及年產(chǎn)量均穩(wěn)居世界第一,已經(jīng)成為中國第九大水果類型。但是,中國獼猴桃平均單產(chǎn)極低,666.7 m2產(chǎn)量僅800 kg,是新西蘭的32.17%[17];中國獼猴桃的生產(chǎn)技術(shù)和產(chǎn)業(yè)還存在巨大的提升空間。相對于接穗品種(超過150個(gè))的快速發(fā)展,目前世界獼猴桃產(chǎn)業(yè)95%以上接穗依賴美味獼猴桃的幾個(gè)實(shí)生砧木,主要是米良1號、秦美、布魯諾、海沃德和野生獼猴桃種子播種出的實(shí)生苗,急需拓展獼猴桃的砧木研究。本研究初步探討了多個(gè)獼猴桃物種和基因型砧木對中華品種的品質(zhì)影響,為未來新型砧木選育奠定了基礎(chǔ)。

砧木與接穗親和力是嫁接首要考慮的問題。在大型木本和藤本植物中,主要的不親和類型包括易位嫁接不親和(translocated graft incompatibility)和局部嫁接不親和(localized graft incompatibility)[18-19],前一種類型通常在嫁接后的第1年出現(xiàn),表現(xiàn)為生長停止,落葉,葉片變色甚至死亡;而后一種情況涉及發(fā)育后期的輕微和延遲的不親和性。前期研究表明,獼猴桃接穗和砧木的親緣關(guān)系越遠(yuǎn),其一年內(nèi)的易位嫁接親和力越差[18];例如凈果組的軟棗、大籽、對萼和葛棗等獼猴桃類型嫁接后1年內(nèi)的成活率顯著低于傳統(tǒng)的本砧嫁接(中華獼猴桃復(fù)合體)[21-24]。筆者通過近10年觀察發(fā)現(xiàn),局部嫁接不親和同樣存在獼猴桃砧木和接穗之間,其中典型的表現(xiàn)為“大小腳”現(xiàn)象。在黑蕊獼猴桃、葛棗和軟棗獼猴桃等類型中發(fā)現(xiàn)有“上大下小”的現(xiàn)象,而在大籽獼猴桃和對萼獼猴桃等生長極其旺盛的砧木中存在“上小下大”的情況。在本研究中,筆者發(fā)現(xiàn)金梅品種與大籽系列砧木具有較好的親和性,不存在特別明顯的嫁接不親和現(xiàn)象,能夠滿足產(chǎn)業(yè)化的需求。

砧木對接穗品種性狀的影響已經(jīng)被廣泛證明[12]。前期研究發(fā)現(xiàn)中華獼猴桃品種桂海4號砧木能夠影響美味獼猴桃實(shí)美的平均產(chǎn)量[25];大籽獼猴桃能夠增加布魯諾品種25%以上的單果質(zhì)量和產(chǎn)量[26];對萼獼猴桃砧木能夠顯著增加紅陽獼猴桃的平均單果質(zhì)量和結(jié)果數(shù)量[27]。在本研究中,與傳統(tǒng)的中華和美味本砧相比,大籽、對萼、團(tuán)葉和梅葉等獼猴桃物種砧木能夠促進(jìn)金梅的長勢,特別是大籽和對萼獼猴桃在嫁接5年后,砧木直徑超過8 cm、接穗直徑超過6 cm;而且接穗品種的平均單果質(zhì)量高于本砧品種,說明新型砧木在提升現(xiàn)有品種的產(chǎn)量方面具有較大潛力。此外,前期研究表明不同砧木對接穗葉片和果實(shí)的營養(yǎng)元素的積累具有重要影響,低活力砧木導(dǎo)致接穗營養(yǎng)元素的積累較少[28];且獼猴桃的砧木和接穗同時(shí)影響果實(shí)中糖及有機(jī)酸含量、采收期和后熟期[29]。筆者在本研究中同樣發(fā)現(xiàn)大籽獼猴桃砧木嫁接金梅品種后,金梅果實(shí)具有較高的干物質(zhì)含量,且通過篩選不同基因型的大籽獼猴桃,發(fā)掘出能夠明顯提升維生素C及可溶性糖含量的種質(zhì),這為未來金梅特有砧木的品種選擇提供了直接參考。

獼猴桃屬植物適宜生長在溫暖濕潤、陽光充足且土壤偏酸性的環(huán)境中。近年來,隨著產(chǎn)業(yè)化區(qū)域的擴(kuò)大,南至云南和廣西、北至陜西和山東均有大量中華和美味獼猴桃品種種植。獼猴桃種植區(qū)域的擴(kuò)大帶來許多的產(chǎn)業(yè)問題,如干旱、水澇、鹽堿、土壤貧瘠等已經(jīng)嚴(yán)重干擾了獼猴桃產(chǎn)業(yè)的健康發(fā)展,新的砧木的選育有望改變這一困境。目前在傳統(tǒng)美味獼猴桃砧木的基礎(chǔ)上,我國南方出現(xiàn)了水楊桃這一類型的砧木。筆者調(diào)查發(fā)現(xiàn)市場上流通的水楊桃包括大籽、對萼和葛棗,甚至還有軟棗、狗棗和京梨等多種類型。盡管筆者在本研究中發(fā)現(xiàn)相對于本砧,大籽和對萼獼猴桃對金梅的品質(zhì)和產(chǎn)量均有正向的促進(jìn)作用,但是值得注意的是,同一類型物種砧木因其基因型不同,對接穗品種的品質(zhì)影響存在顯著差異。因此,需要正視目前產(chǎn)業(yè)中所謂的水楊桃砧木存在多個(gè)獼猴桃物種混雜或同一個(gè)物種多種基因型混雜的問題。歷經(jīng)十余年,筆者發(fā)現(xiàn)砧木對接穗具有諸多影響,深認(rèn)為砧木和接穗的互配必須基于長期的觀察及了解兩者的生長特征。最后,本研究發(fā)掘的大籽和對萼獼猴桃優(yōu)良砧木因其長勢強(qiáng)旺,對果實(shí)的形狀、枝條生長、掛果荷載、品質(zhì)均造成了顯著影響,因此在種植過程中需要優(yōu)化現(xiàn)有的種植密度、施肥方式、修剪、環(huán)割等技術(shù)方案。

4 結(jié) 論

大籽獼猴桃和對萼獼猴桃適于作中華獼猴桃四倍體金梅的砧木;同一種類中不同基因型的砧木對接穗品種的性狀存在巨大影響。

參考文獻(xiàn) References:

[1] HARTMANN H T,KESTER D E,DAV?ES F T,GENEVE R L. Plant propagation:Principles and practices[M]. 6th ed. London:Prentice-Hall International,1997.

[2] ZHOU Z J. Origin and development of grafting in ancient China[J]. Studies in The History of Natural Sciences,1994,13(3):264-272.

[3] GOLDSCHMIDT E E. Plant grafting:new mechanisms,evolutionary implications[J]. Frontiers in Plant Science,2014,5:727.

[4] GAUT B S,MILLER A J,SEYMOUR D K. Living with two genomes:Grafting and its implications for plant genome-to-genome interactions,phenotypic variation,and evolution[J]. Annual Review of Genetics,2019,53(1):195-215.

[5] SHARMA A,ZHENG B S. Molecular responses during plant grafting and its regulation by auxins,cytokinins,and gibberellins[J]. Biomolecules,2019,9(9):397.

[6] RASOOL A,MANSOOR S,BHAT K M,HASSAN G I,BABA T R,ALYEMENI M N,ALSAHLI A A,EL-SEREHY H A,PARAY B A,AHMAD P. Mechanisms underlying graft union formation and rootstock scion interaction in horticultural plants[J]. Frontiers in Plant Science,2020,11:590847.

[7] WANG J,JIANG L B,WU R L. Plant grafting:how genetic exchange promotes vascular reconnection[J]. New Phytologist,2017,214(1):56-65.

[8] NAWAZ M A,IMTIAZ M,KONG Q S,CHENG F,AHMED W,HUANG Y,BIE Z L. Grafting:A technique to modify ion accumulation in horticultural crops[J]. Frontiers in Plant Science,2016,7:1457.

[9] MELNYK C W. Plant grafting:Insights into tissue regeneration[J]. Regeneration,2017,4(1):3-14.

[10] KULLAJ E. Rootstocks for improved postharvest quality of fruits:recent advances[M]//Preharvest Modulation of Postharvest Fruit and Vegetable Quality. Amsterdam:Elsevier,2018:189-207. DOI:10.1016/B978-0-12-809807-3.00008-1.

[11] NIMBOLKAR P K,AWACHARE C,REDDY Y T N,CHANDER S,HUSSAIN F. Role of rootstocks in fruit production:A review[J]. Journal of Agricultural Engineering and Food Technology,2016,3(3):183-188.

[12] 陳錦永,方金豹,齊秀娟,顧紅,林苗苗,張威遠(yuǎn),魏翠果. 獼猴桃砧木研究進(jìn)展[J]. 果樹學(xué)報(bào),2015,32(5):959-968.

CHEN Jinyong,F(xiàn)ANG Jinbao,QI Xiujuan,GU Hong,LIN Miaomiao,ZHANG Weiyuan,WEI Cuiguo. Research progress on rootstock of kiwifruit[J]. Journal of Fruit Science,2015,32(5):959-968.

[13] SAVIAN F,PRENCIPE S,F(xiàn)ILIPPINI N,NARI L,MARTINI M,ERMACORA P,SPADARO D. Pathogenicity of Phytopythium chamaehyphon:A new player in kiwifruit vine decline syndrome of Actinidia chinensis var. deliciosa ‘Hayward in Italy[J]. Plant Disease,2021,105(10):2781-2784.

[14] 李新偉. 獼猴桃屬植物分類學(xué)研究[D]. 武漢:中國科學(xué)院研究生院(武漢植物園),2007.

LI Xinwei. Studies on the taxonomy of genus Actinidia Lindl.[D]. Wuhan:Wuhan Botanical Garden,the Chinese Academy of Sciences,2007.

[15] 鄧秀新,王力榮,李紹華,張紹鈴,張志宏,叢佩華,易干軍,陳學(xué)森,陳厚彬,鐘彩虹. 果樹育種40年回顧與展望[J]. 果樹學(xué)報(bào),2019,36(4):514-520.

DENG Xiuxin,WANG Lirong,LI Shaohua,ZHANG Shaoling,ZHANG Zhihong,CONG Peihua,YI Ganjun,CHEN Xuesen,CHEN Houbin,ZHONG Caihong. Retrospection and prospect of fruit breeding for last four decades in China[J]. Journal of Fruit Science,2019,36(4):514-520.

[16] 郝玉金,沙廣利. 蘋果營養(yǎng)系砧木選育進(jìn)展[J]. 落葉果樹,2018,50(1):3-7.

HAO Yujin,SHA Guangli. Progress in apple rootstock breeding[J]. Deciduous Fruits,2018,50(1):3-7.

[17] 鐘彩虹,黃文俊,李大衛(wèi),張瓊,李黎. 世界獼猴桃產(chǎn)業(yè)發(fā)展及鮮果貿(mào)易動態(tài)分析[J]. 中國果樹,2021(7):101-108.

ZHONG Caihong,HUANG Wenjun,LI Dawei,ZHANG Qiong,LI Li. Dynamic analysis of global kiwifruit industry development and fresh fruit trade[J]. China Fruits,2021(7):101-108.

[18] HERRERO J. Studies of compatible and incompatible graft combinations with special reference to hardy fruit trees[J]. Journal of Horticultural Science & Biotechnology,1951,26(3):186-237.

[19] BARBARA M. Graft-incompatibility in fruit trees:With particular reference to its underlying causes[M]. England:Commonwealth Agriculture Bureaux,1962:1-36.

[20] LI D W,HAN F,LIU X L,LV H Y,LI L L,TIAN H,ZHONG C H. Localized graft incompatibility in kiwifruit:analysis of homografts and heterografts with different rootstock & scion combinations[J]. Scientia Horticulturae,2021,283:110080.

[21] 王莉,王圣梅,黃宏文. 獼猴桃屬種間嫁接親和性試驗(yàn)研究及抗根結(jié)線蟲砧木的初步篩選[J]. 武漢植物學(xué)研究,2001,19(1):47-51.

WANG Li,WANG Shengmei,HUANG Hongwen. Graft compatibility among Actinidia species and screening rootstocks resistant to root-knot nematodes[J]. Journal of Wuhan Botanical Research,2001,19(1):47-51.

[22] 葉開玉,蔣橋生,龔弘娟,尹華田,莫權(quán)輝,張靜翅,李潔維. 獼猴桃嫁接繁殖與砧木選擇試驗(yàn)[J]. 江蘇農(nóng)業(yè)科學(xué),2014,42(1):138-139.

YE Kaiyu,JIANG Qiaosheng,GONG Hongjuan,YIN Huatian,MO Quanhui,ZHANG Jingchi,LI Jiewei. Kiwifruit grafting propagation and rootstock selection experiment[J]. Jiangsu Agricultural Sciences,2014,42(1):138-139.

[23] 盧開椿,邱武凌,金光. 中華獼猴桃不同砧木嫁接親和性試驗(yàn)研究[J]. 果樹科學(xué),1986,3(4):46-47.

LU Kaichun,QIU Wuling,JIN Guang. Experimental study on grafting affinity of different rootstocks of Chinese kiwifruit[J]. Journal of Fruit Science,1986,3(4):46-47.

[24] 古咸彬,薛蓮,陸玲鴻,謝鳴,張慧琴. 葛棗獼猴桃優(yōu)株嫁接親和性分析[J]. 浙江農(nóng)業(yè)科學(xué),2019,60(1):72-74.

GU Xianbin,XUE Lian,LU Linghong,XIE Ming,ZHANG Huiqin. Grafting affinity of Actinidia polygama superior plant[J]. Journal of Zhejiang Agricultural Sciences,2019,60(1):72-74.

[25] 李潔維,王新桂,莫凌,李瑞高,梁木源. 美味獼猴桃優(yōu)良株系“實(shí)美”的砧木選擇研究[J]. 廣西植物,2004,24(1):43-48.

LI Jiewei,WANG Xingui,MO Ling,LI Ruigao,LIANG Muyuan. Study on the selection of rootstocks for the good clone “Shimei” of Actinidia deliciosa[J]. Guihaia,2004,24(1):43-48.

[26] 蔣桂華,謝鳴,陳學(xué)選,趙安祥. 砧木對獼猴桃生長結(jié)果的影響[J]. 浙江農(nóng)業(yè)學(xué)報(bào),1998,10(3):161-162.

JIANG Guihua,XIE Ming,CHEN Xuexuan,ZHAO Anxiang. Rootstock effects on growth and fruiting in kiwifruit[J]. Acta Agriculturae Zhejiangensis,1998,10(3):161-162.

[27] 劉揚(yáng),謝善鵬,盧鑫,王克燦,徐凱. 不同砧木對紅陽獼猴桃生長及果實(shí)品質(zhì)的影響[J]. 落葉果樹,2020,52(6):11-14.

LIU Yang,XIE Shanpeng,LU Xin,WANG Kecan,XU Kai. Effects of different rootstocks on growth and fruit quality of Hongyang Kiwifruit[J]. Deciduous Fruits,2020,52(6):11-14.

[28] THORP T G,BOYD L M,BARNETT A M,LOWE R G,HOFSTEE B J,BLATTMANN P J,CLEARWATER M J. Effect of inter-specific rootstocks on inorganic nutrient concentrations and fruit quality of ‘Hort16A kiwifruit (Actinidia chinensis Planch. var. chinensis)[J]. The Journal of Horticultural Science and Biotechnology,2007,82(6):829-838.

[29] BOYES S,STR?BI P,MARSH H. Sugar and organic acid analysis of Actinidia arguta and rootstock-scion combinations of Actinidia arguta[J]. LWT - Food Science and Technology,1997,30(4):390-397.

收稿日期:2022-11-16 接受日期:2023-05-26

基金項(xiàng)目:湖北省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021BBA100);湖北省科技重大專項(xiàng)(2021AFB002);中國科學(xué)院科技扶貧項(xiàng)目(KFJ-FP-202101);長江獼猴桃產(chǎn)業(yè)技術(shù)研究中心開發(fā)課題(CJZX20210103)

作者簡介:李大衛(wèi),男,研究員,研究方向?yàn)楂J猴桃資源與生理。Tel:18672330536,E-mail:lidawei@wbgcas.cn

通信作者 Author for correspondence. Tel:13407147939,E-mail:zhongch@wbgcas.cn

猜你喜歡
親和性品質(zhì)砧木
部分薔薇與現(xiàn)代月季雜交親和性研究
園林科技(2021年1期)2022-01-19 03:13:54
桃砧木耐澇性研究進(jìn)展
落葉果樹(2021年6期)2021-02-12 01:29:12
‘富有’甜柿砧木種質(zhì)早期親和性研究
中國果樹(2020年2期)2020-07-25 02:14:22
荔枝高接品種的選擇
贛南早臍橙在幾種中間砧木上高接換種的表現(xiàn)
不結(jié)球白菜與西洋菜遠(yuǎn)緣雜交親和性研究
做砧木的南瓜品種
氯化鈣處理對鮮切蘿卜生理與品質(zhì)的影響
“鄞紅”、“巨峰”、“紅富士”葡萄及其雜交后代品質(zhì)分析
淺談民生新聞欄目特色的挖掘
今傳媒(2016年9期)2016-10-15 22:48:38
海原县| 揭东县| 广德县| 崇阳县| 海晏县| 秦安县| 咸阳市| 集贤县| 奇台县| 开封市| 仲巴县| 南城县| 永和县| 平邑县| 勐海县| 刚察县| 扎鲁特旗| 江永县| 年辖:市辖区| 扬中市| 桐城市| 辽阳市| 于都县| 旺苍县| 乐安县| 普洱| 镇雄县| 名山县| 郓城县| 扬州市| 高雄市| 绥阳县| 辉县市| 微博| 田林县| 嘉善县| 金川县| 沁源县| 文成县| 措美县| 夏河县|