張皓 劉雪瑩 賀千可 王鵬 張紹鈴 吳巨友
DOI:10.13925/j.cnki.gsxb.20230208
摘? ? 要:【目的】建立一種體內(nèi)檢測ROP蛋白活性的方法,為進(jìn)一步研究ROP蛋白的功能提供技術(shù)支持?!痉椒ā吭摲椒ɑ赗IC作為ROP蛋白的效應(yīng)子能特異地與活性形式的ROP結(jié)合這一特點(diǎn),通過熒火素酶互補(bǔ)試驗(yàn),借助煙草瞬時表達(dá)系統(tǒng),利用植物活體成像儀和酶標(biāo)儀進(jìn)行定性或定量檢測熒光強(qiáng)度,從而實(shí)現(xiàn)體內(nèi)檢測ROP蛋白的活性。【結(jié)果】以擬南芥AtRIC1為檢測基因,以AtROP1為例來檢測其蛋白活性,成功檢測到了AtROP1與AtRIC1有熒光,表明它們有互作。同時對AtROP1蛋白進(jìn)行了點(diǎn)突變試驗(yàn),成功構(gòu)建了持續(xù)激活態(tài)的ROP1(AtROP1-CA)和持續(xù)失活態(tài)的ROP1(AtROP1-DN)載體,通過定性定量檢測,發(fā)現(xiàn)與AtROP1-DN相比,AtRIC1與AtROP1-CA有更強(qiáng)的熒光信號,表明AtRIC1可以作為檢測蛋白來檢測AtROP1蛋白的活性。此外,通過引入3個蛋白(以AtGAP1、AtGDI1和AtGEF1蛋白為例),利用該方法進(jìn)一步檢測,表明AtGAP1和AtGDI1作為AtROP1蛋白活性的抑制因子,明顯降低了AtROP1蛋白的活性;而AtGEF1作為AtROP1蛋白活性的促進(jìn)因子,明顯提高了AtROP1蛋白的活性,說明該方法還可以通過AtRIC1檢測其他蛋白對AtROP1蛋白活性的影響。同時,該方法還解決了之前單一的pull-down試驗(yàn)檢測ROP蛋白活性變化的問題,增加了一種新的體內(nèi)檢測ROP蛋白活性的方法?!窘Y(jié)論】與其他方法相比,該方法具有高靈敏度、可視化、可定量化和操作簡單等特點(diǎn),并且適用于檢測其他蛋白對ROP蛋白活性的影響,所以該方法是一種可靠的體內(nèi)檢測ROP蛋白活性的新方法。
關(guān)鍵詞:ROP蛋白;RIC蛋白;熒火素酶
中圖分類號:Q94 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2023)10-2252-11
A method for ROP protein activity detection in vivo and its application
ZHANG Hao, LIU Xueying, HE Qianke, WANG Peng, ZHANG Shaoling, WU Juyou*
(College of Horticulture, Nanjing Agricultural University/Pear Engineering Research Center of Jiangsu Province, Nanjing 210095, Jiangsu, China)
Abstract: 【Objective】 This work aimed to establish a method for detecting ROP protein activity in plants and to provide some technological support for further studies on the function of ROP proteins. 【Methods】 The working principle of the method was mainly based on the fact that RIC, as an effector of the ROP protein, specifically binds to the active form of ROP proteins. Through the luciferase complementation assay, with the help of the Agrobacterium-mediated tobacco (Nicotiana benthamiana) transient expression system, the plant live imager and microplate reader were used to qualitatively or quantitatively detect the fluorescence intensity, to achieve the detection of ROP protein activity in vivo. 【Results】 In this study, the AtRIC1 was used as the test gene and AtROP1 was used as an example to detect its protein activity. By this method, a strong fluorescent signal was successfully detected in the co-injection region of AtROP1 and AtRIC1. The test results indicated that AtROP1 had an interaction with AtRIC1 and this method could detect the activity of AtROP1 protein. In addition, the AtROP1 protein was subjected to a targeted mutation assay, in which glutamine (Gln or Q) at site 64 was mutated to leucine (Leu or L) to create a persistently activated ROP1 (AtROP1-CA) vector, and aspartic acid (Asp or D) at site 121 was mutated to alanine (Ala or A) to create a persistently inactivated ROP1 (AtROP1-DN) vector. The two vectors (AtROP1-CA-nLUC and AtROP1-DN-nLUC) were then successfully constructed and transformed into Agrobacterium GV3101. The changes in the activity of AtROP1 protein after the targeted mutation were tested again by this method. The qualitative and quantitative results showed that the luciferase fluorescence intensity and activity values were significantly enhanced in the AtROP1-CA treated group (6 605.0±209.2) compared with the control AtROP1 proteins (4 395.0±103.1), which indicated that the AtROP1-CA protein showed higher activity. In contrast, the luciferase fluorescence intensity and activity values of AtROP1-DN protein (1 134.0±39.83) were significantly lower compared with the control AtROP1 protein (4 366.0±286.7), indicating that AtROP1-DN protein had only very low activity. These results suggested that AtRIC1 could be used as a test protein to detect changes in the intensity of AtROP1 protein activity. Besides this, the reliability of the method was further tested by introducing a third protein (AtGAP1, AtGDI1 and AtGEF1 proteins as examples). Initially, the AtGAP1, AtGDI1 and AtGEF1 genes were successfully constructed into the p1300-35S-GFP vector and they were transformed into Agrobacterium GV3101. The upstream regulators (AtGAP1-GFP and AtGDI1-GFP) that inhibited AtROP1 activity were again verified by this method to certify whether they also inhibit AtROP1 protein activity. The test results showed that compared with the control group and the treatment group with the addition of GFP in the empty load (5 035.0±121.5), the luciferase fluorescence intensity and activity values of the AtROP1 protein in the AtGAP1-GFP treatment group (1 473.0±146.6) both showed a significant decrease, and both GFP and AtGAP1-GFP proteins were indeed expressed in this system, and that the expression of AtGAP1-GFP indeed reduced the activity of AtROP1 protein. Similarly, the AtGDI1-GFP treated group (1 621.0±85.41) showed a significant decrease in luciferase fluorescence intensity and activity values of the AtROP1 protein compared with the control group and the treatment group with the addition of GFP in the empty load (4 798.0±145.0), while it was also detected that GFP and AtGAP1-GFP proteins were indeed expressed in this system, and that the expression of AtGDI1-GFP also indeed reduced the activity of the AtROP1 protein. AtGEF1, a regulator upstream of AtROP1 activity, was able to activate the activity of the ROP protein. To confirm the applicability of this method, an AtGEF1-GFP vector was successfully constructed. The test results revealed that the luciferase fluorescence intensity and activity values of the AtROP1 protein were significantly enhanced in the AtGEF1-GFP-treated group (7 338.00±83.83) compared with the control group and the treatment group with the addition of GFP in the empty load (4 704.0±133.6), and it was also detected that GFP and AtGEF1-GFP proteins were indeed expressed in this system, and the expression of AtGEF1-GFP did increase the activity of the AtROP1 protein. The above results suggested that this method could also detect the effect of other proteins on AtROP1 protein activity through the AtRIC1 protein. This method also would solve the problem of the previous single pull-down assay to detect the change of ROP protein activity, and add a new method to detect ROP protein activity in vivo. 【Conclusion】 At the moment, the typical method for the detection of ROP protein activity was to pull-down the active ROP protein from the extracted total plant protein (or purified protein) using the MBP-RIC1 protein purified in advance. This method could be used to determine changes in the activity of the ROP protein of the target sample. Compared with the traditional pull-down method, this method has the characteristics of high sensitivity, visualization, quantification and simple operation. It also would be suitable for detecting the effect of other proteins on the activity of ROP protein, so this method seems to be a reliable new method for detecting the activity of ROP protein in vivo.
Key words: ROP protein; RIC protein; Luciferase
小G蛋白(small GTPase)存在于多種真核生物中,是多個信號轉(zhuǎn)導(dǎo)途徑的中樞調(diào)節(jié)因子[1-3]。在結(jié)構(gòu)上,小G蛋白被分為5個亞家族,包括Ras、Rho、Rab、Ran和Arf。其中Rab、Arf主要調(diào)控胞內(nèi)囊泡運(yùn)輸,Ran調(diào)控核質(zhì)運(yùn)輸,而Ras和Rho起信號分子的作用[1,4]。動物和真菌中Rho蛋白可分為Cdc42、Rac等亞家族,而植物中僅存在一類特有的Rho家族成員,被命名為ROP(Rho-related GTPase from plants);由于ROP與動物的Rac蛋白序列相似,所以也被為RAC[5]。擬南芥基因組編碼11個ROP基因,分為4組:第Ⅰ組(ROP8)、第Ⅱ組(ROP9~ROP11)、第Ⅲ組(ROP7)、第Ⅳ組(ROP1~ROP6)[6-7]。ROP1調(diào)控擬南芥花粉管頂端生長[5];ROP2調(diào)控根毛頂端生長,促進(jìn)鋪板細(xì)胞凸起區(qū)域形成;ROP4和ROP6引起根毛去極性生長[8]。ROP10和ROP11負(fù)調(diào)控ABA反應(yīng),包括氣孔的關(guān)閉、種子的萌發(fā)和根的伸長等[9-10]。這些研究結(jié)果都表明不同的ROP成員具有不同的生理功能,并且參與調(diào)控眾多細(xì)胞學(xué)過程。
ROP是細(xì)胞中重要的分子開關(guān),可以在GDP結(jié)合的非活性形式與GTP結(jié)合的活性形式之間不斷轉(zhuǎn)換[6,11]。ROP蛋白活性的上游調(diào)控因子,包括鳥苷酸交換因子(guanine nucleotide exchange factor,GEF)、GTP酶激活蛋白(GTPase-activating protein,GAP)和鳥苷酸解離抑制因子(guanine nucleotide dissociation inhibitor,GDI)等。其中GEF蛋白促進(jìn)ROP蛋白由非活性態(tài)轉(zhuǎn)變?yōu)榛钚詰B(tài),從而激活ROP蛋白及其下游的信號轉(zhuǎn)導(dǎo)途徑。GAP蛋白促進(jìn)GTP的水解,使ROP蛋白變成與GDP結(jié)合的非活性形式。GDI蛋白抑制非活性ROP蛋白轉(zhuǎn)變?yōu)榛钚孕问剑⒎腔钚缘腞OP蛋白隔離于胞質(zhì)中[12-13]。RIC(ROP-interactive CRIB motif containing protein)是ROP蛋白重要的下游效應(yīng)子,包含一個保守的CRIB(Cdc/Rac-interactive binding)結(jié)構(gòu)。擬南芥基因組編碼11個RIC基因,根據(jù)其序列相似性可分為5組:第Ⅰ組(RIC9~RIC11)、第Ⅱ組(RIC6~RIC8)、第Ⅲ組(RIC1、RIC3)、第Ⅳ組(RIC5)以及第Ⅴ組(RIC2、RIC4)[14]。目前關(guān)于RIC的研究主要集中在花粉管、鋪板細(xì)胞和根細(xì)胞。在花粉管中,ROP1通過兩個相互拮抗的下游途徑相互制約對花粉管的生長進(jìn)行調(diào)控:激活RIC4來促進(jìn)花粉管頂端微絲的聚合,同時又激活RIC3提高頂端Ca2+濃度進(jìn)而促進(jìn)頂端微絲的解聚[15-16]。在鋪板細(xì)胞中,RIC的功能與花粉管類似,但相對復(fù)雜一點(diǎn)的兩個相互拮抗的途徑調(diào)節(jié)了鋪板細(xì)胞的嵌合生長:ROP2/4激活RIC4促進(jìn)微絲的聚合,進(jìn)而促進(jìn)凸起區(qū)(lobe)的形成和發(fā)育;同時ROP2/4使RIC1失活,將RIC1的活性限制在凹陷區(qū)(neck)。凹陷區(qū)的RIC1被ROP6激活,造成微管排列成橫向有序列陣來抑制該區(qū)的側(cè)向擴(kuò)張;另一方面,RIC1介導(dǎo)的凹陷區(qū)的橫向微管又抑制了ROP2/4-RIC4信號途徑[17-18]。此外,Lin等[19]發(fā)現(xiàn)RIC1作為SPK-ROP6的下游效應(yīng)子,調(diào)控根細(xì)胞中ROP信號途徑介導(dǎo)的對生長素極性的運(yùn)輸。綜上所述,小G蛋白與上游調(diào)控因子和下游效應(yīng)子之間相互作用共同構(gòu)成了一系列的信號傳遞網(wǎng)絡(luò)。
熒火素酶互補(bǔ)試驗(yàn)(luciferase complementation assay,LCA)主要應(yīng)用于哺乳動物、植物蛋白質(zhì)間的相互作用,該原理是以熒火素(luciferin)為底物來檢測熒火素酶(luciferase)的活性,利用生物體來源的熒火素酶催化底物熒火素發(fā)生氧化反應(yīng),發(fā)出最強(qiáng)波長在560 nm左右的生物熒光。在試驗(yàn)中,熒火素酶蛋白被分成2個功能片段:N端和C端,即NLuc(2~416 aa)和CLuc(398~550 aa),將2個待檢測的目標(biāo)蛋白分別與NLuc和CLuc融合,若2個目標(biāo)蛋白有互作,則熒火素酶的NLuc和CLuc在空間上能足夠靠近并且正確組裝,從而就能發(fā)揮熒火素酶的活性,即分解熒火素底物產(chǎn)生熒光[20]。目前,檢測ROP蛋白活性的普遍方法是利用提前純化好的MBP-RIC1蛋白,從提取的植物總蛋白(或純化的蛋白)中pull-down有活性的ROP蛋白,以此來檢測ROP蛋白的活性變化[21-23]。但是有效的pull-down試驗(yàn),需要高純度的可溶性融合蛋白,找到特定的結(jié)合、洗滌和洗脫條件,從而才能實(shí)現(xiàn)目標(biāo)蛋白相互作用的特異性及兼容性。因此,開發(fā)一種新的ROP蛋白活性檢測方法,已成為研究ROP蛋白功能的發(fā)展趨勢。本方法基于RIC1作為ROP蛋白的效應(yīng)子能特異地與活性形式的ROP結(jié)合這一特點(diǎn),通過熒火素酶互補(bǔ)試驗(yàn),借助煙草(Nicotiana benthamiana)瞬時表達(dá)系統(tǒng)就可以成功地檢測ROP蛋白的活性變化,為進(jìn)一步研究ROP蛋白的功能奠定了基礎(chǔ)。
1 材料和方法
1.1 試驗(yàn)材料
載體pCAMBIA1300-NLuc(pNL)和pCAMBIA1300-CLuc(pCL)由南京農(nóng)業(yè)大學(xué)梨工程研發(fā)中心保存。擬南芥為哥倫比亞野生型(Columbia-0),小葉煙草為本氏煙草(N. benthamiana),分別種植于南京農(nóng)業(yè)大學(xué)梨工程研發(fā)中心的植物栽培室。大腸桿菌T1(DH5α)購自北京全式金生物技術(shù)有限公司。農(nóng)桿菌GV3101購自南京百思禾生物科技有限公司。限制性內(nèi)切酶BamHⅠ、KpnⅠ和SalⅠ購自紐英倫生物技術(shù)(北京)有限公司。Phanta Max高保真DNA聚合酶、2×Rapid Taq master Mix、同源重組連接酶Exnase Ⅱ和定點(diǎn)突變試劑盒(Mut Express? Fast Mutagenesis Kit V2)購自南京諾唯贊生物科技有限公司。膠回收試劑盒、質(zhì)粒小提試劑盒購自愛思進(jìn)生物技術(shù)(杭州)有限公司。
1.2 RNA提取和cDNA合成
使用成都福際生物技術(shù)有限公司生產(chǎn)的多糖多酚植物RNA提取試劑盒提取RNA。反轉(zhuǎn)錄試劑盒TransScript? One-Step RT-PCR SuperMix購自北京全式金生物技術(shù)有限公司。
1.3 基因克隆及表達(dá)載體構(gòu)建
從擬南芥信息資源網(wǎng)站(https://www.arabidopsis.org/)中下載目的基因AtROP1、AtRIC1、AtGEF1、AtGDI1和AtGAP1的CDS參考序列,利用軟件Primer Premier 5.0設(shè)計(jì)目的基因的引物(表1)。以擬南芥的花朵cDNA為模板,用F1/R1和F2/R2兩對引物分別進(jìn)行PCR擴(kuò)增得到目的基因AtROP1片段1和AtRIC1片段2。pCL空載體用BamHⅠ和KpnⅠ進(jìn)行雙酶切,而pNL空載體用BamHⅠ和SalⅠ進(jìn)行雙酶切后,用瓊脂糖凝膠回收試劑盒對片段1、2和雙酶切載體進(jìn)行膠回收,再將片段1與雙酶切載體pNL、片段2與雙酶切載體pCL在重組酶反應(yīng)體系下37 ℃、30 min,然后將樣品置于冰上終止反應(yīng)。重組酶反應(yīng)終止后,立即進(jìn)行載體轉(zhuǎn)化,從反應(yīng)體系中取10 ?L樣品在冰上與100 ?L大腸桿菌T1感受態(tài)混合,冰浴30 min,然后在42 ℃水浴鍋中熱激45 s,立即放入冰上,3 min后在體系中加入700 ?L無抗LB培養(yǎng)基,在37 ℃搖床中孵育1 h后,將樣品涂布于抗性卡那霉素(Kan)固體平板上,在37 ℃培養(yǎng)箱中倒置培養(yǎng)12 h。從上述的轉(zhuǎn)化平板上挑取8個單克隆菌落分別放于裝有200 ?L Kan的液體LB的2 mL離心管中,在37 ℃搖床中搖菌8~10 h。取其中1 ?L菌液為PCR模板,以載體通用引物F3/R3和F4/R4分別對重組載體pNL和pCL進(jìn)行菌落PCR擴(kuò)增。菌落PCR體系為20 ?L,具體包括模板1 ?L、正向和反向引物均為1 ?L、2×Rapid Taq master Mix為10 ?L,用無菌ddH2O補(bǔ)至20 ?L。PCR產(chǎn)物用瓊脂糖凝膠電泳檢測,如有目的條帶,取100 ?L菌液送公司測序。測序結(jié)果正確即可得到重組菌株,可以提取質(zhì)粒進(jìn)行下一步其他試驗(yàn)。根據(jù)諾唯贊公司的點(diǎn)突變試劑盒說明書設(shè)計(jì)AtROP1定點(diǎn)突變的引物,再根據(jù)說明書步驟進(jìn)行定點(diǎn)突變試驗(yàn)。試驗(yàn)所需引物見表1。
1.4 熒火素酶互補(bǔ)試驗(yàn)
將目的基因AtROP1和AtRIC1分別構(gòu)建到載體pNL和pCL上,并將AtROP1-pNL和AtRIC1-pCL的質(zhì)粒轉(zhuǎn)入農(nóng)桿菌(GV3101),經(jīng)PCR鑒定為陽性后放在28 ℃、200 r·min-1搖床中培養(yǎng)1~2 d。采用張皓等[24]的方法,將得到的農(nóng)桿菌液按體積比為1∶50擴(kuò)繁后5000 r·min-1離心10 min收集菌液,并將菌液懸浮在含有10 mmol·L-1 MES、10 mmol·L-1 MgCl2和100 μmol·L-1 乙酰丁香酮的誘導(dǎo)劑中,調(diào)OD600=1.0時放置于室溫50 r·min-1的搖床中孵育4 h,即得到侵染液。將含有目標(biāo)基因表達(dá)載體的侵染液(AtROP1-pNL和AtRIC1-pCL)按體積比1∶1混合并設(shè)置好對照組,然后將等體積的混合侵染液用1 mL注射器注入小葉煙草背面的相應(yīng)位置。最后將小葉煙草放置于正常培養(yǎng)環(huán)境中繼續(xù)培養(yǎng)40~48 h。熒火素酶互補(bǔ)試驗(yàn)參照趙燕等[20]的方法,稍作修改具體如下:
植物活體成像儀定性檢測熒火素酶活性:(1)取已注射農(nóng)桿菌40~48 h后的小葉煙草葉片,用含1 mmol·L-1熒火素底物反應(yīng)液D-luciferin將葉片背面噴濕,在黑暗中靜置煙草葉片5~10 min。(2)將煙草葉片背面向上放置于培養(yǎng)皿中,移入植物活體成像系統(tǒng)中檢測發(fā)光情況。如果有熒光,即說明激活態(tài)的AtROP1可以與AtRIC1存在互作,同時也說明該方法可以檢測到AtROP1蛋白的活性。為了確保試驗(yàn)的準(zhǔn)確性和一致性,同一株煙草至少選取3個重復(fù)進(jìn)行熒光檢測。(3)根據(jù)試驗(yàn)結(jié)果調(diào)整曝光強(qiáng)度并拍照。
酶標(biāo)儀定量檢測熒光強(qiáng)度:(1)取已注射農(nóng)桿菌40~48 h后的小葉煙草葉片,用打孔器(直徑約0.6 cm)打孔,將煙草小圓片轉(zhuǎn)移到含有200 μL無菌ddH2O的白色96孔酶標(biāo)板中。為了保證試驗(yàn)的準(zhǔn)確性,同一煙草注射部位至少設(shè)8個重復(fù)。(2)用移液槍去除96孔酶標(biāo)板內(nèi)的無菌ddH2O后,加入200 μL含有1 mmol·L-1熒火素底物反應(yīng)液D-luciferin,孵育10 min。在試驗(yàn)過程中槍頭盡量不要觸碰葉片,避免應(yīng)激反應(yīng)。(3)使用酶標(biāo)儀進(jìn)行熒光掃描。(4)根據(jù)結(jié)果的數(shù)值繪制柱形圖,以顯示熒火素酶分解底物后產(chǎn)生熒光的強(qiáng)度來判斷目標(biāo)蛋白AtROP1活性強(qiáng)弱的程度。
2 結(jié)果與分析
2.1 基因AtROP1和AtRIC1的克隆及融合載體構(gòu)建
利用F1/R1和F2/R2引物分別進(jìn)行PCR擴(kuò)增得到目的基因AtROP1片段1和AtRIC1片段2。凝膠電泳結(jié)果顯示,片段1和片段2位于500~750 bp之間,與預(yù)期的591 bp和672 bp基本相符(圖1-A)。將片段1與雙酶切載體pNL片段、片段2與雙酶切載體pCL片段分別在重組酶Exnase Ⅱ的作用下進(jìn)行連接,轉(zhuǎn)化和測序。菌液PCR結(jié)果與目的基因條帶基本一致(圖1-B~C),測序結(jié)果顯示目的基因AtROP1和AtRIC1已經(jīng)連接到載體上。
2.2 定性和定量檢測激活態(tài)的AtROP1與AtRIC1的互作
為了檢測AtRIC1是AtROP1蛋白下游的效應(yīng)子,將構(gòu)建好的表達(dá)載體(AtROP1-pNL和AtRIC1-pCL)轉(zhuǎn)化到農(nóng)桿菌感受態(tài)GV3101,得到含有目標(biāo)基因的農(nóng)桿菌,通過農(nóng)桿菌瞬時轉(zhuǎn)化體系來驗(yàn)證AtROP1與AtRIC1的互作。如圖2所示,將煙草葉片背面向上放置于培養(yǎng)皿中噴灑1 mmol·L-1熒火素底物反應(yīng)液D-luciferin,移入植物活體成像系統(tǒng)中檢測發(fā)光情況以及利用酶標(biāo)儀檢測熒光強(qiáng)度。如果有熒光,即說明激活態(tài)的AtROP1可以與AtRIC1存在互作,同時也說明該方法可以檢測到AtROP1蛋白的活性。
2.3 定性和定量檢測AtROP1-CA和AtROP1-DN的蛋白活性
利用點(diǎn)突變試劑盒對AtROP1基因進(jìn)行定點(diǎn)突變(圖3),從而獲得持續(xù)激活態(tài)的AtROP1(AtROP1-CA)和持續(xù)失活態(tài)的AtROP1(AtROP1-DN)。將構(gòu)建好的表達(dá)載體(AtROP1-CA-pNL和AtROP1-DN-pCL)轉(zhuǎn)化到農(nóng)桿菌感受態(tài)GV3101得到含有目標(biāo)基因的農(nóng)桿菌,通過農(nóng)桿菌瞬時轉(zhuǎn)化體系檢測點(diǎn)突變后AtROP1蛋白活性的變化。試驗(yàn)結(jié)果表明AtROP1-CA蛋白的熒火素酶熒光強(qiáng)度和活性明顯比AtROP1的高(圖4),而AtROP1-DN蛋白的熒火素酶熒光強(qiáng)度和活性明顯比AtROP1的低(圖5)。
2.4 AtGEF1、AtGAP1和AtGDI1蛋白對AtROP1蛋白活性的影響
為了進(jìn)一步驗(yàn)證該試驗(yàn)方法的可靠性,成功構(gòu)建了AtGAP1-GFP和AtGDI1-GFP載體,通過該試驗(yàn)體系驗(yàn)證抑制AtROP1活性的上游調(diào)控因子(AtGAP1-GFP和AtGDI1-GFP)是否同樣抑制AtROP1蛋白活性。試驗(yàn)結(jié)果表明,與對照和加入GFP空載的處理組相比,AtGAP1-GFP處理組的AtROP1蛋白的熒火素酶熒光強(qiáng)度和活性都出現(xiàn)了明顯的下降(圖6-A~B);并檢測到GFP和AtGAP1-GFP蛋白在該體系中確實(shí)有表達(dá)(圖6-C),而AtGAP1-GFP的表達(dá)明顯降低AtROP1活性。同樣,AtGDI1-GFP處理組與對照和加入GFP空載的處理組相比,AtROP1蛋白的熒火素酶熒光強(qiáng)度和活性也出現(xiàn)明顯的下降(圖7-A~B);也檢測到GFP和AtGDI1-GFP蛋白在該體系中確實(shí)有表達(dá)(圖7-C),而AtGDI1-GFP的表達(dá)明顯降低AtROP1活性。
AtROP1活性上游的調(diào)控因子AtGEF1能夠激活ROP蛋白的活性,為證實(shí)該方法的適用性,成功構(gòu)建了AtGEF1-GFP載體。試驗(yàn)結(jié)果表明,AtGEF1-GFP處理組比任何對照組的AtROP1蛋白的熒火素酶熒光強(qiáng)度和活性都明顯增強(qiáng)(圖8-A~B);并檢測到GFP和AtGEF1-GFP蛋白在該體系中確實(shí)有表達(dá)(圖8-C),而AtGEF1-GFP的表達(dá)明顯增強(qiáng)AtROP1活性。
3 討 論
ROP/RAC蛋白是植物中重要的信號轉(zhuǎn)導(dǎo)調(diào)節(jié)因子,參與植物細(xì)胞形態(tài)發(fā)育[17-18,25-26]、極性生長[8,15-16,27-28]、激素信號轉(zhuǎn)導(dǎo)[9-10,19,29]、抗病[2,30-32]以及抗逆[3,21,33]等各種重要生命過程。最近,Lin等[34]還發(fā)現(xiàn)ROP蛋白參與調(diào)控植物細(xì)胞自噬來應(yīng)對逆境和營養(yǎng)的缺失。盡管通過pull-down技術(shù)檢測有活性的ROP蛋白的方法已得到普遍使用[21-23],但其仍然存在一些缺點(diǎn)。如需要較高純度的融合蛋白,合適的結(jié)合、洗滌和洗脫條件才能實(shí)現(xiàn)目標(biāo)蛋白相互作用的特異性及兼容性。因此,筆者在本研究中建立一種操作簡單且高效的方法,其對ROP蛋白的活性檢測和功能驗(yàn)證具有重要意義。
熒火素酶互補(bǔ)試驗(yàn)作為一種具有簡單、靈敏、可靠、高效和低背景等優(yōu)點(diǎn)的方法,被廣泛應(yīng)用于植物學(xué)和動物學(xué)蛋白質(zhì)互作研究[20]。與其他蛋白互作研究技術(shù)相比,利用煙草瞬時表達(dá)系統(tǒng)的熒火素酶互補(bǔ)試驗(yàn)可以定性、定量分析生物發(fā)光或發(fā)光強(qiáng)度,從而檢測植物目標(biāo)蛋白之間是否存在相互作用及互作強(qiáng)度[20]。通過該方法成功地檢測到AtROP1與AtRIC1有熒光,二者存在互作,同時還通過對AtROP1基因進(jìn)行定點(diǎn)突變試驗(yàn)獲得了AtROP1-CA和AtROP1-DN蛋白表達(dá)載體,通過檢測發(fā)現(xiàn)RIC1蛋白可以檢測突變ROP蛋白的活性變化。此外,通過進(jìn)一步驗(yàn)證發(fā)現(xiàn)AtGEF1蛋白可以明顯地激發(fā)AtROP1蛋白活性,同時AtGAP1和AtGDI1蛋白顯著地抑制AtROP1蛋白活性。目前利用純化好的RIC1-MBP融合蛋白來檢測ROP蛋白活性是一種常見的技術(shù)手段[21-23],但傳統(tǒng)的pull-down方法存在試驗(yàn)環(huán)節(jié)較多,即需要表達(dá)純化多個蛋白,檢測蛋白是否表達(dá)以及蛋白的純度,操作繁雜且重復(fù),往往還導(dǎo)致目的蛋白表達(dá)量偏低等問題。針對這些問題,該方法基于RIC1作為ROP的效應(yīng)子能特異地與活性形式的ROP結(jié)合這一特點(diǎn),通過熒火素酶互補(bǔ)試驗(yàn),借助煙草瞬時表達(dá)系統(tǒng),將含有融合蛋白的表達(dá)載體轉(zhuǎn)化到農(nóng)桿菌后注射小葉煙草葉片。利用植物活體成像儀或酶標(biāo)儀來實(shí)現(xiàn)定性定量檢測熒光強(qiáng)度,以判定ROP蛋白活性的強(qiáng)弱程度。同時還可以添加其他目的蛋白來檢測其對ROP蛋白活性的影響。該方法具有高靈敏度、可視化、可定量化和操作簡單高效等特點(diǎn),為進(jìn)一步研究ROP蛋白的功能提供了一定的技術(shù)支持。
4 結(jié) 論
ROP/RAC蛋白是植物中多個信號轉(zhuǎn)導(dǎo)途徑的中樞調(diào)節(jié)因子。該方法通過熒火素酶互補(bǔ)實(shí)驗(yàn),借助煙草瞬時表達(dá)系統(tǒng)就可以成功地檢測ROP蛋白活性的變化。與其他方法相比,該方法具有高靈敏度、可視化、可定量化和操作簡單等特點(diǎn),并且適用于檢測其他蛋白對ROP蛋白活性的影響,所以該方法是一種可靠的體內(nèi)檢測ROP蛋白活性的新方法。
參考文獻(xiàn) References:
[1] TAKAI Y,SASAKI T,MATOZAKI T. Small GTP-binding proteins[J]. Physiological Reviews,2001,81(1):153-208.
[2] ONO E,WONG H L,KAWASAKI T,HASEGAWA M,KODAMA O,SHIMAMOTO K. Essential role of the small GTPase Rac in disease resistance of rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98(2):759-764.
[3] MIAO H X,SUN P G,LIU J H,WANG J Y,XU B Y,JIN Z Q. Overexpression of a novel ROP gene from the banana (MaROP5g) confers increased salt stress tolerance[J]. International Journal of Molecular Sciences,2018,19(10):3108.
[4] BERKEN A. ROPs in the spotlight of plant signal transduction[J]. Cellular and Molecular Life Sciences,2006,63(21):2446-2459.
[5] CRADDOCK C,LAVAGI I,YANG Z B. New insights into Rho signaling from plant ROP/Rac GTPases[J]. Trends in Cell Biology,2012,22(9):492-501.
[6] ZHENG Z L,YANG Z B. The Rop GTPase:an emerging signaling switch in plants[J]. Plant Molecular Biology,2000,44(1):1-9.
[7] YANG Z B. Small GTPases:Versatile signaling switches in plants[J]. The Plant Cell,2002,14(S):375-388.
[8] MOLENDIJK A J,BISCHOFF F,RAJENDRAKUMAR C S,F(xiàn)RIML J,BRAUN M,GILROY S,PALME K. Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth[J]. The EMBO Journal,2001,20(11):2779-2788.
[9] ZHENG Z L,NAFISI M,TAM A,LI H,CROWELL D N,CHARY S N,SCHROEDER J I,SHEN J J,YANG Z B. Plasma membrane-associated ROP10 small GTPase is a specific negative regulator of abscisic acid responses in Arabidopsis[J]. The Plant Cell,2002,14(11):2787-2797.
[10] LI Z X,KANG J,SUI N,LIU D. ROP11 GTPase is a negative regulator of multiple ABA responses in Arabidopsis[J]. Journal of Integrative Plant Biology,2012,54(3):169-179.
[11] VETTER I R,WITTINGHOFER A. The guanine nucleotide-binding switch in three dimensions[J]. Science,2001,294(5545):1299-1304.
[12] BERKEN A. ROPs in the spotlight of plant signal transduction[J]. Cellular and Molecular Life Sciences,2006,63(21):2446-2459.
[13] NIBAU C,WU H M,CHEUNG A Y. RAC/ROP GTPases:‘Hubs for signal integration and diversification in plants[J]. Trends in Plant Science,2006,11(6):309-315.
[14] WU G,GU Y,LI S D,YANG Z B. A genome-wide analysis of Arabidopsis Rop-interactive CRIB motif-containing proteins that act as Rop GTPase targets[J]. The Plant Cell,2001,13(12):2841-2856.
[15] GU Y,F(xiàn)U Y,DOWD P,LI S D,VERNOUD V,GILROY S,YANG Z B. A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes[J]. The Journal of Cell Biology,2005,169(1):127-138.
[16] LEE Y J,SZUMLANSKI A,NIELSEN E,YANG Z B. Rho-GTPase-dependent filamentous actin dynamics coordinate vesicle targeting and exocytosis during tip growth[J]. The Journal of Cell Biology,2008,181(7):1155-1168.
[17] FU Y,GU Y,ZHENG Z L,WASTENEYS G,YANG Z B. Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis[J]. Cell,2005,120(5):687-700.
[18] FU Y,XU T D,ZHU L,WEN M Z,YANG Z B. A ROP GTPase signaling pathway controls cortical microtubule ordering and cell expansion in Arabidopsis[J]. Current Biology,2009,19(21):1827-1832.
[19] LIN D S,NAGAWA S,CHEN J S,CAO L Y,CHEN X,XU T D,LI H J,DHONUKSHE P,YAMAMURO C,F(xiàn)RIML J,SCHERES B,F(xiàn)U Y,YANG Z B. A ROP GTPase-dependent auxin signaling pathway regulates the subcellular distribution of PIN2 in Arabidopsis roots[J]. Current Biology,2012,22(14):1319-1325.
[20] 趙燕,周儉民. 螢火素酶互補(bǔ)實(shí)驗(yàn)檢測蛋白互作[J]. 植物學(xué)報,2020,55(1):69-75.
ZHAO Yan,ZHOU Jianmin. Luciferase complementation assay for detecting protein interactions[J]. Chinese Bulletin of Botany,2020,55(1):69-75.
[21] LI C J,LU H M,LI W,YUAN M,F(xiàn)U Y. A ROP2-RIC1 pathway fine-tunes microtubule reorganization for salt tolerance in Arabidopsis[J]. Plant,Cell & Environment,2017,40(7):1127-1142.
[22] KANG E F,ZHENG M Z,ZHANG Y,YUAN M,YALOVSKY S,ZHU L,F(xiàn)U Y. The microtubule-associated protein MAP18 affects ROP2 GTPase activity during root hair growth[J]. Plant Physiology,2017,174(1):202-222.
[23] 楊波. 擬南芥SnRK1通過調(diào)節(jié)ROP活性參與鋪板細(xì)胞形態(tài)建成的機(jī)制研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2015.
YANG Bo. SnRK1 is involved in leaf pavement cell morphogenesis through regulation of ROP GTPase activity in Arabidopsis[D]. Beijing:China Agricultural University,2015.
[24] 張皓,劉雪瑩,錢銘,高鴻儒,湯超,張華,王鵬,張紹鈴,吳巨友. 一種快速添加或替換蛋白標(biāo)簽的新方法及應(yīng)用[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報,2021,44(6):1046-1053.
ZHANG Hao,LIU Xueying,QIAN Ming,GAO Hongru,TANG Chao,ZHANG Hua,WANG Peng,ZHANG Shaoling,WU Juyou. A new method of rapid protein tag addition or replacement and its application[J]. Journal of Nanjing Agricultural University,2021,44(6):1046-1053.
[25] LIN W W,TANG W X,PAN X,HUANG A B,GAO X Q,ANDERSON C T,YANG Z B. Arabidopsis pavement cell morphogenesis requires FERONIA binding to pectin for activation of ROP GTPase signaling[J]. Current Biology,2022,32(3):497-507.
[26] LIN D S,REN H B,F(xiàn)U Y. ROP GTPase-mediated auxin signaling regulates pavement cell interdigitation in Arabidopsis thaliana[J]. Journal of Integrative Plant Biology,2015,57(1):31-39.
[27] BURKART G M,BASKIN T I,BEZANILLA M. A family of ROP proteins that suppresses actin dynamics,and is essential for polarized growth and cell adhesion[J]. Journal of Cell Science,2015,128(14):2553-2564.
[28] LI E,ZHANG Y L,SHI X L,LI H,YUAN X F,LI S,ZHANG Y. A positive feedback circuit for ROP-mediated polar growth[J]. Molecular Plant,2021,14(3):395-410.
[29] HUANG J B,LIU H L,CHEN M,LI X J,WANG M Y,YANG Y L,WANG C L,HUANG J Q,LIU G L,LIU Y T,XU J,CHEUNG A Y,TAO L Z. ROP3 GTPase contributes to polar auxin transport and auxin responses and is important for embryogenesis and seedling growth in Arabidopsis[J]. The Plant Cell,2014,26(9):3501-3518.
[30] KAWANO Y,AKAMATSU A,HAYASHI K,HOUSEN Y,OKUDA J,YAO A,NAKASHIMA A,TAKAHASHI H,YOSHIDA H,WONG H L,KAWASAKI T,SHIMAMOTO K. Activation of a rac GTPase by the NLR family disease resistance protein pit plays a critical role in rice innate immunity[J]. Cell Host & Microbe,2010,7(5):362-375.
[31] 王愛榮,陳新,張冬梅,陳惠紅,魯國東,王宗華. 擬南芥不同ROP蛋白對病原細(xì)菌增殖的影響[J]. 福建農(nóng)林大學(xué)學(xué)報(自然科學(xué)版),2008,37(6):610-613.
WANG Airong,CHEN Xin,ZHANG Dongmei,CHEN Huihong,LU Guodong,WANG Zonghua. Effects of different Arabidopsis ROPs on multiplication of Pseudomonas syringae pv. tomato DC3000[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition),2008,37(6):610-613.
[32] ZHANG Z W,ZHANG X L,NA R,YANG S Q,TIAN Z M,ZHAO Y,ZHAO J. StRac1 plays an important role in potato resistance against Phytophthora infestans via regulating H2O2 production[J]. Journal of Plant Physiology,2020,253:153249.
[33] 金微微,徐昌杰,李鮮,王平,張波,孫崇德,陳昆松. 采后玉露桃果實(shí)冷害發(fā)生與ROP基因的表達(dá)調(diào)控[J]. 果樹學(xué)報,2009,26(5):608-613.
JIN Weiwei,XU Changjie,LI Xian,WANG Ping,ZHANG Bo,SUN Chongde,CHEN Kunsong. Occurrence of chilling injury and regulation of ROP gene expression in Yulu peach fruit during storage[J]. Journal of Fruit Science,2009,26(5):608-613.
[34] LIN Y S,ZENG Y L,ZHU Y,SHEN J B,YE H,JIANG L W. Plant Rho GTPase signaling promotes autophagy[J]. Molecular Plant,2021,14(6):905-920.
收稿日期:2023-05-19 接受日期:2023-06-26
基金項(xiàng)目:國家自然科學(xué)基金項(xiàng)目(32172543)
作者簡介:張皓,男,在讀博士研究生,主要從事梨生殖生理與分子生物學(xué)研究。Tel:15850562890,E-mail:2020204014@stu.njau.edu.cn
通信作者 Author for correspondence. Tel:13913835567,E-mail:juyouwu@njau.edu.cn