国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于兩階段信息壓縮的電網(wǎng)動態(tài)軌跡預(yù)測與穩(wěn)定性評估

2023-10-31 08:31:26劉嘉誠李雨婷王光耀
電力系統(tǒng)自動化 2023年20期
關(guān)鍵詞:功角互信息暫態(tài)

劉嘉誠,劉 俊,李雨婷,王光耀

(陜西省智能電網(wǎng)重點(diǎn)實(shí)驗(yàn)室(西安交通大學(xué)),陜西省西安市 710049)

0 引言

電力系統(tǒng)的安全穩(wěn)定運(yùn)行對于社會經(jīng)濟(jì)發(fā)展具有重要意義。隨著“雙碳”目標(biāo)的提出[1],新能源裝機(jī)容量不斷提升,大規(guī)模電力電子設(shè)備的應(yīng)用使得故障發(fā)生后電力系統(tǒng)的暫態(tài)動態(tài)行為特性更為復(fù)雜[2-3],準(zhǔn)確預(yù)測系統(tǒng)暫態(tài)穩(wěn)定性面臨新的挑戰(zhàn)。

電力系統(tǒng)暫態(tài)穩(wěn)定性評估(transient stability assessment,TSA)方法通??煞譃橹苯臃?、時(shí)域仿真法以及人工智能方法[4]。直接法如李雅普諾夫函數(shù)[5]應(yīng)用于大規(guī)模電力系統(tǒng)時(shí)存在適用問題。時(shí)域仿真法[6]依賴于系統(tǒng)的準(zhǔn)確建模且難以滿足實(shí)時(shí)判別的需求。人工智能方法[7-8]如門控循環(huán)單元(gated recurrent unit,GRU)[9]等,以電力系統(tǒng)穩(wěn)態(tài)與暫態(tài)初期的響應(yīng)信息為輸入,直接預(yù)測系統(tǒng)穩(wěn)定性分類結(jié)果或表征穩(wěn)定性的關(guān)鍵信息,可以較高精度在極短時(shí)間內(nèi)做出判別。但對于上萬節(jié)點(diǎn)的實(shí)際電力系統(tǒng),選擇全部響應(yīng)觀測作為輸入將導(dǎo)致模型規(guī)模過于龐大而難以訓(xùn)練,有必要對系統(tǒng)關(guān)鍵特征進(jìn)行篩選以剔除冗余信息[10]。文獻(xiàn)[11]依據(jù)逆變器與虛擬同步機(jī)的暫態(tài)交互機(jī)理構(gòu)建了具備強(qiáng)表征能力的特征集。文獻(xiàn)[12]采用GRU 等多種深度神經(jīng)網(wǎng)絡(luò)進(jìn)行多源異構(gòu)特征的融合。文獻(xiàn)[13-14]分別依照Fisher 分?jǐn)?shù)和時(shí)序鄰域互信息辨識強(qiáng)判別力特征與冗余特征,但特征集對暫態(tài)穩(wěn)定性的整體表征能力未定量計(jì)算。文獻(xiàn)[15]引入互信息和最大相關(guān)與最小冗余(maximum relevance and minimum redundancy,mRMR)準(zhǔn)則[16-17]對特征集的相關(guān)性與冗余性進(jìn)行綜合描述,然而對于暫態(tài)高維時(shí)序數(shù)據(jù)而言,響應(yīng)軌跡的概率分布難以獲取,限制了互信息在時(shí)序特征篩選中的適用性。

相比于傳統(tǒng)的穩(wěn)定性二值分類預(yù)測,基于暫態(tài)功角軌跡預(yù)測的穩(wěn)定性評估能夠提供系統(tǒng)狀態(tài)演變的額外信息作為緊急決策控制的參考[18]。文獻(xiàn)[19-20]分別采用長短期記憶(long short-term memory,LSTM)網(wǎng)絡(luò)與改進(jìn)AlexNet 算法預(yù)測發(fā)電機(jī)功角軌跡以識別失穩(wěn)機(jī)群。文獻(xiàn)[21]結(jié)合灰色系統(tǒng)理論,提出一種自記憶灰色Verhulst 模型對故障后數(shù)百毫秒的功角曲線進(jìn)行擬合。上述研究均直接選取功角軌跡作為模型的輸出變量,過多的時(shí)間節(jié)點(diǎn)將使得準(zhǔn)確預(yù)測更為困難。響應(yīng)軌跡本身存在一定的信息冗余,可通過適當(dāng)?shù)膲嚎s算法提升其信息密度,而不改變其對暫態(tài)穩(wěn)定性的表征能力。

針對現(xiàn)有研究中存在的問題,本文構(gòu)建了基于兩階段信息壓縮的電力系統(tǒng)動態(tài)軌跡預(yù)測與穩(wěn)定性評估框架,其主要貢獻(xiàn)如下:

1)提出了一種基于統(tǒng)一流形逼近與投影(uniform manifold approximation and projection,UMAP)的離散互信息計(jì)算方法,提升互信息對于高維時(shí)序軌跡數(shù)據(jù)相關(guān)性分析的實(shí)用性;

2)針對關(guān)鍵響應(yīng)軌跡特征篩選,提出了修正有效信息度量、優(yōu)化篩選終止策略的改進(jìn)mRMR(imRMR)算法,以剔除響應(yīng)數(shù)據(jù)中的無效信息與冗余特征;

3)提出了一種分辨率自適應(yīng)最大三角形三桶(resolution adaptive largest triangle three buckets,RALTTB)算法對暫態(tài)功角軌跡進(jìn)行壓縮,以少量時(shí)刻點(diǎn)反映全過程的功角變化特性。

1 兩階段信息壓縮與穩(wěn)定性評估框架

在構(gòu)建與訓(xùn)練暫態(tài)功角軌跡預(yù)測智能模型的過程中,輸入數(shù)據(jù)可選擇相量測量單元實(shí)時(shí)監(jiān)測的故障前后以及故障清除后短時(shí)間內(nèi)的響應(yīng),記為Χ=[f1,f2,…,fM]T,其 中 ,fα=[xα,1,xα,2,…,xα,K1],α∈{1,2,…,M}為發(fā)電機(jī)功角、母線電壓幅值等響應(yīng)特征量,M為對應(yīng)的特征維度,xα,β為第α維特征Fα在 第β個(gè) 時(shí) 刻 的 觀 測 值,fα則 為 該 特 征 的 響 應(yīng) 觀測軌跡。對于每一個(gè)特征,受制于安全穩(wěn)定控制的時(shí)效性要求,所允許的響應(yīng)觀測時(shí)間步數(shù)限制為K1??紤]到整個(gè)暫態(tài)過程中系統(tǒng)電氣量之間本身存在強(qiáng)耦合特性,僅需部分特征即能反映系統(tǒng)的運(yùn)行狀態(tài)。本文階段1 的信息壓縮圍繞暫態(tài)初期的響應(yīng)特征展開,通過篩選強(qiáng)相關(guān)軌跡特征降低輸入數(shù)據(jù)中的信息冗余。

針對暫態(tài)功角穩(wěn)定性的評估,模型輸出數(shù)據(jù)選擇暫態(tài)全過程系統(tǒng)各發(fā)電機(jī)的功角軌跡,記為Y=[θ1,θ2,…,θL]T,其 中 ,θγ=[θγ,1,θγ,2,…,θγ,K2],γ∈{1,2,…,L}為第γ臺發(fā)電機(jī)從故障開始至?xí)簯B(tài)過 程 結(jié) 束K2個(gè) 時(shí) 間 步 內(nèi) 的 功 角 仿 真 量,元 素θγ,χ為第γ臺發(fā)電機(jī)在第χ個(gè)時(shí)間步的功角數(shù)值,L為系統(tǒng)中發(fā)電機(jī)數(shù)量。機(jī)電暫態(tài)仿真時(shí)間步長通常設(shè)置為10 ms,使得K2取值較大,然而實(shí)際僅需部分時(shí)間節(jié)點(diǎn)的功角數(shù)據(jù)即可反映全過程的暫態(tài)穩(wěn)定態(tài)勢。本文階段2 的信息壓縮針對長時(shí)功角軌跡,通過提取關(guān)鍵數(shù)據(jù)節(jié)點(diǎn)以縮短作為輸出的功角軌跡長度,從而提升功角軌跡信息密度并降低其預(yù)測難度。

綜上所述,本文的兩階段信息壓縮與暫態(tài)穩(wěn)定性評估框架如圖1 所示。

圖1 基于兩階段信息壓縮的電力系統(tǒng)動態(tài)軌跡預(yù)測與穩(wěn)定性評估框架Fig.1 Framework of dynamic trajectory prediction and stability assessment for power system based on two-stage information compression

階段1 針對暫態(tài)初期高維響應(yīng)特征的軌跡概率分布難以度量的問題,應(yīng)用UMAP[22]算法將軌跡映射至均勻分布的低維歐氏空間,在此基礎(chǔ)上計(jì)算離散互信息作為響應(yīng)特征有效性與冗余性的評價(jià)依據(jù)。由于傳統(tǒng)mRMR 算法依賴于功角預(yù)測模型持續(xù)訓(xùn)練測試,本文修正了有效信息度量并優(yōu)化搜索終止策略,可直接計(jì)算得到最優(yōu)特征子集。

階段2 中,本文基于RALTTB 算法對暫態(tài)全過程的功角軌跡進(jìn)行壓縮。該算法可依據(jù)時(shí)序的波動性自動調(diào)整采樣頻率,增大功角快速變化區(qū)間內(nèi)的樣本數(shù)量,提升壓縮軌跡對于穩(wěn)定性態(tài)勢的表征能力。

最后,本文基于GRU 算法構(gòu)建了暫態(tài)功角壓縮軌跡的預(yù)測模型?;跁簯B(tài)初期的關(guān)鍵響應(yīng)特征信息對壓縮后的全時(shí)域功角軌跡進(jìn)行預(yù)測,進(jìn)而實(shí)現(xiàn)故障后系統(tǒng)穩(wěn)定性的判別。

2 暫態(tài)初期關(guān)鍵響應(yīng)特征篩選

響應(yīng)特征信息壓縮本質(zhì)上是通過特定的相關(guān)性度量準(zhǔn)則,篩選出與暫態(tài)穩(wěn)定性強(qiáng)相關(guān)的特征變量且同時(shí)剔除原特征集中所包含的無效或冗余特征,從而提升剩余特征的有效信息密度,實(shí)現(xiàn)特征集的信息壓縮。

常規(guī)等距分區(qū)離散化方法通過將變量各維度的取值范圍均勻劃分為數(shù)個(gè)寬度相等的均勻區(qū)間,統(tǒng)計(jì)樣本落入各個(gè)范圍的概率,以便直接計(jì)算式(2)。然而對于本文涉及的暫態(tài)響應(yīng)而言,fα1∈RK1且具有典型的時(shí)序相關(guān)性,直接針對各維度進(jìn)行離散化一方面使得空間各區(qū)域內(nèi)的樣本數(shù)量幾乎為0,另一方面不同時(shí)刻特征取值的關(guān)聯(lián)性無法保留。因此,本章研究時(shí)序軌跡的離散化與互信息度量方法,提升其對暫態(tài)響應(yīng)數(shù)據(jù)的實(shí)用性。

2.1 基于UMAP 的軌跡投影與離散互信息計(jì)算

同一特征的不同工況下,暫態(tài)響應(yīng)軌跡可認(rèn)為分布在特定的黎曼流形空間,盡管歐氏距離難以滿足任意兩條響應(yīng)軌跡間的差異度量,但對于軌跡變化幅度不大的工況而言,流形空間中某一點(diǎn)處展開的局部子空間內(nèi)歐氏距離測度有效,不同暫態(tài)初期響應(yīng)軌跡間的距離可沿最近的子空間進(jìn)行傳遞。在UMAP 算法中,樣本及其依歐氏距離定義的鄰近樣本構(gòu)成空間中的預(yù)層。為描述這一流形空間中的軌跡樣本分布結(jié)構(gòu),一則態(tài)射被應(yīng)用于將樣本間距映射至模糊集,該態(tài)射定義為:

2.2 基于imRMR 的特征篩選與冗余信息剔除

響應(yīng)特征與暫態(tài)穩(wěn)定性之間的信息可認(rèn)為是有效信息,特征之間的信息對于穩(wěn)定性評估無法產(chǎn)生增益,因此可認(rèn)為是冗余的無效信息。mRMR 準(zhǔn)則將最優(yōu)特征集Ψ*的有效信息度量近似為式(6)。

綜上所述,本文提出的imRMR 算法具體流程如表1 所示。

表1 基于imRMR 的暫態(tài)特征篩選Table 1 Transient feature selection based on imRMR

3 基于RALTTB 的暫態(tài)功角軌跡壓縮

電力系統(tǒng)暫態(tài)過程中的功角軌跡預(yù)測通常以全過程所有發(fā)電機(jī)的功角曲線為輸出對象,然而對于穩(wěn)定性評估,僅依賴功角軌跡的動態(tài)變化趨勢與極值即可做出有效判別,且時(shí)域仿真得到的功角曲線所包含的時(shí)間點(diǎn)較多,將會極大提升功角軌跡的預(yù)測難度。

最大三角形三桶(largest triangle three buckets,

傳統(tǒng)LTTB 算法在壓縮過程中未考慮時(shí)序軌跡的變化趨勢,僅對各個(gè)時(shí)間段內(nèi)均勻采樣。然而對于暫態(tài)穩(wěn)定性分析而言,功角快速變化與突變區(qū)間往往更具意義,需要在后續(xù)的預(yù)測過程中準(zhǔn)確擬合。因此,本文提出依據(jù)功角變化趨勢自動調(diào)整采樣分辨率的RALTTB 算法。結(jié)合層次聚類的思想,逐步合并平方和偏差最小的鄰近數(shù)據(jù)點(diǎn)作為同一區(qū)間,直至剩余區(qū)間數(shù)量為K′2,最后根據(jù)LTTB算法確定各區(qū)間的典型值,得到改進(jìn)的壓縮軌跡。RALTTB 軌跡壓縮流程如附錄A 圖A2 所示,具體執(zhí)行步驟見表2。

表2 基于RALTTB 的軌跡壓縮算法流程Table 2 Process of trajectory compression algorithm based on RALTTB

4 暫態(tài)功角軌跡預(yù)測與穩(wěn)定性評估

暫態(tài)過程系統(tǒng)的電氣狀態(tài)演變具有顯著的時(shí)序關(guān)聯(lián)特性,GRU 神經(jīng)網(wǎng)絡(luò)[24]作為LSTM 網(wǎng)絡(luò)的改進(jìn)算法,在保留強(qiáng)大的時(shí)序規(guī)律挖掘能力的同時(shí)提升收斂性。因此,本文選擇GRU 算法構(gòu)建暫態(tài)功角軌跡預(yù)測模型?;詈瘮?shù)。

經(jīng)GRU 模型預(yù)測得到該工況下各發(fā)電機(jī)的暫態(tài)功角壓縮軌跡,即可根據(jù)軌跡是否在末段呈現(xiàn)大范圍波動或振蕩判斷系統(tǒng)是否出現(xiàn)功角失穩(wěn)。

5 算例分析

5.1 算例系統(tǒng)與評價(jià)指標(biāo)說明

本文選取中國某區(qū)域電網(wǎng)簡化等值系統(tǒng)作為算例測試系統(tǒng),系統(tǒng)拓?fù)淙绺戒汚 圖A4 所示。該系統(tǒng)包含197 個(gè)三相節(jié)點(diǎn)、15 臺發(fā)電機(jī)組、4 回直流輸電通道以及24 個(gè)集中接入新能源場站,不同運(yùn)行方式下新能源出力占比涵蓋0%~50%區(qū)間。基于該系統(tǒng)設(shè)置了包含N-1、N-2 以及直流閉鎖等在內(nèi)的各類預(yù)想與非預(yù)想故障,其中,N-1 故障遍歷了主網(wǎng)線路,N-2 故障遍歷了主網(wǎng)所有含相同節(jié)點(diǎn)的線路。故障施加時(shí)間為仿真開始后的50 ms,故障持續(xù)時(shí)間參照電力系統(tǒng)安全穩(wěn)定導(dǎo)則設(shè)置為100 ms。仿真生成共計(jì)26 200 條樣本,其中,暫態(tài)穩(wěn)定樣本23 243 條,失穩(wěn)樣本2 957 條。隨機(jī)選取40%失穩(wěn)樣本與等額穩(wěn)定樣本作為測試集,剩余23 834 條樣本作為訓(xùn)練集。

暫態(tài)初期響應(yīng)觀測時(shí)間范圍選取為故障前、故障持續(xù)以及故障切除后100 ms 內(nèi),共計(jì)21 個(gè)時(shí)間節(jié)點(diǎn),經(jīng)UMAP 低維映射后,K1由21 降低至5,用于計(jì)算互信息。觀測電氣量如表3 所示,其中,功角為各發(fā)電機(jī)相對于系統(tǒng)平衡機(jī)的功角差值。特征總計(jì)881 類,經(jīng)imRMR 篩選后保留了166 條關(guān)鍵特征,GRU 的模型輸入為關(guān)鍵特征在暫態(tài)初期21 個(gè)時(shí)刻的觀測量。暫態(tài)全時(shí)域功角軌跡涉及8 s 內(nèi)的時(shí)域仿真結(jié)果,仿真步長為10 ms,故K2=800。經(jīng)RALTTB 處理后,每臺發(fā)電機(jī)僅保留80 個(gè)數(shù)據(jù)點(diǎn)作為GRU 模型的輸出量。

表3 暫態(tài)響應(yīng)電氣特征量Table 3 Electrical features of transient response

軌跡預(yù)測準(zhǔn)確性的評價(jià)主要從預(yù)測值與實(shí)際值的偏差考慮,具體指標(biāo)包括平均絕對誤差(mean absolute error,MAE)eMAE、均方根誤差(root mean square error,RMSE)eRMSE、決定系數(shù)eR2以及余弦相

RMSE 與MAE 可以反映預(yù)測軌跡與實(shí)際軌跡的差值,其值越小表明預(yù)測數(shù)值越準(zhǔn)確;決定系數(shù)與余弦相似度則表征預(yù)測軌跡趨勢與實(shí)際軌跡的一致性,其值越接近于1 表明軌跡的趨勢預(yù)測越準(zhǔn)確。

5.2 暫態(tài)功角軌跡預(yù)測與穩(wěn)定性評估整體效果分析

本節(jié)分別測試了不同特征篩選與信息壓縮算法組合下的功角軌跡預(yù)測與穩(wěn)定性判別效果,其結(jié)果如表4 所示。表中,“-”表示采用全部特征數(shù)據(jù)作為輸入或者全時(shí)域功角軌跡作為輸出,即不考慮特殊處理的傳統(tǒng)方法。模型首先預(yù)測各發(fā)電機(jī)功角軌跡,然后基于軌跡變化情況對系統(tǒng)暫態(tài)穩(wěn)定性進(jìn)行判別。

表4 不同算法對應(yīng)的軌跡預(yù)測精度與模型效率Table 4 Trajectory prediction accuracy and model efficiency of different algorithms

本文提出的兩階段信息壓縮算法可使得功角軌跡預(yù)測MAE 低至0.048 7,具備較高的數(shù)值準(zhǔn)確性,且決定系數(shù)與余弦相似度分別為0.870 1 和0.798 3,在各類算法組合中為最優(yōu),表明軌跡趨勢預(yù)測較為準(zhǔn)確。此外,經(jīng)過信息壓縮后,模型的參數(shù)量與訓(xùn)練時(shí)間均大幅降低。相比于采用全部特征預(yù)測全時(shí)域功角軌跡,模型參數(shù)減少約60.5%,訓(xùn)練時(shí)間縮短約44.8%,而暫態(tài)穩(wěn)定性判別正確率從97.96%提升至98.30%。

不同特征篩選算法的測試結(jié)果表明,imRMR 算法可在剔除冗余信息的同時(shí)保留關(guān)鍵有效特征,僅通過166 維響應(yīng)觀測即可獲得更為準(zhǔn)確的暫態(tài)穩(wěn)定性預(yù)測結(jié)果。而對比不同功角軌跡壓縮算法的預(yù)測效果可知,RALTTB 壓縮軌跡預(yù)測結(jié)果的RMSE與MAE 指標(biāo)通常均低于全時(shí)域軌跡與LTTB 壓縮軌跡,且決定系數(shù)與余弦相似度更高。例如,在預(yù)測模型算法為GRU、特征選擇算法為imRMR 時(shí),LTTB 軌跡的MAE 與決定系數(shù)分別為0.087 8 和0.734 9,而RALTTB 軌跡預(yù)測的MAE 與決定系數(shù)則為0.048 7 和0.870 1,在數(shù)值與趨勢準(zhǔn)確度均具有一定優(yōu)勢。

5.3 特征篩選與信息量計(jì)算結(jié)果分析

暫態(tài)功角軌跡預(yù)測模型涉及的原始特征共計(jì)881 維,每維觀測時(shí)間長度為21 個(gè)仿真步長,即對應(yīng)于200 ms。對于每一維特征而言,其響應(yīng)觀測分布于21 維的高維流形空間,導(dǎo)致不同樣本與暫態(tài)穩(wěn)定性之間的互信息難以計(jì)算。因此,本文采用UMAP算法將其先映射至5 維歐氏空間。

經(jīng)UMAP 算法投影后,隨機(jī)選取的某一電氣量在低維空間中的二維樣本分布如附錄A 圖A5 所示。圖中:各點(diǎn)表示該電氣量在不同故障工況下的暫態(tài)響應(yīng)軌跡樣本,且圖A5(a)中藍(lán)色點(diǎn)對應(yīng)于系統(tǒng)最終穩(wěn)定,而橙色點(diǎn)表示暫態(tài)失穩(wěn)。由于投影后歐氏距離全局有效,不同暫態(tài)響應(yīng)軌跡之間的差異即表示為圖上點(diǎn)與點(diǎn)之間的距離。此外,圖A5 也顯示在低維空間中樣本整體呈近似的均勻分布,因此,可通過等距分區(qū)將空間離散化,統(tǒng)計(jì)各區(qū)間內(nèi)的穩(wěn)定/失穩(wěn)樣本概率,從而根據(jù)式(2)計(jì)算該電氣量與暫態(tài)穩(wěn)定性之間的互信息量。圖A5(b)展示了各個(gè)離散取值區(qū)間(不同顏色)在空間中的分布情況,同一顏色區(qū)間可認(rèn)為對應(yīng)的暫態(tài)響應(yīng)軌跡具備較高的相似程度并歸屬于同一類別。

圖2 展示了采用imRMR 算法進(jìn)行特征篩選過程中的特征與信息量變化情況。暫態(tài)響應(yīng)電氣量包括發(fā)電機(jī)、母線與支路特征,具體類型與數(shù)量如表3所示。隨著imRMR 的迭代,各類型特征數(shù)量變化如圖2(a)所示。所保留的大部分特征均為母線與支路特征,其在篩選過程中數(shù)量持續(xù)增長,對于穩(wěn)定性評估相對更為關(guān)鍵;少部分特征為發(fā)電機(jī)特征,迭代輪次超過70 輪后該類特征數(shù)量基本保持不變,表明其難以再提供額外的信息量。

圖2 特征數(shù)量與互信息隨imRMR 迭代次數(shù)變化情況Fig.2 Variation of number of features and mutual information with number of imRMR iterations

迭代過程中的單輪特征信息量與總信息量如圖2(b)所示。在迭代初始時(shí),由于已選特征為0,特征所包含的信息即為有效信息。隨著迭代的進(jìn)行,關(guān)鍵節(jié)點(diǎn)、支路的電氣量首先被保留。由于全網(wǎng)的電氣耦合,聯(lián)系緊密的電氣量在故障后的響應(yīng)具有關(guān)聯(lián)性,如鄰近母線的電壓與電流、同一發(fā)電機(jī)的電壓與轉(zhuǎn)速,這導(dǎo)致剩余特征的穩(wěn)定性信息越來越少且特征之間的冗余性增加,進(jìn)而使得單輪迭代信息增益逐漸降低,具體表現(xiàn)為圖2(b)中黃線(累積信息)增長越來越緩慢,而紅線(單輪有效信息)逐漸趨近于0。迭代過程最終在保留166 維關(guān)鍵特征時(shí)停止,此時(shí)剩余待選特征的單輪最大有效信息量小于0,即無法再提供式(8)所述的暫態(tài)穩(wěn)定性信息。

特征與穩(wěn)定性的互信息統(tǒng)計(jì)排序結(jié)果如圖2(c)所示。部分特征與穩(wěn)定性互信息幾乎為0,表明其對于后續(xù)的穩(wěn)定性判別幾乎無價(jià)值,對應(yīng)通常為非關(guān)鍵節(jié)點(diǎn)/線路的電氣量;大部分特征與穩(wěn)定性互信息分布在較為狹窄的區(qū)間內(nèi),其有效信息量較為接近,在不同的故障下呈現(xiàn)出一定的穩(wěn)定性表征能力??紤]到全網(wǎng)的電氣耦合特性,這一點(diǎn)較為符合實(shí)際。少部分電氣量與穩(wěn)定性具有較強(qiáng)的關(guān)聯(lián)性,對應(yīng)于系統(tǒng)節(jié)點(diǎn)、線路與發(fā)電機(jī)的關(guān)鍵電氣量,其互信息量顯著高于其他特征,該部分特征對于失穩(wěn)態(tài)勢具有更強(qiáng)的表征能力。

5.4 全時(shí)域功角軌跡壓縮與預(yù)測結(jié)果分析

本節(jié)對比了采用不同軌跡壓縮算法構(gòu)建功角軌跡預(yù)測模型的效果。典型穩(wěn)定與失穩(wěn)工況下發(fā)電機(jī)的真實(shí)時(shí)域功角軌與壓縮軌跡以及GRU 模型的預(yù)測結(jié)果如圖3 所示。仿真的故障類型均為主網(wǎng)N-2 三相金屬性短路接地故障,故障施加時(shí)間與持續(xù)時(shí)間與全部樣本保持一致,即仿真開始后50 ms 以及持續(xù)100 ms。圖3 中穩(wěn)定工況下對應(yīng)的發(fā)電機(jī)為附錄A 圖A4 中的“Gen1A-2”,失穩(wěn)工況對應(yīng)的發(fā)電機(jī)為“Gen1A-6”。在圖3 所示的失穩(wěn)工況下,穩(wěn)態(tài)時(shí)該發(fā)電機(jī)相角度略微落后于平衡機(jī)(圖中換算為接近于360°)。故障發(fā)生以及繼電保護(hù)動作后,發(fā)電機(jī)加速使得其功角由落后變?yōu)槌安⒊掷m(xù)增加,最終出現(xiàn)功角拉開搖擺的現(xiàn)象。

圖3 功角軌跡壓縮與預(yù)測結(jié)果Fig.3 Compression and prediction results of power angle trajectory

RALTTB 通過自適應(yīng)的分辨率調(diào)整,增大功角劇烈變化區(qū)域的采樣密度,等價(jià)于對功角突變區(qū)域進(jìn)行拉伸以及對功角平穩(wěn)變化區(qū)域進(jìn)行壓縮,從而突出功角的動態(tài)特性,同時(shí)也使得圖3(b)和(e)中功角幅值出現(xiàn)的時(shí)間和原始軌跡與LTTB 軌跡不同。盡管壓縮后的功角曲線存在一定畸變,但其所表現(xiàn)的功角變化規(guī)律與穩(wěn)定性態(tài)勢依舊不變。此外,由于RALTTB 軌跡能夠以少量數(shù)據(jù)點(diǎn)突出功角軌跡的動態(tài)變化與波動情況,有效信息更為集中,具備更好的可預(yù)測性。對比圖3 中不同功角軌跡的預(yù)測結(jié)果,經(jīng)RALTTB 算法壓縮后軌跡時(shí)間節(jié)點(diǎn)減少,預(yù)測難度降低,預(yù)測軌跡與真實(shí)軌跡具有更高的一致性與相似度,尤其是在峰值等突變區(qū)域。穩(wěn)定工況下,原始功角全時(shí)域軌跡在暫態(tài)末期趨于穩(wěn)定,過多的節(jié)點(diǎn)數(shù)量使得預(yù)測結(jié)果存在大量噪聲,而經(jīng)軌跡壓縮后功角軌跡的預(yù)測結(jié)果噪聲較小。失穩(wěn)工況下,RALTTB 使得模型對于部分關(guān)鍵數(shù)據(jù)點(diǎn)相比于改進(jìn)前的LTTB 軌跡更為關(guān)注。因此,相對于原始軌跡或LTTB 壓縮軌跡,RALTTB 具備更高的預(yù)測準(zhǔn)確度,進(jìn)而導(dǎo)致整體的穩(wěn)定性判別準(zhǔn)確率得到提升。

6 結(jié)語

本文提出了一種基于兩階段信息壓縮的電力系統(tǒng)暫態(tài)功角軌跡預(yù)測與穩(wěn)定性評估框架。階段1 將暫態(tài)初期響應(yīng)特征通過UMAP 映射至低維歐氏空間,然后基于imRMR 算法篩選出關(guān)鍵響應(yīng)特征。階段2 提出分辨率自適應(yīng)的RALTTB 算法對暫態(tài)全時(shí)域功角軌跡進(jìn)行壓縮以提升其信息密度。雖然軌跡壓縮提升了曲線的預(yù)測準(zhǔn)確度,但軌跡預(yù)測結(jié)果仍然存在一定的畸變,后續(xù)可研究如何在保留物理意義的同時(shí)進(jìn)一步提升軌跡預(yù)測的精準(zhǔn)程度。

附錄見本刊網(wǎng)絡(luò)版(http://www.aeps-info.com/aeps/ch/index.aspx),掃英文摘要后二維碼可以閱讀網(wǎng)絡(luò)全文。

猜你喜歡
功角互信息暫態(tài)
虛擬調(diào)速器對VSG暫態(tài)功角穩(wěn)定影響機(jī)理分析
300Mvar空冷隱極同步調(diào)相機(jī)暫態(tài)特性仿真分析
基于改進(jìn) shapelet 挖掘的風(fēng)電并網(wǎng)系統(tǒng)暫態(tài)功角穩(wěn)定評估
能源工程(2019年6期)2019-12-02 01:58:20
電力系統(tǒng)全網(wǎng)一體化暫態(tài)仿真接口技術(shù)
電子制作(2018年14期)2018-08-21 01:38:28
基于功角測量和等面積法則的發(fā)電機(jī)暫態(tài)穩(wěn)定在線判別研究
電子測試(2017年12期)2017-12-18 06:35:33
除氧器暫態(tài)計(jì)算研究
電子測試(2017年23期)2017-04-04 05:07:02
基于互信息的貝葉斯網(wǎng)絡(luò)結(jié)構(gòu)學(xué)習(xí)
聯(lián)合互信息水下目標(biāo)特征選擇算法
基于PSS/E風(fēng)電并網(wǎng)系統(tǒng)的靜態(tài)功角穩(wěn)定性分析
改進(jìn)的互信息最小化非線性盲源分離算法
電測與儀表(2015年9期)2015-04-09 11:59:22
锡林浩特市| 揭西县| 麻江县| 靖远县| 同心县| 竹山县| 信阳市| 出国| 海南省| 中超| 明溪县| 壤塘县| 榕江县| 称多县| 扎赉特旗| 宁波市| 明溪县| 乾安县| 桃园县| 嘉义县| 陕西省| 陆川县| 通山县| 扎鲁特旗| 大姚县| 凌云县| 双鸭山市| 林甸县| 鸡东县| 余庆县| 松原市| 衡山县| 开远市| 天镇县| 永春县| 吉木乃县| 辽宁省| 无棣县| 漳州市| 北京市| 米泉市|