劉詩文,孟憲陸,趙彥,吳廣新*,張捷宇
Fe-Zn相圖不同相區(qū)溫度合金化鋅鍍層生長過程模擬
劉詩文1,孟憲陸2,趙彥1,吳廣新1*,張捷宇1
(1.上海大學(xué) a.材料科學(xué)與工程學(xué)院 b.省部共建高品質(zhì)特殊鋼冶金與制備國家重點實驗室,上海 200444;2.寶鋼湛江鋼鐵有限公司,廣東 湛江 524033)
優(yōu)化GA鍍層的成形性能,建立GA鍍層物相生長模型,調(diào)控鍍層物相組成,得出最佳合金化鍍層物相組成對應(yīng)的工藝參數(shù),以指導(dǎo)生產(chǎn)。依據(jù)最新的Fe-Zn相圖,構(gòu)建鍍層合金化模型,模擬鍍層物相η、ζ、δ和Γ生長過程及物相沿鍍層截面分布、鍍層合金化過程Fe含量變化。成功模擬了Fe-Zn相圖不同相區(qū)物相的生長過程,模擬530 ℃以下溫度物相轉(zhuǎn)變?yōu)棣恰啤摹#?30 ℃以上溫度物相轉(zhuǎn)變?yōu)棣恰摹!DM得到最佳鍍層物相組成對應(yīng)的合金化工藝為,510 ℃保溫9.7 s,540 ℃保溫6.8 s。研究得到了合金化過程中鍍層Fe含量的變化規(guī)律,在合金化前期,F(xiàn)e含量增加的速率較快,隨著合金化程度的提高,鍍層中Fe含量的增加速率減慢。建立的GA鍍層物相生長模型可以模擬得到不同合金化溫度下最佳的工藝參數(shù),為合金化熱處理生產(chǎn)GA鍍層提供了工藝參考。
合金化鍍鋅板;高強鋼;數(shù)學(xué)模型;合金化工藝;Fe-Zn合金
合金化熱浸鍍鋅鍍層(GA)是將熱浸鍍鋅鍍層(GI)在450~550 ℃保溫一定時間,進行合金化擴散退火處理,鋅鍍層(Al的質(zhì)量分數(shù)約0.135%)轉(zhuǎn)變?yōu)镕e-Zn金屬間化合物。GA鍍層的焊接性、耐蝕性、耐熱性和涂裝性[1-2]等性能優(yōu)異,被廣泛應(yīng)用在汽車、家電和建材等領(lǐng)域。美系汽車外板GA鋼板使用比例為13%~15%,日系汽車外板全部采用GA鋼板[3]。
合金化鍍層物相包括η、ζ(FeZn13)、δ1p(Fe13Zn126)、δ1k(FeZn7)、Γ1(Fe21.02Zn80.8)、Γ(Fe4Zn9)[4],不同物相的晶體結(jié)構(gòu)和力學(xué)性能差異較大。ζ相摩擦系數(shù)較高,在沖壓時與模具間摩擦力較大,導(dǎo)致鍍層脫落;Γ相(Γ1/Γ)是鍍層中最硬的物相,極易發(fā)生粉化和剝落,造成鍍層失效,合金化鍍層物相應(yīng)由δ相組成[5-6]。Mataigne等[7]認為,最佳的鍍層物相組成是鍍層表面ζ相剛好消失而δ相還未長大時。Zhong等[8]研究發(fā)現(xiàn),鍍層的粉化量隨δ相鐵含量的增加而逐漸增加。由上述結(jié)果可知,最佳的鍍層物相組成是鍍層表面ζ相剛好消失、δ相生長到鍍層表面。因此,通過材料設(shè)計調(diào)控GA鍍層的物相組成十分必要。
Fe-Zn相圖是GA鍍層設(shè)計的重要工具,當(dāng)前最常用的Fe-Zn相圖是Kubachewski等[9]修訂的。隨著檢測手段的提升,研究人員對富鋅角物相進行了細致分析。Belin等[10]提出了ζ相的晶胞結(jié)構(gòu),并確定分子式為FeZn13。Hong等[11]使用TEM研究得出δ1k相的晶格參數(shù)是δ1p相的3倍,通過硬度測試發(fā)現(xiàn),δ1k相的硬度高于δ1p相。Kainuma等[12]采用擴散偶法發(fā)現(xiàn),δ1p相形核在δ1k和ζ之間。Kainuma等[13]將δ相劃分成δ1p相區(qū)和δ1k相區(qū),重新劃分δ相邊界。Norihiko等[14]通過實驗測定δ1P相的化學(xué)式為Fe13Zn126。Han等[15]通過實驗測定Fe-Zn相圖,并對Kainuma提出的相圖進行了修訂。Norihiko等[16]用單晶同步X射線衍射法對Γ相和Γ1相的晶體結(jié)構(gòu)進行了細化,并重新劃定了Γ相和Γ1相相區(qū)邊界。
目前,研究者[17-19]構(gòu)建鍍層合金化模型大多依據(jù)1986年修訂的相圖,隨著研究者對Fe-Zn相圖的不斷修訂,使得以往構(gòu)建的模型與實驗誤差較大。因此,本文根據(jù)Norihiko發(fā)表的相圖構(gòu)建模型,模擬熱浸鍍鋅鍍層合金化過程中鍍層物相η、ζ、δ和Γ生長過程、物相分布和鍍層Fe含量變化,同時對比Fe-Zn相圖不同相區(qū)物相生長的差異。
合金化熱浸鍍鋅鍍層的合金化溫度在450~550 ℃,相圖中530 ℃是富鋅角上下相鄰相區(qū)的臨界溫度,合金化處理時,不同相區(qū)溫度物相轉(zhuǎn)變過程不同,如圖1所示。
根據(jù)Fe-Zn相圖,當(dāng)合金化溫度在530 ℃以下時,物相演變過程為η→η+ζ→ζ→ζ+δ→δ→δ+Γ。合金化過程中,F(xiàn)e2Al5抑制層首先破裂,然后在鋅鍍層界面上ζ相向表面生長,ζ/η界面向表面移動;鍍層與基板界面的Fe含量達到δ相濃度時,界面處δ相消耗ζ相向表面生長,δ/ζ界面向表面移動;當(dāng)界面處Fe含量達到Γ相濃度值時,Γ相通過消耗δ相緩慢生長,Γ/δ界面向鍍層表面移動。合金化溫度在530 ℃以上時,物相演變過程為η→η+δ→δ→δ+Γ。合金化過程中,F(xiàn)e2Al5抑制層破裂后,鍍層界面處η相直接轉(zhuǎn)變?yōu)棣南啵?η界面向表面移動;鍍層界面處Fe含量達到Γ相濃度值時,Γ相消耗δ相向鍍層表面緩慢生長,Γ/δ界面移動向鍍層表面。兩者的差別在于,合金化溫度高于530 ℃時,鍍層物相生長過程中不會出現(xiàn)ζ相。
圖1 合金化鍍層不同相區(qū)物相轉(zhuǎn)變示意圖
Fe-Zn相圖如圖2所示,GA鍍層物相包含η、ζ、δ1p、δ1k、Γ1和Γ等6個物相。通過實驗發(fā)現(xiàn),δ1p和δ1k、Γ1和Γ物相形貌相近,難以區(qū)分,因此將δ1p和δ1k當(dāng)作δ相、Γ1和Γ當(dāng)作Γ相。模擬過程涉及η、ζ、δ和Γ等4個物相的生長過程,以及η/ζ、ζ/δ、δ/Γ、Γ/α-Fe等4個相界面的移動過程。
圖2 Fe-Zn相圖相區(qū)物相和相邊界[16]
η相Fe在Zn中的溶解度:
ζ/L的界面濃度:
425 ℃≤≤530 ℃ (1)
δ/L的界面濃度:
530 ℃≤≤550 ℃ (2)
η與ζ相界面濃度:
界面濃度為94.198 9%≤425 ℃ (3)
ζ與L相界面濃度:
425 ℃≤≤530 ℃ (4)
ζ與δ+ζ兩相區(qū)界面濃度:
δ+ζ兩相區(qū)與δ界面濃度:
L+δ兩相區(qū)與δ界面濃度:
530 ℃≤≤550 ℃ (7)
δ與δ+Γ1的界面濃度:
300 ℃≤≤550 ℃ (8)
Γ1與δ+Γ1的界面濃度:
Γ+α-Fe與Γ的界面濃度:
300 ℃≤≤550 ℃ (10)
1)合金化模擬計算過程中,假定鍍層中各物相界面平行均勻移動。
2)假定鍍層中物相的擴散系數(shù)只與溫度有關(guān),與濃度無關(guān)。
3)假定相界面的濃度符合相圖相邊界濃度方程,相界面處于動態(tài)平衡狀態(tài)。
4)由Fe-Zn相圖相區(qū)物相邊界可知,η相無濃度梯度,物相ζ、δ和Γ相濃度梯度呈線性分布。
2.3.1 Fe2Al5抑制層對合金化過程的影響
Fe2Al5抑制層阻礙Fe-Zn原子互擴散,延遲鍍層合金化進程,式(11)表示延遲時間與溫度(=+273 K)和Al含量的關(guān)系[20]:
Al-delay(Al,)=(Al/0.14)×[1.074 74×
1 010exp(–/34.731 29)]+0.70 (11)
Fe2Al5抑制層被破壞后,抑制層中Fe原子進入鍍層,增加鍍層中Fe的含量,因此必須計算抑制層進入鍍層的Fe含量。式(12)為鋅液中鐵的溶解度與溫度的關(guān)系式[21]:
Fe2Al5抑制層進入鍍層Fe含量的關(guān)系式為:
2.3.2 鋼基板中合金元素對鍍層物相生長的影響:
鋼基板中合金元素對鍍層物相生長有重要影響,合金元素有促進和抑制合金化進程的作用[22-25]。根據(jù)文獻[26],用有效鈦(Ti)描述合金元素對鍍層合金化過程的影響:
根據(jù)Fe-Zn相圖,合金化溫度低于530 ℃時,η相轉(zhuǎn)變?yōu)棣葡啵缓辖鸹瘻囟雀哂?30 ℃時,η相直接形成δ相。不同相區(qū)物相的轉(zhuǎn)變方程[27]如下。
當(dāng)合金化溫度低于530 ℃時,進入鋅鍍層的Fe轉(zhuǎn)變?yōu)棣葡啵?/p>
ζ相通過消耗液相η相生長,消耗η相的厚度為:
當(dāng)合金化溫度高于530 ℃時,進入鋅鍍層的Fe直接轉(zhuǎn)變?yōu)棣南啵?/p>
生成的δ相通過消耗液相η相生長,消耗η相的厚度為:
Γ相生長在ζ相和δ相之后,出現(xiàn)在鍍層過合金化時。Γ相對鍍層抗粉化性能有較大影響,因此模型應(yīng)計算Γ相的出現(xiàn)時間。根據(jù)文獻[28]得出Γ相出現(xiàn)時間隨溫度變化的公式:
物相厚度起始值的設(shè)定:
1)合金化溫度低于530 ℃時,η相轉(zhuǎn)變?yōu)棣葡?。η相厚度等于鍍層厚度減去η相轉(zhuǎn)變?yōu)棣葡嗟暮穸龋葡嗌L為式(15),設(shè)定其余兩相的厚度等于0.01 μm。
2)合金化溫度高于530 ℃時,η相轉(zhuǎn)變?yōu)棣南?。η相厚度等于鍍層厚度減去η相轉(zhuǎn)變?yōu)棣南嗟暮穸?,δ相生長公式為式(17),設(shè)定其余相的厚度等于0.01 μm。
離散Fe-Zn相圖不同相區(qū)物相,將物相等分成份(如圖3所示),物相η-Zn、ζ、δ、Γ、α-Fe分別用1、2、3、4、5表示。
圖3 鍍層物相擴散區(qū)域離散示意圖[27]
合金化模擬時,各物相界面隨擴散時間不斷移動,用式(20)表示距離步長[29]:
用菲克第二定律求解物相濃度:
式中:為擴散元素的濃度;為擴散距離。
其中,氣體常數(shù)值為8.314 J/(mol·K),物相擴散常數(shù)和擴散激活能見表1。
表1 物相擴散常數(shù)和擴散激活能[31]
Tab.1 Phase diffusion constant and diffusion activation energy[31]
合金化模擬中,根據(jù)菲克第二定律,物相界面上積存質(zhì)量等于流入質(zhì)量減去流出質(zhì)量。因此,物相界面移動速度由式(23)計算。
采用Murray-Landis可動網(wǎng)格公式(24)計算相圖中離散點在不同時刻和位置的濃度值:
在界面(,)處,式(23)中界面移動速度用有限差分法轉(zhuǎn)換為式(25)。
結(jié)合四點公式和有限差分法把式(23)轉(zhuǎn)變 為(26):
用前置差分方程表示公式(21)。
結(jié)合公式(20),將公式(30)轉(zhuǎn)換為公式(31)。
把公式(27)、(28)、(29)和(31)代入(24)中,計算(+1)時刻離散點的濃度值:
為保證模擬計算的收斂性,0滿足:0≤0≤0.5。
模型中采用最小的時間步長:
模擬結(jié)束后,求和模擬時間:
反復(fù)循環(huán)計算上面的模擬過程,達到設(shè)定合金化時間后,結(jié)束循環(huán)。
合金化模擬計算完成后,用式(37)計算鍍層中鐵含量。
模擬鍍層合金化過程,實驗材料選用無間隙原子鋼(IF),鋼的成分見表2。鍍層中Al的質(zhì)量分數(shù)為0.130%,鍍層厚度為8 μm。模擬過程中,設(shè)定樣品起始溫度為350 ℃,感應(yīng)加熱分別升溫到510 ℃和540 ℃,保溫段分別在510 ℃和540 ℃保溫相應(yīng)時間。合金化工藝參數(shù)見表3。
實驗設(shè)備采用自主搭建的分區(qū)控溫多段式合金化設(shè)備,分為預(yù)熱段、感應(yīng)段和保溫段3部分,在預(yù)熱段,將樣品加熱到350 ℃;樣品移動到感應(yīng)段,快速升溫到合金化溫度510 ℃和540 ℃;進入保溫段,分別在510 ℃和540 ℃保溫一定時間,進行合金化處理。
表2 IF鋼成分與含量
Tab.2 Composition and content of IF steel
表3 合金化工藝參數(shù)
Tab.3 Galvannealing process parameters
510 ℃合金化溫度鍍層物相生長過程的模擬結(jié)果如圖4a所示,510 ℃時在相圖相區(qū)的物相變化為η→ζ→δ→Γ。隨合金化時間延長,η相逐漸被ζ相和δ相消耗,η相在8.2 s時被消耗完畢,η相消失后,ζ相也生長到鍍層表面,并停止生長,然后δ相開始消耗剩余的ζ相快速生長到鍍層表面,在9.7 s 時δ相停止生長,由于Γ相生長所需的合金化程度較高,Γ相通過消耗δ相緩慢生長。540 ℃合金化溫度鍍層物相生長過程的模擬結(jié)果如圖4b所示,540 ℃時在相圖相區(qū)的物相變化為η→δ→Γ,不會出現(xiàn)ζ相。鍍層中η相直接轉(zhuǎn)變?yōu)棣南?,并?.8 s消失,δ相生長到鍍層表面時停止生長。隨合金化時間的延長,鍍層中Γ相通過消耗鋼基板處的δ相生長。根據(jù)Arrhenius方程[30],合金化溫度升高,鍍層中原子的擴散系數(shù)也升高,F(xiàn)e-Zn原子互擴散速率加快,因此合金化速率更快。相比510 ℃下Γ相的生長過程,540 ℃合金化溫度模擬過程中Γ相生長速率更快。
圖4 鍍層物相生長過程模擬
合金化溫度分別為510 ℃和540 ℃鍍層Fe含量隨時間變化如圖5所示。隨合金化溫度的升高,相同時間下鍍層的Fe含量更高。原因是溫度升高,F(xiàn)e-Zn原子擴散速率更快,合金化速率加快,合金化鍍層Fe含量也更高。由Fe含量隨時間的變化曲線可知,F(xiàn)e含量在合金化前期增加速率較快,后期鍍層Fe含量增加緩慢。由表1可知,物相擴散系數(shù)大小為ζ>δ>Γ。隨合金化程度加深,鍍層物相組成傾向于Fe含量更高的物相,合金化鍍層物相擴散系數(shù)逐漸減小,F(xiàn)e-Zn原子擴散速率降低,造成鍍層Fe含量上升速率逐漸減慢。將實驗測定Fe含量與模擬結(jié)果中Fe含量對比,兩者Fe含量數(shù)值相近,模擬結(jié)果中Fe含量變化規(guī)律與實驗相符,證明了模型的可信度。
圖5 Fe含量模擬與實驗驗證
為了更加直觀地觀察合金化過程中物相的生長過程,模擬不同保溫時間下物相沿鍍層截面的分布情況。合金化溫度510 ℃分別保溫0、3、8、15、30、45 s物相沿鍍層截面分布如圖6所示。在保溫0 s時,鍍層出現(xiàn)少量ζ相和δ相,主要由η相組成;保溫3 s時,η相減少,轉(zhuǎn)變?yōu)棣葡嗪挺南啵槐? s時,η相消失,鍍層由ζ相和δ相組成;保溫15 s時,ζ相消失,鍍層主要由δ相組成;延長保溫時間,Γ相緩慢生長。
合金化溫度540 ℃分別保溫0、3、8、15、30、45 s物相沿鍍層截面分布如圖7所示。保溫0s時,η相少量轉(zhuǎn)變?yōu)棣南啵槐?s時,η相大量轉(zhuǎn)變?yōu)棣南?;保? s時,η相消失,鍍層由δ相組成;隨保溫時間延長,Γ相通過消耗δ相生長。
圖6 510 ℃保溫不同時間的物相沿鍍層截面分布
圖7 540 ℃保溫不同時間的物相沿鍍層截面分布
1)模擬Fe-Zn相圖不同相區(qū)溫度鍍層合金化過程,模擬510 ℃合金化溫度物相轉(zhuǎn)變?yōu)棣恰啤摹#?40 ℃合金化溫度物相轉(zhuǎn)變?yōu)棣恰摹?,模擬得到最佳鍍層物相組成對應(yīng)的合金化工藝:510 ℃保溫9.7 s,540 ℃保溫6.8 s。
2)研究得出合金化過程鍍層Fe含量變化規(guī)律:在合金化前期Fe含量增加速率較快,隨合金化程度提高,物相擴散系數(shù)降低,鍍層Fe含量增加速率減慢。
[1] SHIBLI S M A, MEENA B N, REMYA R. A Review on Recent Approaches in the Field of Hot Dip Zinc Galva-nizing Process[J]. Surface and Coatings Technology, 2015, 262: 210-215.
[2] CHAKRABORTY A, BHATTACHARJEE D, PAIS R, et al. Effect of Galvannealing Power on the Texture and Powdering Resistance of Industrially Produced Galvannealed Coating on Interstitial Free Steel[J]. Scripta Materialia, 2007, 57(8): 715-718.
[3] 徐秀清, 王順興. 連續(xù)熱鍍鋅工藝進展與展望[J]. 表面技術(shù), 2007, 36(1): 71-74. XU Xiu-qing, WANG Shun-xing. Development and Prospect of Continuous Hot-Dip Galvanized Process[J]. Surface Technology, 2007, 36(1): 71-74.
[4] INUI H, OKAMOTO N L, YAMAGUCHI S. Crystal Structures and Mechanical Properties of Fe-Zn Inter-metallic Compounds Formed in the Coating Layer of Galvannealed Steels[J]. ISIJ International, 2018, 58(9): 1550-1561.
[5] YU Xue-bin, LI Mang-mang. Research on the Lack of Alloying in the Galvannealed Coating of Automotive Sheet Steel[J]. Baosteel Technical Research, 2008, 2(4): 17-20.
[6] PARK H, JEONG Y J, LEE K, et al. Effect of Galva-nnealing Temperature on Coating Microstructure Evolu-tion Correlated to Flaking Degradation on Galvannealed Interstitial-Free Steel[J]. Surface and Coatings Techn-ology, 2020, 404: 126446.
[7] Mataigne J M, Drillet P, Pra J M, et al. Optimized Galva-nnealed Coatings Microstructure for Automotive Applic-ations[C]// 3rd in Conf on Zinc and Zinc Alloy Coated Steel Sheet. Chicago: Iron and Steel Society, 1995.
[8] ZHONG W, NG H F, ICHIKAWA M. Effect of Coating Characteristics on Powdering Performance of Galvanneal Coatings[C]// The 4th International Conference on Zinc and Zinc Alloy Coated Steel Sheet. Makuhari: Iron and Steel Institute of Japan, 1998.
[9] MASSALSKI T B. Binary alloy phase diagrams[M]. 2nd ed. Materials Park, Ohio: ASM International, 1990.
[10] BELIN R, TILLARD M, MONCONDUIT L. Redeterm-ination of the Iron-Zinc Phase FeZn13[J]. Acta Crystallo-graphica Section C Crystal Structure Communications, 2000, 56(3): 267-268.
[11] HONG M H, SAKA H. Transmission Electron Microsc-opy of the Iron-Zinc1Intermetallic Phase[J]. Scripta Materialia, 1997, 36(12): 1423-1429.
[12] KAINUMA R, ISHIDA K. Microstructural Evolution of Intermetallic Compound Layers Formed in Fe/Zn Binary Diffusion Couples[J]. Tetsu-to-Hagane, 2005, 91(3): 349- 355.
[13] KAINUMA R, ISHIDA K. Reactive Diffusion between Solid Fe and Liquid Zn at 723 K[J]. ISIJ International, 2007, 47(5): 740-744.
[14] OKAMOTO N L, TANAKA K, YASUHARA A, et al. Structure Refinement of the Δ1p Phase in the Fe-Zn System by Single-Crystal X-Ray Diffraction Combined with Scanning Transmission Electron Microscopy[J]. Acta Crystallographica Section B, Structural Science, Crystal Engineering and Materials, 2014, 70(Pt 2): 275-282.
[15] HAN K, OHNUMA I, OKUDA K, et al. Experimental Determination of Phase Diagram in the Zn-Fe Binary System[J]. Journal of Alloys and Compounds, 2018, 737: 490-504.
[16] OKAMOTO N L, INOMOTO M, TAKEBAYASHI H, et al. Crystal Structure Refinement of the Γ- and Γ1-Phase Compounds in the Fe-Zn System and Orientation Relati-onships among Α-Fe, Γ and Γ1 Phases in the Coating Layer of Galvannealed Steel[J]. Journal of Alloys and Compounds, 2018, 732: 52-63.
[17] KANAPA L, BOONYONGMANEERAT Y, SUPRADIST M. Finite Difference Kinetics Modeling for Galvanized Steels with Post Heat Treatments[J]. Advanced Materials Research, 2014, 1025-1026: 723-730.
[18] GAO Hai-yun, LI Xiao-bo, FENG Wen-ying, et al. Num-e-rical Modeling of Zinc Diffusion during Sherardizing Process[J]. Journal of Phase Equilibria and Diffusion, 2018, 39(2): 237-245.
[19] VERMA A K, CHANDRA S, BANDYOPADHYAY N, et al. Optimization of Galvannealing Parameters through Numerical Modeling of Galvannealing Process[J]. Metal-lurgical and Materials Transactions A, 2009, 40(5): 1153- 1159.
[20] KANAMARU T, NAKAYAMA M. Alloying Reaction Control in Production of Galvannealed Steel[J]. Journal of the Society of Materials Science, Japan, 1995, 44(504): 150-156.
[21] 蘇旭平, 李智, 尹付成, 等. 熱浸鍍中硅反應(yīng)性研究[J]. 金屬學(xué)報, 2008, 44(6): 718-722. SU Xu-ping, LI Zhi, YIN Fu-cheng, et al. A Study of the Silicon Reactivity in Galvanizing[J]. Acta Metallurgica Sinica, 2008, 44(6): 718-722.
[22] JORDAN C E, MARDER A R. Fe-Zn Phase Formation in Interstitial-Free Steels Hot-Dip Galvanized at 450℃: Part II 0.20wt% Al-Zn Baths[J]. Journal of Materials Science, 1997, 32(21): 5603-5610.
[23] KOBAYASHI S. Effects of Si Solid Solution in Fe Substrate on the Alloying Reaction between Fe Substrate and Liquid Zn[J]. Tetsu-to-Hagane, 2017, 103(7): 429- 433.
[24] MIYATA M, FUSHIWAKI Y, SUZUKI Y, et al. Effect of Si/Mn Ratio on Galvannealing Behavior of Si-Added Steel[J]. ISIJ International, 2018, 58(9): 1600-1607.
[25] HERTVELDT I, DE COOMAN B C, CLAESSENS S. Influence of Annealing Conditions on the Galvanizability and Galvannealing Properties of TiNb Interstitial-Free Steels, Strengthened with Phosphorous and Manganese[J]. Metallurgical and Materials Transactions A, 2000, 31(4): 1225-1232.
[26] MARDER A R. The Metallurgy of Zinc-Coated Steel[J]. Progress in Materials Science, 2000, 45(3): 191-271.
[27] SU Xu-ping, XU Peng, LIU Ya, et al. Mathematical Modeling and Numerical Simulation of Layer Growth and Phase Transformation during Galvannealing Process[J]. Surface and Coatings Technology, 2012, 206(23): 5012- 5021.
[28] ONISHI M, WAKAMATSU Y, MIURA H. Formation and Growth Kinetics of Intermediate Phases in Fe-Zn Diffusion Couples[J]. Transactions of the Japan Institute of Metals, 1974, 15(5): 331-337.
[29] TSUJI S. Numerical Modeling of Multiphase Diffusion in the Process of Homogenizing in Binary Alloys[J]. Metall-urgical and Materials Transactions A, 2001, 32(3): 681- 690.
[30] 胡賡祥, 蔡珣, 戎詠華. 材料科學(xué)基礎(chǔ)[M]. 3版. 上海: 上海交通大學(xué)出版社, 2010. HU Geng-xiang, CAI Xun, RONG Yong-hua. Fundame-ntals of Materials Science[M]. 3rd ed. Shanghai: Shanghai Jiao Tong University Press, 2010.
[31] 徐鵬. 合金化熱鍍鋅鍍層組織模擬及應(yīng)用[D]. 湘潭: 湘潭大學(xué), 2012. XU Peng. Microstructure Simulation and Application of Alloying Hot Dip Galvanized Coating[D]. Xiangtan: Xiangtan University, 2012.
Simulation of the Growth Process of Galvannealed Coatings at Different Zone Temperature in Fe-Zn Phase Diagram
1,2,1,1*,1
(1. a. School of Material Science and Engineering, b. State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200444, China; 2. Baosteel Zhanjiang Iron & Steel Co., Ltd., Guangdong Zhanjiang 524033, China)
Galvannealed steel (GA) is widely used in the automotive industry, household appliances and construction for its good weldability, paintability, corrosion resistance and heat resistance. However, compared to GI coatings, GA coatings often fail in the press forming because the brittle and high hardness Fe-Zn phases can easily cause coating to undergo powdering and flaking, which results in severe decrease of its corrosion resistance and quality. Therefore, in order to improve the formability of GA coatings, the work aims to establish a GA coating phases growth model to control the coating phase composition, and obtain the best galvannealing process parameters to guide production. Based on the latest Fe-Zn phase diagram, the phase zone boundary concentration equation was formulated and combined with the phase zone boundary concentration equation, the phase boundary movement equation and the phase growth equation, GA coating phase growth model was constructed. The galvannealing model was constructed to simulate the growth process of phases η, ζ, δ and Γ in different phase zones of GA coating, the distribution of the phases along GA coating cross-section, and the change of GA coating Fe content during the galvannealing process. The established model could successfully simulate the phase growth process in different phase zones of the Fe-Zn phase diagram, and compare the growth differences of different phases in different phase zones. The phase transformation below the galvannealing temperature of 530℃ was η→ζ→δ→Γ, while the phase transformation above the galvannealing temperature of 530 ℃ was η→δ→Γ. The galvannealing temperature was set at 510 ℃ and 540 ℃. According to the simulation results at 510 ℃, η phase was gradually consumed by ζ phase and δ phase, and disappeared at 8.2 s. At the same time, ζ phase also grew to the surface of coating and stopped growing. Then the δ phase consumed the remaining ζ phase and grew rapidly to the coating surface at 9.7 s, Γ phase grew slowly by consuming δ phase and the thickness of Γ phase reached 1μm at 38 s. Simulation results at 540 ℃ indicated that η phase directly transformed to δ phase and disappeared at 6.8 s. δ phase stopped growing when reaching the surface of the coating at 6.8 s. With the extension of galvannealing time, Γ phase grew slowly by consuming δ phase from the steel substrate and the thickness of Γ phase reached 1 μm at 17 s. The galvannealing process to obtain the best coating phases was simulated: 510 ℃ for 9.7 s and 540 ℃ for 6.8 s. The study shows that the change rule of Fe content in GA coating during the galvannealing process is that the increase rate of Fe content is faster at the initial stage of galvannealing, and the increase rate of Fe content slows down with the increase of galvannealing degree, because the phase diffusion coefficient of Fe-Zn phase diagram is ζ>δ>Γ. Therefore, as galvannealing time goes on, phases with high Fe content in GA coating increase, GA coating phase diffusion coefficient decreases with the increase of Fe content and the diffusion rate of Fe-Zn atoms decreases. GA coating phases growth model can simulate the best process parameters at different galvannealing temperature, and provide a process reference for the production of GA coatings.
galvannealed steel; high strength steel; mathematical model; galvannealing process; Fe-Zn alloy
2022-08-30;
2023-02-08
TG335.22
A
1001-3660(2023)10-0403-08
10.16490/j.cnki.issn.1001-3660.2023.10.036
2022-08-30;
2023-02-08
上海市自然基金(21ZR1423600);中央引導(dǎo)地方項目(216Z1004G)
Shanghai Natural Fund (21ZR1423600); Central Guidance Local Project (216Z1004G)
劉詩文, 孟憲陸, 趙彥, 等. Fe-Zn相圖不同相區(qū)溫度合金化鋅鍍層生長過程模擬[J]. 表面技術(shù), 2023, 52(10): 403-410.
LIU Shi-wen, MENG Xian-lu, ZHAO Yan, et al. Simulation of the Growth Process of Galvannealed Coatings at Different Zone Temperature in Fe-Zn Phase Diagram[J]. Surface Technology, 2023, 52(10): 403-410.
通信作者(Corresponding author)
責(zé)任編輯:劉世忠