陳昊 謝善鵬 解凱東 肖公傲 周銳 伍小萌 吳群 鄧家銳 敖義俊 劉高平 郭文武
摘? ? 要:【目的】基于柑橘珠心細(xì)胞存在自然加倍的特點(diǎn),實(shí)生播種發(fā)掘千山紅蜜橘等13個(gè)品種的同源四倍體。【方法】種子催芽萌發(fā)后實(shí)生播種,待幼苗長(zhǎng)出3片以上真葉后,依據(jù)形態(tài)特征初選法“觀根辨葉看油胞”從實(shí)生苗中篩選疑似多倍體,再通過流式細(xì)胞儀倍性分析與根尖染色體壓片計(jì)數(shù)對(duì)疑似多倍體進(jìn)一步鑒定倍性,并通過SSR分子標(biāo)記分析鑒定所獲多倍體的遺傳來源?!窘Y(jié)果】基于形態(tài)初選,分別從9個(gè)地方特色品種千山紅蜜橘、八月橘、衢橘、早橘、扁平橘、甌柑、獅頭柑、冰糖橙、錦蜜冰糖橙和4個(gè)砧木品種磨坪香橙、日本香橙、枳雀、油皮金柑的343、499、892、385、519、290、457、241、119、690、828、114、129株實(shí)生苗中發(fā)掘獲得2、1、3、2、7、3、1、3、1、3、17、1、2株疑似多倍體;用流式細(xì)胞儀對(duì)以上46株疑似多倍體進(jìn)行倍性鑒定,獲得45株四倍體和1株衢橘六倍體,采用根尖染色體計(jì)數(shù)法驗(yàn)證了上述結(jié)果;SSR分子鑒定表明,13個(gè)品種的45株四倍體所擴(kuò)增條帶大小與其相應(yīng)二倍體親本完全一致,推測(cè)其可能是由二倍體親本珠心細(xì)胞自然加倍形成的同源四倍體。【結(jié)論】發(fā)掘的四倍體資源不僅豐富了我國(guó)柑橘多倍體類型,而且為我國(guó)柑橘無核育種和矮化廣適砧木選育奠定了珍貴的材料基礎(chǔ)。
關(guān)鍵詞:柑橘;多倍體;流式細(xì)胞儀;SSR分子標(biāo)記;無核育種
中圖分類號(hào):S666 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2023)11-2297-10
Efficient exploration and SSR identification of autotetraploids from the seedlings of thirteen apomictic Citrus genotypes
CHEN Hao1, XIE Shanpeng1, XIE Kaidong1, XIAO Gongao1, ZHOU Rui2, WU Xiaomeng1, WU Qun3, DENG Jiarui4, AO Yijun4, LIU Gaoping5, GUO Wenwu1*
(1National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, Hubei, China; 2Chenzhou Institute of Agricultural Science, Chenzhou 423000, Hunan, China; 3Quzhou Academy of Agricultural and Forestry Sciences, Quzhou 324000, Zhejiang, China; 4Chenggu Fruit Technology Guidance Station, Chenggu 723200, Shaanxi, China; 5Huangyan Fruit Tree Technology Promotion General Station, Taizhou 318020, Zhejiang, China)
Abstract: 【Objective】 Citrus is a crucial part of Chinese fruit crops. There are abundant citrus germplasm resources in China, but many excellent local varieties are gradually eliminated by the market due to the problem of numerous seeds within the fruit. The fruits of triploid plants are generally seedless because of their sterile male and female gametes. Therefore, triploid production is a promising strategy to breed seedless cultivars in citrus. Triploids can be obtained by interploidy crossing between diploids and tetraploids. However, the tetraploid germplasm is rare, which limits the application of this strategy. Exploration of tetraploids is an important prerequisite for triploid production with the aim to improve the seedy local cultivars in our country. For the rootstock improvement, tetraploid plants are also valuable resources because of their higher metabolite content, and better resistance than their diploid parents. In this study, we planned to explore tetraploid plants from 13 local cultivars in our country by using the traits of spontaneous doubling of the nucellar cells in polyembryonic citrus varieties. The exploration of tetraploids from the above 13 local cultivars will not only provide excellent tetraploid parents for the production of triploid plants, but also lay the foundation for the basic research about the effect of genome duplication on some important trait change, such as dwarfing, extensive adaptivity and higher medicinal value in tetraploids. 【Methods】 After the mature fruits were harvested, the seeds were extracted and the seed coats were peeled off, and then they were placed in a thermostat to accelerate germination. When the seeds germinated, they were sown in pots and cultivated in a plant growth chamber. After the seedlings grew up with three or more leaves, putative polyploids were screened according to the morphological feature showing lower height, shorter taproots, less lateral roots, thicker and rounder leaves and declined oil gland density. The ploidy levels of these putative polyploids were further confirmed by flow cytometric analysis and the observation on root tip chromosome numbers. After determination of the ploidy level, some morphological traits, including plant height, root length and diameter, lateral root number, stem diameter, leaf thickness and shape index of the tetraploids and their corresponding diploid parents were measured at the same developmental stage. SSR analysis was used to identify the genetic origin of the explored tetraploids with at least three pairs of SSR primers selected for each cultivar. 【Results】 The polyembryonic degree of seeds from each cultivar was firstly determined and it showed that the seeds of all 13 cultivars were polyembryonic. Among them, Qu tangerine had the highest number of embryos with an average of 9.4 embryos per seed and Bingtang sweet orange had the lowest number of embryos with an average of 2.2 embryos per seed. Based on the morphological trait screening, we identified 2, 1, 3, 2, 7, 3, 1, 3, 1, 3, 17, 1 and 2 putative polyploids respectively from 343, 499, 892, 385, 519, 290, 457, 241, 119, 690, 828, 114 and 129 seedlings of Qianshanhong tangerine, Bayue tangerine, Qu tangerine, Zao tangerine, Bianping tangerine, Ougan tangerine, Shitougan, Bingtang sweet orange, Jinmi sweet orange, Moping Xiangcheng, Japanese Xiangcheng, Zhique and Youpi kumquat. After further confirmation of ploidy levels concerning above putative tetraploids, we obtained 45 tetraploids and one hexaploid plant from Qu tangerine, with an average occurrence rate of 0.85%, among which the rate of Japanese xiangcheng was the highest with 2.05% and the rate of Bayue tangerine was the lowest with 0.20%. The exploration time from seed germination to obtaining tetraploid seedlings varied among cultivars, with the longest time (42 days) used in Youpi kumquat and the shortest time (23 days) in Shitougan. The morphological traits of tetraploids and their corresponding diploid seedlings from nine cultivars of Qianshanhong tangerine, Qu tangerine, Zao tangerine, Bianping tangerine, Ougan tangerine, Bingtang sweet orange, Moping Xiangcheng, Japanese Xiangcheng and Youpi kumquat were measured. For plant height, tap root length, lateral root numbers and leaf thickness, the tetraploid seedlings of seven cultivars showed significant differences with their diploid parents. For taproot and stem diameter, only the tetraploid seedlings explored from Bingtang sweet orange and Japanese Xiangcheng had significant difference with their diploid parents. For leaf shape index, the tetraploid seedings from Bianping tangerine and Moping Xiangcheng exhibited significant differences with their diploid seedlings. In conclusion, most tetraploid seedlings of all nine cultivars showed lower plant height, shorter and thicker taproot, less lateral root number, thicker and rounder leaves than those of their diploid parents. These results provide supports for the screening of putative tetraploids based on morphological trait observation. For analyzing the genetic origin of the tetraploids obtained in this study, at least three SSR markers were used in each genotype. The results showed that the bands of all 45 tetraploids were identical with those of their corresponding diploids, indicating that all the 45 tetraploids might originate from the spontaneous chromosome doubling of nucellar cells of their corresponding diploids. In addition, the bands of the hexaploid from Qu tangerine were also identical with their diploid parent. We speculated that it might derive from chromosome doubling of a triploid zygotic cell, which formed by selfing of a FDR-type 2n gamete with a normal n gamete, and both gametes were produced by Qu tangerine. 【Conclusion】 This study verified that morphological screening combined with flow cytometry ploidy determination and SSR analysis is an efficient approach to exploring polyploid seedlings from apomictic citrus. Using this method, 45 autotetraploid and one hexaploid plants were obtained from 13 apomictic citrus genotypes. These newly discovered tetraploids are potentially valuable for not only genetic improvement of some elite local citrus cultivars with seeds produced by triploids using interploidy hybridization, but also selection of the promising rootstocks with dwarf, multi-resistance and broad adaptability characteristics to improve the ability to resist various abiotic and biotic stresses.
Key words: Citrus; Polyploidy; Flow cytometry; Simple sequence repeat; Seedless breeding
收稿日期:2023-08-02 接受日期:2023-08-21
基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(32172525);南寧市科技重大專項(xiàng)(20222061);浙江省黃巖區(qū)農(nóng)業(yè)揭榜掛帥項(xiàng)目(JBGS2022-HYNY02);華中農(nóng)業(yè)大學(xué)深圳營(yíng)養(yǎng)健康研究院項(xiàng)目(SZYJY2022009);國(guó)家柑橘產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-26)
作者簡(jiǎn)介:陳昊,男,在讀碩士研究生,研究方向?yàn)楣麡渖锛夹g(shù)與種質(zhì)創(chuàng)制。Tel:027-87287393,E-mail:chenhao99@webmail.hzau.edu.cn
*通信作者 Author for correspondence. Tel:027-87281543,E-mail:guoww@mail.hzau.edu.cn
柑橘是我國(guó)南方最重要的水果,在我國(guó)農(nóng)村經(jīng)濟(jì)發(fā)展與鄉(xiāng)村振興中發(fā)揮了巨大的作用[1]。我國(guó)柑橘栽培歷史悠長(zhǎng),種質(zhì)資源繁多,但許多優(yōu)良的地方品種因種子多而逐漸被淘汰[2]。無核是柑橘遺傳改良的重要育種目標(biāo)之一[3],三倍體是天然的不育類型,創(chuàng)制三倍體是實(shí)現(xiàn)柑橘果實(shí)無核化的有效途徑[4]。利用二倍體與四倍體倍性雜交是培育柑橘三倍體的主要方法[5],但我國(guó)一些地方特色品種四倍體資源仍較為缺乏,限制了該育種策略的應(yīng)用。因此,發(fā)掘柑橘四倍體是利用倍性雜交策略改良我國(guó)地方特色品種種子多等性狀的重要前提條件。此外,與二倍體相比,同源四倍體大部分表現(xiàn)為器官更大[6]、代謝物含量更高[7]、抗性更強(qiáng)[8]和植株矮化或致矮[9]等特點(diǎn),發(fā)掘或創(chuàng)制柑橘砧木同源四倍體,對(duì)培育矮化、廣適和多抗砧木品種具有重要的產(chǎn)業(yè)應(yīng)用價(jià)值。
柑橘屬及近緣屬大多數(shù)品種均具有多胚現(xiàn)象[10]。據(jù)報(bào)道,少數(shù)珠心細(xì)胞在發(fā)育過程中會(huì)發(fā)生自然加倍,形成染色體加倍的珠心胚萌發(fā)后進(jìn)而形成同源四倍體(或稱雙二倍體),其基因型與二倍體完全一致[11]。利用這一特性,梁武軍等[9, 12]通過露地實(shí)生播種結(jié)合葉片形態(tài)觀察發(fā)掘獲得了枳、香橙、早金甜橙等20余個(gè)砧木和柑橘接穗品種的同源四倍體。但是,種子露地播種易受季節(jié)和天氣等環(huán)境因素影響,存在萌發(fā)率低且初選準(zhǔn)確率不高的缺點(diǎn)。針對(duì)該問題,周銳等[13]對(duì)上述技術(shù)流程進(jìn)行了改良,提出了“觀根辨葉看油胞”發(fā)掘四倍體的方法,該方法采用種子催芽后生長(zhǎng)室播種代替露地播種,綜合葉片、根系和油胞等多組織形態(tài)特征(如四倍體相較二倍體根短粗且側(cè)根少、葉片厚、葉形指數(shù)小、油胞密度低等)篩選疑似多倍體,極大提高了發(fā)掘效率?;谠摲椒ǎx善鵬等[14]以常山胡柚等6個(gè)柑橘地方特色品種為材料,發(fā)掘獲得了53株四倍體新種質(zhì),準(zhǔn)確率46.7%,從播種到獲得四倍體耗時(shí)平均38 d。張成磊等[15]利用該方法從1289株山金柑實(shí)生后代中發(fā)掘同源四倍體8株,準(zhǔn)確率100%,證明了“觀根辨葉看油胞”結(jié)合流式細(xì)胞儀倍性鑒定是獲得柑橘多胚品種同源四倍體的便捷高效的策略。
千山紅蜜橘、八月橘、衢橘、早橘、扁平橘、甌柑、冰糖橙和油皮金柑是我國(guó)陜西、廣東、浙江和湖南等地的優(yōu)良地方特色品種,但均存在種子較多和食用不便的問題;香橙、枳雀和獅頭柑除了作為優(yōu)良的砧木資源外,還具有一定的藥用價(jià)值。發(fā)掘上述材料的多倍體新種質(zhì),不僅能為柑橘三倍體無核種質(zhì)創(chuàng)制提供優(yōu)良的四倍體育種親本,而且對(duì)培育矮化、適應(yīng)性強(qiáng)的四倍體砧木和藥用價(jià)值高的柑橘資源具有重要研究意義和實(shí)踐價(jià)值。
1 材料和方法
1.1 試驗(yàn)材料
9個(gè)地方特色品種:千山紅蜜橘(Citrus reticulata Blanco)、八月橘(C. reticulata Blanco)、衢橘(C. reticulata Blanco)、早橘(C. reticulata Blanco)、扁平橘(C. Depressa Hayata)、甌柑(C. reticulata Suavissima)、冰糖橙(C. sinensis L. Osbeck)、錦蜜冰糖橙(C. sinensis L. Osbeck)和油皮金柑(Fortunella japonica Swingle);4個(gè)砧木品種:磨坪香橙(C. junos Siebold ex Tanaka)、日本香橙(C. junos Siebold ex Tanaka)、枳雀(C. wilsonii Tanaka)和獅頭柑(C. speciosa Hort. ex Tseng)。
八月橘采自廣東省深圳市;冰糖橙、錦蜜冰糖橙采自湖南省郴州市;獅頭柑、枳雀、日本香橙和千山紅蜜橘采自陜西省城固縣;磨坪香橙采自湖北省秭歸縣;衢橘、早橘和扁平橘采自浙江省衢州市;甌柑采自浙江省溫州市;油皮金柑采自廣西融安縣。
1.2 實(shí)生播種及初選疑似多倍體
種子實(shí)生播種參考謝善鵬等[14]的方法,實(shí)生幼苗形態(tài)初選疑似多倍體參考周銳等[13]的方法。從成熟果實(shí)剝?nèi)》N子后,用1 mol·L-1 KOH溶液浸泡3~5 min溶解果膠,用清水搓洗干凈后剝?nèi)シN皮,置于墊有濕紗布的玻璃皿于28 ℃恒溫暗催芽3~5 d;待胚根長(zhǎng)至0.5~1.0 cm時(shí),播種于塑料缽并覆膜保濕,置于生長(zhǎng)室(溫度25±1 ℃,光照16 h)培養(yǎng)。待幼苗長(zhǎng)出3片以上真葉后,依據(jù)形態(tài)特征初選法“觀根辨葉看油胞”從實(shí)生苗中篩選出疑似多倍體。
1.3 倍性分析與鑒定
流式細(xì)胞儀(Cyflow space, Sysmex, Japan)倍性分析參考解凱東等[16]的方法。用一步法試劑盒(Sysmex, Germany)對(duì)樣品進(jìn)行裂解和染色后上機(jī)檢測(cè),以二倍體(2n=2x=18)植株葉片(熒光強(qiáng)度X≈50)為對(duì)照,分析待測(cè)樣品倍性,若待測(cè)樣品為三倍體(2n=3x=27),則其熒光強(qiáng)度X≈75;若待測(cè)樣品為四倍體(2n=4x=36),則其熒光強(qiáng)度則為X≈100。植株根尖染色體壓片計(jì)數(shù)參考Xia等[17]的方法。植株倍性確定后,統(tǒng)計(jì)各個(gè)品種四倍體的自然發(fā)生頻率(四倍體株數(shù)/群體株數(shù))。
1.4 四倍體幼苗形態(tài)指標(biāo)測(cè)定
參考謝善鵬等[14]的方法對(duì)相同發(fā)育時(shí)期的四倍體及二倍體實(shí)生苗形態(tài)指標(biāo)進(jìn)行測(cè)定。形態(tài)指標(biāo)主要包括植株高度、主根長(zhǎng)度、側(cè)根數(shù)目、根粗(根莖分界處向下1 cm處的根直徑)、莖粗(根莖分界處向上1 cm處的莖直徑)、葉片厚度和葉形指數(shù)(葉片長(zhǎng)度/葉片寬度)。每項(xiàng)指標(biāo)均隨機(jī)取樣測(cè)定3個(gè)生物學(xué)重復(fù),每個(gè)品種二倍體及四倍體實(shí)生苗各測(cè)量9株。用Excel 2016對(duì)數(shù)據(jù)進(jìn)行處理,并用t-test(p<0.05)對(duì)數(shù)據(jù)進(jìn)行顯著性分析。
1.5 植物基因組DNA提取和SSR分子鑒定
參考Cheng等[18]的方法提取基因組DNA,SSR分子標(biāo)記參考謝善鵬等[14]的方法。SSR引物見表1,由北京擎科生物科技股份有限公司武漢分公司合成。PCR擴(kuò)增體系為10 μL:2 × Rapid Taq Master Mix 5 μL,ddH2O 3.5 μL,DNA 1 μL,Primer F、R各0.25 μL(10 μmol·L-1)。PCR反應(yīng)在ProFlex PCR儀(ABI, USA)進(jìn)行,擴(kuò)增程序:95 ℃預(yù)變性3 min,95 ℃變性30 s,55 ℃退火30 s,72 ℃延伸10 s,35個(gè)循環(huán),72 ℃延伸5 min,4 ℃保存。PCR擴(kuò)增產(chǎn)物由全自動(dòng)毛細(xì)管電泳(QIAxcel Advanced, Germany)分離,成像結(jié)果由儀器自帶軟件QIAxcel ScreenGel自動(dòng)生成。
2 結(jié)果與分析
2.1 13個(gè)柑橘品種均為多胚品種
對(duì)千山紅蜜橘、八月橘、衢橘、早橘、扁平橘、甌柑、獅頭柑、冰糖橙、錦蜜冰糖橙、磨坪香橙、日本香橙、枳雀和油皮金柑共13個(gè)品種的種子胚數(shù)進(jìn)行調(diào)查(圖1),每個(gè)品種至少統(tǒng)計(jì)20粒種子。結(jié)果表明(表2),上述13個(gè)品種均為多胚品種,種子多胚程度由低到高依次為冰糖橙、甌柑、日本香橙、千山紅蜜橘、枳雀、八月橘、磨坪香橙、扁平橘、早橘、錦蜜冰糖橙、油皮金柑、獅頭柑和衢橘。其中,衢橘胚數(shù)最高,平均每粒種子9.4個(gè)胚;冰糖橙胚數(shù)最少,平均每粒種子2.2個(gè)胚。
2.2 實(shí)生發(fā)掘13個(gè)柑橘品種同源四倍體45株
依據(jù)“觀根辨葉看油胞”形態(tài)學(xué)篩選法,分別從千山紅蜜橘、八月橘、衢橘、早橘、扁平橘、甌柑、獅頭柑、冰糖橙、錦蜜冰糖橙、磨坪香橙、日本香橙、枳雀和油皮金柑13個(gè)品種的343、499、892、385、519、290、457、241、119、690、828、114、129株實(shí)生苗篩選獲得2、1、3、2、7、3、1、3、1、3、17、1、2株疑似多倍體。用流式細(xì)胞儀對(duì)上述46株疑似多倍體進(jìn)行倍性鑒定(圖2),獲得45株四倍體(千山紅蜜橘2株、八月橘1株、衢橘2株、早橘2株、扁平橘7株、甌柑3株、獅頭柑1株、冰糖橙3株、錦蜜冰糖橙1株、磨坪香橙3株、日本香橙17株、枳雀1株、油皮金柑2株)和1株六倍體(衢橘)。進(jìn)一步隨機(jī)挑選日本香橙的二倍體和四倍體實(shí)生幼苗各3株,利用根尖染色體計(jì)數(shù)對(duì)其染色體數(shù)目進(jìn)行鑒定,結(jié)果表明,流式細(xì)胞儀測(cè)得的四倍體染色體為36條,二倍體為18條,驗(yàn)證了流式細(xì)胞儀倍性分析的準(zhǔn)確性。不同品種四倍體的群體發(fā)生率不同,發(fā)生率由低到高依次為八月橘、衢橘、獅頭柑、磨坪香橙、早橘、千山紅蜜橘、錦蜜冰糖橙、枳雀、甌柑、冰糖橙、扁平橘、油皮金柑、日本香橙。其中,日本香橙群體發(fā)生率最高,為2.05%;八月橘群體發(fā)生率最低,為0.20%。從播種至獲得四倍體植株,不同品種耗時(shí)23~42 d不等(表2)。
2.3 9個(gè)品種的四倍體與二倍體幼苗根、莖和葉片形態(tài)特征差異明顯
對(duì)千山紅蜜橘、衢橘、早橘、扁平橘、甌柑、冰糖橙、磨坪香橙、日本香橙和油皮金柑9個(gè)品種發(fā)掘獲得的四倍體及相應(yīng)二倍體親本實(shí)生幼苗的株高、主根長(zhǎng)度、側(cè)根數(shù)目、根粗、莖粗、葉片厚度、葉片長(zhǎng)度和寬度等形態(tài)指標(biāo)進(jìn)行測(cè)定,以評(píng)價(jià)四倍體及其二倍體親本實(shí)生幼苗的形態(tài)差異(圖3)。結(jié)果(表3)表明,除冰糖橙和油皮金柑外,其余7個(gè)品種的四倍體幼苗株高顯著低于其對(duì)應(yīng)二倍體親本;主根長(zhǎng)度方面,除甌柑和冰糖橙外,其余7個(gè)品種的四倍體幼苗主根長(zhǎng)度顯著低于其對(duì)應(yīng)二倍體親本;對(duì)于側(cè)根數(shù)和根粗,除早橘和冰糖橙外,其余7個(gè)品種的四倍體幼苗側(cè)根數(shù)顯著低于其二倍體親本,且僅有冰糖橙四倍體幼苗根顯著粗于其二倍體親本,其余品種根粗差異不明顯;而在莖粗方面,大多數(shù)品種的四倍體幼苗與其二倍體親本差異不明顯,僅有日本香橙的四倍體莖顯著粗于其二倍體親本;在葉片厚度和葉形指數(shù)方面,除磨坪香橙和日本香橙外,其余7個(gè)品種的四倍體幼苗葉片厚度顯著大于其二倍體親本,扁平橘和磨坪香橙的四倍體幼苗的葉形指數(shù)顯著小于其二倍體親本,其余品種差異不顯著??偟膩碚f,大多數(shù)品種的四倍體幼苗與其對(duì)應(yīng)二倍體相比,植株一般表現(xiàn)為株高顯著降低,主根變短粗且側(cè)根減少,葉片增厚、葉形指數(shù)變小等特點(diǎn)。
2.4 SSR分子鑒定
用19對(duì)SSR引物對(duì)從13個(gè)品種發(fā)掘獲得的四倍體和六倍體植株進(jìn)行SSR分子鑒定,每個(gè)品種至少選擇3對(duì)多態(tài)性較好的引物進(jìn)行鑒定(圖4)。結(jié)果表明,13個(gè)品種的45株四倍體所擴(kuò)增條帶的大小與其相應(yīng)二倍體親本所擴(kuò)增條帶大小完全一致,推測(cè)其可能由二倍體親本珠心細(xì)胞自然加倍形成的同源四倍體;衢橘六倍體條帶也與其二倍體親本基本一致,推測(cè)其可能由衢橘形成的2n配子與正常n配子自交形成三倍體合子后,再經(jīng)染色體自然加倍形成。
3 討 論
除枸櫞類、柚類等以外,柑橘絕大多數(shù)品種的種子都具有多胚現(xiàn)象[10],即一粒種子萌發(fā)會(huì)產(chǎn)生多株幼苗,其中可能既有合子苗(有性苗)又有珠心苗(無性苗)。一方面,因合子胚在與珠心胚發(fā)育中營(yíng)養(yǎng)競(jìng)爭(zhēng)處于劣勢(shì)地位[26],常導(dǎo)致合子胚敗育,較少部分為有性雜種,很大程度上降低了雜交育種的效率;另一方面,由于珠心苗與母本遺傳組成完全相同,屬于無性后代,播種后的植株能保持母本優(yōu)良性狀,便于固定雜種優(yōu)勢(shì)[27],具有重要的育種應(yīng)用價(jià)值。柑橘多胚品種珠心細(xì)胞自然加倍的現(xiàn)象被報(bào)道以來[5,28-30],大量多胚品種的同源四倍體資源被發(fā)掘[9,11-15]。特別是將植株外部特征(包括株高度、根長(zhǎng)度和粗度、葉片顏色和厚度、油胞密度等指標(biāo))作為形態(tài)標(biāo)記用于初選多倍體,使得柑橘多倍體發(fā)掘技術(shù)趨于完善,效率也得到很大提升,準(zhǔn)確率超過80%[13]。本研究基于課題組前期建立的“觀根辨葉看油胞”形態(tài)初選結(jié)合流式細(xì)胞儀倍性快速鑒定的方法,從千山紅蜜橘、八月橘等13個(gè)柑橘多胚品種的5506株實(shí)生苗中發(fā)掘獲得了四倍體45株和六倍體1株,不僅驗(yàn)證了利用“觀根辨葉看油胞”形態(tài)觀察初選柑橘多倍體的高效性,還在一定程度上豐富了柑橘多倍體種質(zhì)資源,為未來更好地對(duì)我國(guó)柑橘地方特色資源進(jìn)行無核改良或培育矮化、廣適砧木奠定了寶貴的材料基礎(chǔ)。
用SSR分子標(biāo)記鑒定所獲多倍體的遺傳來源,13個(gè)品種的45株四倍體的擴(kuò)增條帶的大小與其相應(yīng)二倍體親本的條帶完全一致,表明其可能由二倍體親本珠心細(xì)胞自然加倍形成的同源四倍體,這與前人的研究結(jié)果基本一致[11-15]。而從衢橘中發(fā)掘獲得的六倍體條帶與其二倍體親本條帶也完全一致,未發(fā)現(xiàn)新的條帶,推測(cè)其可能由衢橘產(chǎn)生的雜合型2n配子(第一次減數(shù)分裂異常產(chǎn)生,多數(shù)位點(diǎn)基因型與二倍體親本一致)與其正常的n配子自交形成三倍體合子后再加倍形成,該假設(shè)后期可利用近著絲粒標(biāo)記[17]或隨機(jī)篩選更多的標(biāo)記[31]對(duì)該六倍體進(jìn)行基因分型以確定其遺傳來源。與四倍體相比,關(guān)于柑橘六倍體的報(bào)道相對(duì)較少。梁武軍等[32]通過三倍體葡萄柚胚培養(yǎng)獲得了包括六倍體在內(nèi)的一些不同倍性植株和疑似非整倍體植株。Guo等[33]通過細(xì)胞融合技術(shù),創(chuàng)制獲得了錦橙(二倍體)+HR(哈姆林甜橙+粗檸檬異源四倍體體細(xì)胞雜種)的異源六倍體。與其他倍性植株相比,六倍體植株生長(zhǎng)速度極慢、植株極度矮小、葉片更小且厚、顏色更深,生產(chǎn)應(yīng)用價(jià)值還需進(jìn)一步評(píng)價(jià)。但是,作為基礎(chǔ)研究材料,六倍體植株對(duì)開展柑橘倍性效應(yīng)等相關(guān)基礎(chǔ)研究具有重要價(jià)值。
4 結(jié) 論
通過“觀根辨葉看油胞”形態(tài)學(xué)初選結(jié)合流式細(xì)胞儀倍性鑒定,快速高效發(fā)掘了千山紅蜜橘等13個(gè)品種的45株同源四倍體以及1株衢橘六倍體,遺傳鑒定顯示所有四倍體均為其對(duì)應(yīng)二倍體親本的珠心細(xì)胞自然加倍形成的同源四倍體。這些四倍體新種質(zhì)不僅為我國(guó)柑橘地方特色品種的無核改良提供了寶貴的四倍體育種親本,同時(shí)也為選育矮化、多抗和適應(yīng)性強(qiáng)的四倍體砧木奠定了豐富的材料基礎(chǔ)。
致謝:本研究所用的磨坪香橙和油皮金柑果實(shí)分別由國(guó)家現(xiàn)代農(nóng)業(yè)(柑橘)產(chǎn)業(yè)技術(shù)體系三峽庫(kù)區(qū)臍橙綜合試驗(yàn)站曹立新站長(zhǎng)和柳州綜合試驗(yàn)站陸文科站長(zhǎng)提供,特此感謝!
參考文獻(xiàn) References:
[1] 郭文武,葉俊麗,鄧秀新. 新中國(guó)果樹科學(xué)研究70年:柑橘[J]. 果樹學(xué)報(bào),2019,36(10):1264-1272.
GUO Wenwu,YE Junli,DENG Xiuxin. Fruit scientific research in New China in the past 70 years:Citrus[J]. Journal of Fruit Science,2019,36(10):1264-1272.
[2] 解凱東,彭珺,袁東亞,強(qiáng)瑞瑞,謝善鵬,周銳,夏強(qiáng)明,伍小萌,柯甫志,劉高平,GROSSER J W,郭文武. 以本地早橘和槾橘為母本倍性雜交創(chuàng)制柑橘三倍體[J]. 中國(guó)農(nóng)業(yè)科學(xué),2020,53(23):4961-4968.
XIE Kaidong,PENG Jun,YUAN Dongya,QIANG Ruirui,XIE Shanpeng,ZHOU Rui,XIA Qiangming,WU Xiaomeng,KE Fuzhi,LIU Gaoping,GROSSER J W,GUO Wenwu. Production of Citrus triploids based on interploidy crossing with bendizao and man tangerines as female parents[J]. Scientia Agricultura Sinica,2020,53(23):4961-4968.
[3] XIE K D,YUAN D Y,WANG W,XIA Q M,WU X M,CHEN C W,CHEN C L,GROSSER J W,GUO W W. Citrus triploid recovery based on 2x × 4x crosses via an optimized embryo rescue approach[J]. Scientia Horticulturae,2019,252:104-109.
[4] NAVARRO L,ALEZA P,CUENCA J,JU?REZ J,PINA J A,ORTEGA C,NAVARRO A,ORTEGA V. The mandarin triploid breeding program in Spain[J]. Acta Horticulturae,2015(1065):389-395.
[5] OLLITRAULT P,DAMBIER D,LURO F,F(xiàn)ROELICHER Y. Ploidy manipulation for breeding seedless triploid citrus[J]. Plant Breeding Reviews,2008,30:323-352.
[6] SUDO M,YASUDA K,YAHATA M,SATO M,TOMINAGA A,MUKAI H,MA G,KATO M,KUNITAKE H. Morphological characteristics,fruit qualities and evaluation of reproductive functions in autotetraploid Satsuma mandarin (Citrus unshiu Marcow.)[J]. Agronomy,2021,11(12):1-12.
[7] TAN F Q,ZHANG M,XIE K D,F(xiàn)AN Y J,SONG X,WANG R,WU X M,ZHANG H Y,GUO W W. Polyploidy remodels fruit metabolism by modifying carbon source utilization and metabolic flux in Ponkan mandarin (Citrus reticulata Blanco)[J]. Plant Science,2019,289:110276.
[8] WEI T L,WANG Y,LIU J H. Comparative transcriptome analysis reveals synergistic and disparate defense pathways in the leaves and roots of trifoliate orange (Poncirus trifoliata) autotetraploids with enhanced salt tolerance[J]. Horticulture Research,2020,7(1):1689-1702.
[9] 梁武軍,解凱東,郭大勇,謝宗周,伊華林,郭文武. 10個(gè)柑橘砧木類型同源四倍體的發(fā)掘與SSR鑒定[J]. 果樹學(xué)報(bào),2014,31(1):1-6.
LIANG Wujun,XIE Kaidong,GUO Dayong,XIE Zongzhou,YI Hualin,GUO Wenwu. Spontaneous generation and SSR molecular characterization of autotetraploids in ten citrus rootstocks[J]. Journal of Fruit Science,2014,31(1):1-6.
[10] 張斯淇,徐強(qiáng),鄧秀新. 無融合生殖與柑橘多胚現(xiàn)象的研究進(jìn)展[J]. 植物科學(xué)學(xué)報(bào),2014,32(1):88-96.
ZHANG Siqi,XU Qiang,DENG Xiuxin. Advances in apomixis and polyembryony research in Citrus plants[J]. Plant Science Journal,2014,32(1):88-96.
[11] 謝善鵬,楊雯惠,陳昊,肖公傲,解凱東,夏強(qiáng)明,伍小萌,郭文武. 國(guó)慶1號(hào)溫州蜜柑珠心胚苗培育及四倍體發(fā)掘[J]. 果樹學(xué)報(bào),2023,40(2):309-315.
XIE Shanpeng,YANG Wenhui,CHEN Hao,XIAO Gongao,XIE Kaidong,XIA Qiangming,WU Xiaomeng,GUO Wenwu. Production of nucellar seedlings and exploration of tetraploid from Satsuma mandarin Guoqing No.1[J]. Journal of Fruit Science,2023,40(2):309-315.
[12] 梁武軍,解凱東,郭大勇,謝宗周,徐強(qiáng),伊華林,郭文武. 柑橘10個(gè)品種實(shí)生后代多倍體的發(fā)掘及SSR鑒定[J]. 園藝學(xué)報(bào),2014,41(3):409-416.
LIANG Wujun,XIE Kaidong,GUO Dayong,XIE Zongzhou,XU Qiang,YI Hualin,GUO Wenwu. Spontaneous generation and SSR characterization of polyploids from ten Citrus cultivars[J]. Acta Horticulturae Sinica,2014,41(3):409-416.
[13] 周銳,解凱東,王偉,彭珺,謝善鵬,胡益波,伍小萌,郭文武. 依據(jù)多倍體形態(tài)特征快速高效發(fā)掘柑橘四倍體[J]. 園藝學(xué)報(bào),2020,47(12):2451-2458.
ZHOU Rui,XIE Kaidong,WANG Wei,PENG Jun,XIE Shanpeng,HU Yibo,WU Xiaomeng,GUO Wenwu. Efficient identification of tetraploid plants from seedling populations of apomictic Citrus genotypes based on morphological characteristics[J]. Acta Horticulturae Sinica,2020,47(12):2451-2458.
[14] 謝善鵬,解凱東,夏強(qiáng)明,周銳,張成磊,鄭浩,伍小萌,郭文武. 柑橘6個(gè)地方品種資源四倍體高效發(fā)掘及分子鑒定[J]. 果樹學(xué)報(bào),2022,39(1):1-9.
XIE Shanpeng,XIE Kaidong,XIA Qiangming,ZHOU Rui,ZHANG Chenglei,ZHENG Hao,WU Xiaomeng,GUO Wenwu. Efficient exploration and SSR identification of 53 doubled diploid seedlings from six local Citrus cultivars and germplasm resources[J]. Journal of Fruit Science,2022,39(1):1-9.
[15] 張成磊,周銳,謝善鵬,解凱東,夏強(qiáng)明,伍小萌,郭文武. 山金柑實(shí)生后代四倍體發(fā)掘及形態(tài)和代謝評(píng)價(jià)[J]. 植物科學(xué)學(xué)報(bào),2022,40(1):47-53.
ZHANG Chenglei,ZHOU Rui,XIE Shanpeng,XIE Kaidong,XIA Qiangming,WU Xiaomeng,GUO Wenwu. Exploration and evaluation of morphological traits and primary metabolites of tetraploid seedlings from Hongkong kumquat (Fortunella hindsii Swingle)[J]. Plant Science Journal,2022,40(1):47-53.
[16] 解凱東,王惠芹,王曉培,梁武軍,謝宗周,伊華林,鄧秀新,GROSSER J W,郭文武. 單胚性二倍體為母本與異源四倍體雜交大規(guī)模創(chuàng)制柑橘三倍體[J]. 中國(guó)農(nóng)業(yè)科學(xué),2013,46(21):4550-4557.
XIE Kaidong,WANG Huiqin,WANG Xiaopei,LIANG Wujun,XIE Zongzhou,YI Hualin,DENG Xiuxin,GROSSER J W,GUO Wenwu. Extensive Citrus triploid breeding by crossing monoembryonic diploid females with allotetraploid male parents[J]. Scientia Agricultura Sinica,2013,46(21):4550-4557.
[17] XIA Q M,MIAO L K,XIE K D,YIN Z P,WU X M,CHEN C L,GROSSER J W,GUO W W Localization and characterization of Citrus centromeres by combining half-tetrad analysis and CenH3-associated sequence profiling[J]. Plant Cell Reports,2020,39(12):1609-1622.
[18] CHENG Y J,GUO W W,YI H L,PANG X M,DENG X X. An efficient protocol for genomic DNA extraction from Citrus species[J]. Plant Molecular Biology Reporter,2003,21(2):177-178.
[19] CHEN C X,ZHOU P,CHOI Y A,HUANG S,JR GMITTER F G. Mining and characterizing microsatellites from citrus ESTs[J]. Theoretical and Applied Genetics,2006,112(7):1248-1257.
[20] CUENCA J,F(xiàn)ROELICHER Y,ALEZA P,JUAREZ J,NAVARRO L,OLLITRAULT P. Multilocus half-tetrad analysis and centromere mapping in citrus:evidence of SDR mechanism for 2n megagametophyte production and partial chiasma interference in mandarin cv. ‘Fortune[J]. Heredity,2011,107(5):462-470.
[21] GARC?A-LOR A,LURO F,NAVARRO L,OLLITRAULT P. Comparative use of InDel and SSR markers in deciphering the interspecific structure of cultivated citrus genetic diversity:A perspective for genetic association studies[J]. Molecular Genetics and Genomics,2012,287(1):77-94.
[22] FROELICHER Y,DAMBIER D,BASSENE J B,COSTANTINO G,LOTFY S,DIDOUT C,BEAUMONT V,BROTTIER P,RISTERUCCI A M,LURO F,OLLITRAULT P. Characterization of microsatellite markers in mandarin orange (Citrus reticulata Blanco)[J]. Molecular Ecology Resources,2008,8(1):119-122.
[23] XU Q,CHEN L L,RUAN X A,CHEN D J,ZHU A D,CHEN C L,BERTRAND D,JIAO W B,HAO B H,LYON M P,CHEN J J,GAO S,XING F,LAN H,CHANG J W,GE X H,LEI Y,HU Q,MIAO Y,WANG L,XIAO S X,BISWAS M K,ZENG W F,GUO F,CAO H B,YANG X M,XU X W,CHENG Y J,XU J,LIU J H,LUO O J,TANG Z H,GUO W W,KUANG H H,ZHANG H Y,ROOSE M L,NAGARAJAN N,DENG X X,RUAN Y J. The draft genome of sweet orange (Citrus sinensis)[J]. Nature Genetics,2013,45(1):59-66.
[24] BARKLEY N A,ROOSE M L,KRUEGER R R,F(xiàn)EDERICI C T. Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs)[J]. Theoretical and Applied Genetics,2006,112(8):1519-1531.
[25] KIJAS J M H,THOMAS M R,F(xiàn)OWLER J C S,ROOSE M L. Integration of trinucleotide microsatellites into a linkage map of Citrus[J]. Theoretical and Applied Genetics,1997,94(5):701-706.
[26] KOLTUNOW A M. Apomixis:Embryo sacs and embryos formed without meiosis or fertilization in ovules[J]. The Plant Cell,1993,5(10):1425-1437.
[27] 宋謝天,田嘯宇,王楠,周銀,謝源源,謝宗周,柴利軍,葉俊麗,鄧秀新. 利用InDel標(biāo)記篩選多胚山金柑珠心苗后代[J]. 果樹學(xué)報(bào),2023,40(7):1312-1317.
SONG Xietian,TIAN Xiaoyu,WANG Nan,ZHOU Yin,XIE Yuanyuan,XIE Zongzhou,CHAI Lijun,YE Junli,DENG Xiuxin. InDel marker-assisted selection of nucellar seedlings in polyembryonic Fortunella hindsii[J]. Journal of Fruit Science,2023,40(7):1312-1317.
[28] 洪柳,劉永忠,鄧秀新. 柑成熟種子胚培養(yǎng)獲得四倍體植株[J]. 園藝學(xué)報(bào),2005,32(4):688-690.
HONG Liu,LIU Yongzhong,DENG Xiuxin. Obtaining of ponkan (Citrus reticulata Blanco) tetraploid by culturing embryos of mature seeds[J]. Acta Horticulturae Sinica,2005,32(4):688-690.
[29] ALLARIO T,BRUMOS J,COLMENERO-FLORES J M,TADEO F,F(xiàn)ROELICHER Y,TALON M,NAVARRO L,OLLITRAULT P,MORILLON R. Large changes in anatomy and physiology between diploid Rangpur lime (Citrus limonia) and its autotetraploid are not associated with large changes in leaf gene expression[J]. Journal of Experimental Botany,2011,62(8):2507-2519.
[30] ALEZA P,F(xiàn)ROELICHER Y,SCHWARZ S,AGUST? M,HERN?NDEZ M,JU?REZ J,LURO F,MORILLON R,NAVARRO L,OLLITRAULT P. Tetraploidization events by chromosome doubling of nucellar cells are frequent in apomictic citrus and are dependent on genotype and environment[J]. Annals of Botany,2011,108(1):37-50.
[31] XIE K D,WANG X P,BISWAS M K,LIANG W J,XU Q,GROSSER J W,GUO W W. 2n megagametophyte formed via SDR contributes to tetraploidization in polyembryonic ‘Nadorcott tangor crossed by citrus allotetraploids[J]. Plant Cell Reports,2014,33(10):1641-1650.
[32] 梁武軍,解凱東,謝宗周,徐強(qiáng),伊華林,郭文武. 三倍體葡萄柚實(shí)生后代多倍體的發(fā)掘與SSR遺傳鑒定[J]. 果樹學(xué)報(bào),2015,32(1):13-18.
LIANG Wujun,XIE Kaidong,XIE Zongzhou,XU Qiang,YI Hualin,GUO Wenwu. Exploitation of polyploids from open-pollinated triploid grapefruit progenies and their genetic identification by SSR molecular markers[J]. Journal of Fruit Science,2015,32(1):13-18.
[33] GUO W W,DENG X X. Intertribal hexaploid somatic hybrid plants regeneration from electrofusion between diploids of Citrus sinensis and its sexually incompatible relative,Clausena lansium[J]. Theoretical and Applied Genetics,1999,98(3/4):581-585.