劉衛(wèi)翔, 秦玉坤, 范兆乾, 張海波, 王中瑋, 5, 李鵬程
貝殼土壤改良劑的應用研究進展
劉衛(wèi)翔1, 2, 3, 秦玉坤1,2, 3, 范兆乾1, 2, 3, 張海波4, 王中瑋1, 2, 3, 5, 李鵬程1,2, 3
(1. 中國科學院海洋研究所 實驗海洋生物學重點實驗室, 山東 青島 266071; 2. 青島海洋科學與技術(shù)試點國家實驗室 海洋藥物與生物制品功能實驗室, 山東 青島 266237; 3. 中國科學院海洋大科學研究中心, 山東 青島 266071; 4. 黃河三角洲鹽堿地農(nóng)田生態(tài)系統(tǒng)觀測研究站, 山東 東營 257345; 5. 青島科技大學 海洋科學與生物工程學院, 山東 青島 266042)
貝類是中國水產(chǎn)動物養(yǎng)殖第一大品種。貝類加工產(chǎn)生的大量下腳料貝殼常作為廢棄物丟棄或用于低值飼料的生產(chǎn), 資源利用率低、污染嚴重。將貝殼充分利用, 既能減少環(huán)境污染, 又可以增加貝類附加值, 對提高中國貝類產(chǎn)業(yè)及資源可持續(xù)利用的技術(shù)水平, 促進海洋生物產(chǎn)業(yè)的可持續(xù)發(fā)展具有重大意義。本文對近年來利用貝殼開發(fā)土壤改良劑的研究進展進行了綜述, 展望了其發(fā)展前景, 為將來貝殼土壤改良劑的應用開發(fā)提供參考。
貝殼土壤改良劑, 鹽堿地改良, 重金屬交換, 農(nóng)作物增產(chǎn), 微生物豐度
中國是水產(chǎn)養(yǎng)殖大國, 貝類產(chǎn)業(yè)發(fā)展迅速, 海水養(yǎng)殖貝類年產(chǎn)量居世界首位[1-2]。2019年中國貝類產(chǎn)量達到1.458×104t, 占世界貝類養(yǎng)殖總量的60%以上[3]。目前, 中國對貝類資源的利用主要著眼于貝肉, 而對于質(zhì)量百分比超過80%的貝殼, 利用措施并不系統(tǒng)、完善[4]。因此, 隨著海洋和漁業(yè)經(jīng)濟的快速發(fā)展、貝類產(chǎn)量的迅猛增加, 廢棄貝殼的利用問題也隨之出現(xiàn)[5-6]。大量廢棄的貝殼, 往往被傾倒堆積, 不僅占用了土地資源, 還會引起蚊蟲的孳生, 產(chǎn)生惡臭, 污染水源, 對環(huán)境有著巨大的危害[7]。因此, 貝殼的利用是目前制約貝類產(chǎn)業(yè)發(fā)展的重要因素之一。
中國養(yǎng)殖的貝類主要有文蛤、牡蠣、貽貝、扇貝、海螺等[8-12], 這些貝類的外殼中含有豐富的碳酸鈣, 煅燒后可形成多孔結(jié)構(gòu), 具有良好的吸附能力, 這對調(diào)節(jié)土壤pH、培養(yǎng)土壤微生物具有良好的功效[13-15]。同時, 還可使土壤中的重金屬離子以碳酸鹽的形式沉淀, 從而達到凈化土壤的目的[16-17]。此外, Ca2+對抑制鹽漬化也有一定的作用, 通過與土壤膠體表面的Na+、Mg2+進行交換, 可使土壤由親水膠體變?yōu)槭杷z體, 改善土壤結(jié)構(gòu)和通透性, 達到脫鹽和抑制返鹽的作用[18-20]。因此, 貝殼以其特殊的物理結(jié)構(gòu)和化學組成, 使其在土壤改良中具有廣闊的應用前景。加大貝殼產(chǎn)品的研究與開發(fā), 對促進海洋生物產(chǎn)業(yè)的可持續(xù)發(fā)展具有重大意義。
中國農(nóng)業(yè)生產(chǎn)規(guī)模巨大, 但由于反復澆水、大量使用化肥等不合理的耕作方式, 導致土壤容易形成板結(jié)、鹽漬化、酸化等問題[21-23]。酸性土壤改良最常用的方法是向土壤中添加石灰, 以便中和土壤中的酸性物質(zhì)[24-26]。貝殼經(jīng)煅燒后的產(chǎn)物為生石灰, 可用作實惠的替代品, 用來改良酸性土壤。
國外學者研究表明, 將貽貝殼與牛糞結(jié)合使用作為土壤改良劑, 可使改良后土壤生物活性增強, 陽離子交換絡合物中鋁含量降低, 顯著提高土壤pH, 緩解土壤酸化問題[27]。Yamada等[28]將粉碎的牡蠣殼加入到土壤中, 發(fā)現(xiàn)土壤的pH值逐漸升高, 含水量迅速下降。Lee等[29]為了研究破碎的牡蠣殼粉對土壤化學、生物特性和作物產(chǎn)量的改善作用, 在白菜移栽前分別以0、4、8、12和16 t/ha施用牡蠣殼粉, 采收期時, 施用16 t/ha牡蠣殼粉的土壤pH由5.8升高至7.4, 并且明顯提高了白菜產(chǎn)量。Alvarez等[30]采用隨機區(qū)組設計, 在低陽離子交換量和高鋁飽和度土壤上, 分別添加石灰、細磨貽貝殼、粗磨貽貝殼等處理, 比較石灰和貽貝殼添加對土壤陽離子交換量和高鋁飽和度的影響。結(jié)果表明貽貝殼和石灰的施用導致pH和交換性鈣含量升高, 交換性鋁含量降低, 這些影響在根際最為明顯, 此外還發(fā)現(xiàn), 改良對植株干重和鈣含量也有正向影響。
目前, 國內(nèi)貝殼土壤改良劑的研究多以牡蠣殼為原料, 在多種土壤、作物種植中均能有效抑制土壤酸化, 提高作物產(chǎn)量。Yang等通過室內(nèi)土柱模擬實驗, 分析了不同配比的牡蠣殼粉對磚紅壤養(yǎng)分淋溶特性的影響。實驗結(jié)果表明, 添加牡蠣殼粉后, 銨態(tài)氮、磷、鉀的浸出損失分別降低了23.90%~57.25%、6.31%~10.07%、17.08%~26.58%。此外, 牡蠣殼粉施用于磚紅壤具有調(diào)酸、保水的作用, 土壤pH從4.15提高到7.92, 水分流失減少了2.52%[31]。王日新等通過在酸性土壤中增施貝殼粉土壤調(diào)理劑, 使土壤pH由3.8升高至4.1, 與有機肥聯(lián)用時, 小麥增產(chǎn)7.0%[32]。還有研究表明, 貝殼粉的粒徑是決定其土壤改良效果的因素之一, 通常來說, 粒徑越小, 效果越明顯。趙曉紅等以平邑甜茶幼苗為研究對象, 研究不同粒徑貝殼粉配制的土壤調(diào)理劑對酸化土壤(棕壤土)的改良效果, 實驗結(jié)果表明, 采用小粒貝殼粉(100目)配制的土壤調(diào)理劑處理的土壤pH升高最多, 5.45升高至7.13[33]。
近30 a來, 中國的水田和旱地土壤的pH整體呈下降趨勢[34], 有研究表明, 氮肥的過量使用是造成土壤酸化的主要因素[35]。在全球許多地區(qū), 土壤酸化極大地限制了農(nóng)業(yè)產(chǎn)量, 許多糧食和飼料作物對酸性土壤的耐受力較低[36]。酸性土壤中鈣離子含量低, 將會影響根系生長和植物對水分、養(yǎng)分的吸收, 最終導致作物的產(chǎn)量下降[37-38]。因此, 貝殼土壤改良劑在農(nóng)業(yè)和園藝方面具有很大的應用潛力, 國內(nèi)外已有很多學者對此進行了深入研究。
韓國學者Lee等[39]分別采用堆肥牡蠣殼和新鮮牡蠣殼改良土壤, 結(jié)果表明相比于施用新鮮牡蠣殼, 施用堆肥牡蠣殼可將大豆產(chǎn)量提高21%。Fernandez- Sanjurjo等將牛糞、木屑和貽貝殼粉混合施用, 發(fā)現(xiàn)其能夠使土壤pH和交換性陽離子含量升高, 交換性鋁含量降低, 貽貝殼的加入提高了作物的產(chǎn)量和質(zhì)量, 相較于牛糞處理組, 添加貽貝殼粉處理的草地總產(chǎn)量提高了3倍, 玉米總產(chǎn)量提高了2 559 kg/ha[40]。Moon等[41]使用牡蠣殼改良pH約為5的酸性土壤, 處理1個月后, 土壤中陽離子(Ca2+、Mg2+、K+、Na+)的總和顯著增加, 處理后的玉米長勢更好。挪威學者Sognnes等[42]將貝殼砂添加到泥炭土中, 測定其對草料質(zhì)量和產(chǎn)量的影響, 結(jié)果表明, 當貝殼砂的添加量為400 m3/ha時, 草料的質(zhì)量和產(chǎn)量最優(yōu)。
中國學者羅華漢等研究發(fā)現(xiàn)在稻田中施加牡蠣殼粉可以明顯提高水稻的產(chǎn)量和質(zhì)量, 相較于空白組增產(chǎn)14.8%~22.9%[43]。代小青等采用貝殼粉修復砷污染的稻田, 發(fā)現(xiàn)施加貝殼粉可是土壤有效As含量降低2.72%, 水稻籽粒中As含量降低6.3%, 水稻產(chǎn)量提高17%[44]。除了糧食作物外, 國內(nèi)學者也將貝殼粉應用在蔬菜、水果等經(jīng)濟作物的種植當中, 并取得了較好的成效。周紅梅等研究了麥飯石、牡蠣殼、蒙脫石、硅鈣礦和有機肥對大蒜產(chǎn)量的影響, 結(jié)果指出5種改良劑均能提高大蒜產(chǎn)量[45]。為了探明牡蠣殼土壤調(diào)節(jié)劑施用量與黃泥田花生產(chǎn)量的關(guān)系, 嚴建輝設計了施用量2 250 kg/hm2和1 500 kg/hm2兩個實驗組以及空白對照組, 結(jié)果表明在實驗范圍內(nèi), 花生的產(chǎn)量與牡蠣殼土壤調(diào)節(jié)劑的施用量呈正相關(guān)關(guān)系, 土壤的氮、磷、鉀、鈣、pH等指標也均有提高[46]。周恩生研究指出在土壤中施用貝殼粉可有效降低花生空秕率, 每畝收益增加180.1元[47]。許玲玲等[48]測定了煅燒牡蠣殼對玉菇甜瓜品質(zhì)的影響, 結(jié)果表明當施用量為2 250 kg/hm2時, 玉菇甜瓜單果質(zhì)量增長12.66%, 果實脆度提高39.93%, 果實硬度提高46.10%, 維生素C含量增加47.97%, 口感及品質(zhì)提升明顯。春桃番茄的種植中也有類似發(fā)現(xiàn), 當牡蠣殼土壤調(diào)理劑的施用量達到3 000 kg/hm2時, 單果重、出汁率和維生素C含量相較于空白對照組分別提高了8.39%、11.61%和18.44%[49]。羅軍元等[50]比較了空白、石灰粉和貝殼粉對蜜橘生長的影響, 發(fā)現(xiàn)施貝殼粉或石灰粉均能有效提高蜜橘的產(chǎn)量和品質(zhì), 且貝殼粉的效果要略好于石灰粉。
重金屬污染在世界范圍內(nèi)的耕地土壤中普遍存在, 耕地土壤的重金屬污染是經(jīng)過長時間積累所導致的, 隨著礦產(chǎn)冶煉、機械加工等產(chǎn)業(yè)的快速發(fā)展, 不可避免地將重金屬帶入到農(nóng)田生態(tài)系統(tǒng)中[51-52]。重金屬污染不僅會導致農(nóng)作物減產(chǎn), 還會威脅食品安全, 影響中國居民的生活水平和身體健康[53-54]。
當前, 鎘(Cd)、鉻(Cr)、鉛(Pb)是土壤重金屬污染的主要元素類型, 其中Cd污染的影響是最嚴重的[55-57]。Cd能夠破壞植物組織細胞, 影響光合作用, 降低作物產(chǎn)量[58]。貝殼粉由于其多孔、堿性等特征, 能夠通過吸附、絡合等多種方法鈍化土壤中的重金屬, 降低其毒性和遷移性, 達到凈化土壤的目的[59-61]。張曦比較了麥飯石、蒙脫石、牡蠣殼和硅鈣類礦物4種土壤改良劑對土壤中鎘形態(tài)及毒性的影響, 結(jié)果表明牡蠣殼的吸附效果最好[62]。大量研究表明, 在土壤中添加貝殼粉, 可以有效降低土壤中可交換性Cd[63], 使其鈍化形成CdCO3[64-66]; 降低Cd的遷移性, 將白菜葉中的Cd含量減少98%[67]; 降低水稻根際Cd含量, 促進水稻生長[16, 68]; 減少水稻及油菜籽的Cd吸收量[69], 大幅降低萵苣可食部分的Cd含量[70], 對食用莧菜的生長有積極影響, 顯著抑制其對Cd的吸收[71]。
同Cd類似, Pb也會顯著影響植物生長, 其作用機理是能夠進入根部, 降低根細胞分裂速度, 導致植物生長緩慢; 而且其在植物體內(nèi)的積累會破壞代謝酶系統(tǒng), 濃度過高時還會引起組織壞死及植物死亡。Moon等[72]利用牡蠣殼等廢棄物對污染土壤中的Pb進行了固定化研究, 結(jié)果表明, 這種改良劑可在28 d的養(yǎng)護期內(nèi)降低99%以上的Pb浸出性。韓國學者采用牡蠣殼粉對礦山土壤進行改良, 30 d后, Pb的提取率降低了95%[73]。郝春莉等[74]發(fā)現(xiàn)采用貝殼粉鈍化土壤中的Pb, 可使水溶態(tài)Pb和可交換態(tài)Pb含量分別降低22.3%和67.0%。張琢等指出, 在鉛蓄電池污染土壤中添加2%~10%質(zhì)量分數(shù)的貝殼粉后, 可使土壤中Pb的浸出濃度降低22%~62%[65]。
除鎘和鉛外, 還有許多研究表明貝殼粉對土壤中的砷(As)、銅(Cu)、銻(Sb)、鉻(Cr)和汞(Hg)具有良好的吸附作用。Moon等施用的貝殼改良劑可顯著降低As和Cu的浸出性, 效果分別為93%和99%, 采用掃描電鏡-能量色散X射線能譜分析表明, As的固定可能與Ca-As和Fe-As相的形成有關(guān), 而Cu的固定可能與水合硅酸鈣和水合鋁鈣相的形成有關(guān)[72]。Garrido-Rodriguez[75]研究了在富銅酸性土壤中添加貽貝殼粉對Cu釋放速度的影響, 結(jié)果表明在pH為3的土壤中, 添加貝殼粉可使銅的解吸率下降86%, 在pH為5時, 銅的釋放速度降低了98%, 而在pH為7時, 貝殼粉的添加則對銅的釋放速度無顯著影響, 這表明貝殼粉是通過調(diào)節(jié)pH來起到改變銅釋放速度的作用。Ahmad等[76]指出廢牡蠣殼引起的土壤pH值變化對Sb浸出性有顯著影響, Sb被貝殼粉固定最可能的原因是形成銻酸鈣沉淀。Rivas-Perez等針對As和Cr同時污染的問題, 采用貽貝殼對森林和葡萄園土壤進行了As和Cr的競爭吸附實驗, 實驗發(fā)現(xiàn)在森林土壤中, 貽貝殼可同時提高對As和Cr的吸附,而在葡萄園土壤中, 貽貝殼可提高對As的吸附[77]。Pena-Rodriguez等[78]測定了汞在煅燒和研磨貽貝殼上的滯留量, 結(jié)果證明煅燒過的貽貝殼對汞的吸附量更高, 符合Freundlich方程, 磷酸鹽可以增加貽貝殼對汞的吸附, 使汞的解吸率由13%下降到2%。此外還發(fā)現(xiàn)煅燒貽貝殼對汞的吸附量與貝殼中方解石和白云石的濃度有關(guān), 當磷酸鹽存在時, 汞-磷酸鹽相互作用會導致汞吸附量增加, 且該吸附不可逆。貝殼粉的廣譜吸附特點使得其在處理重金屬污染土壤時的作用范圍大大增加, 為其推廣應用奠定了良好的基礎。
土壤微生物主導著土壤生態(tài), 通過調(diào)節(jié)養(yǎng)分循環(huán)、分解有機質(zhì)、構(gòu)建土壤結(jié)構(gòu)、抑制植物病害和促進植物生長來發(fā)揮一系列重要的土壤功能[79]。微生物的存在及其活性可以通過多種方式影響土壤, 一方面, 土壤微生物是土壤生態(tài)系統(tǒng)變化的促進者, 另一方面, 微生物群落結(jié)構(gòu)和多樣性也可以作為土壤健康的指標, 因此, 土壤微生物對土壤有機污染物的代謝、土傳病害防治具有重要作用[80]。
Fernandez-Calvino等[17]用貽貝殼粉對銅污染的極酸礦區(qū)土壤進行了改良, 結(jié)果表明土壤中的細菌和真菌群落經(jīng)改良后均明顯增多, 同時, 貽貝殼粉還可以防止土壤酸化, 避免了過低pH對細菌生長的抑制。Zheng等[55]對金屬污染土壤中貝殼改良劑施用后的細菌群落進行了定量和定性分析后指出, 在培養(yǎng)108 d后, 優(yōu)勢菌群逐漸向緩解土壤金屬離子再溶解和促進土壤養(yǎng)分循環(huán)的方向轉(zhuǎn)變。Wang等[70]的研究表明經(jīng)貝殼粉改良后土壤細菌豐富度和多樣性增加, 細菌群落中的耐金屬菌增加, 變形菌、酸菌和芽單胞菌減少。沈桂花等研究發(fā)現(xiàn)牡蠣殼粉土壤改良劑可以通過提高土壤pH, 提高微生物的碳源利用率、代謝多樣性以及群落物種均勻度, 并且, 較高的pH還可抑制煙草青枯病的傳播, 實驗組較對照組發(fā)病率降低了43.33%[81]。張小遠等[82]研究發(fā)現(xiàn), 采用貝殼砂改良過的土壤中具有較高的微生物多樣性。趙曉紅等[33]分析了經(jīng)貝殼粉土壤調(diào)理劑改良后土壤中的微生物豐富度、多樣性及群落結(jié)構(gòu), 結(jié)果表明調(diào)理劑可顯著提高細菌豐富度和多樣性指數(shù), 但卻能夠降低真菌的多樣性。
貝殼粉對土傳病害的防治主要是通過提高pH實現(xiàn)的, 目前, 在煙草種植中的應用研究較多。單曉鵬研究發(fā)現(xiàn)在烤煙土壤中施用牡蠣殼粉可降低黑脛病、青枯病、花葉病的發(fā)生及流行[83]。龔杰等[84]在長期種植煙草的酸化土壤中分別添加了草木灰和牡蠣殼粉, 發(fā)現(xiàn)兩者皆可對煙草青枯病起到防治效果。除煙草外, 也有研究發(fā)現(xiàn)施用牡蠣殼粉可以使榨菜(莖瘤芥)根腫病的發(fā)病率降低26%, 并且能夠提高根際土壤微生物的碳代謝能力[85]。
作為常見的酸性土壤改良劑和鈣補充劑, 石灰已在農(nóng)業(yè)生產(chǎn)中使用多年, 然而, 石灰的開采和加工會帶來環(huán)境污染、能源消耗等問題, 其替代產(chǎn)品的研發(fā), 符合當今“綠色農(nóng)業(yè)”理念的要求。貝殼是水產(chǎn)加工產(chǎn)業(yè)的副產(chǎn)品, 具有資源豐富, 成本低廉等優(yōu)點。貝殼是一種天然的納米復合材料, 由磚狀碳酸鈣層和薄蛋白質(zhì)層組成, 其豐富的天然多孔表面使其具有很強的吸附能力[86]。因此, 粉碎的貝殼粉可作為石灰的替代材料, 以恢復土壤的化學性質(zhì)和微生物特性, 并提高作物產(chǎn)量。但是, 貝殼土壤改良劑在應用中仍存在一些問題需要被進一步改進或闡明。
1)貝殼中含有大量的氯化鈉, 土壤中添加過多的鈉會引起黏土顆粒分散, 堵塞土壤孔隙, 降低土壤的滲透性、孔隙度和導流能力, 進一步引起土壤鹽漬化[29]。同時, 貝類生物在生長過程中也會富集海水中的重金屬元素, 這些重金屬元素會隨著貝殼粉一同被施用在土壤之中, 造成污染[87]。因此, 貝殼粉在使用時必須注意用量以及土壤本身的性質(zhì), 提前做好評估, 避免在堿性土壤中使用。
2)大量研究表明, 未經(jīng)煅燒的貝殼粉對于土壤的改良效果有限, 這是因為碳酸鈣的化學性質(zhì)穩(wěn)定, 無法與土壤中的重金屬、NaCl相互作用所導致的[39]。因此, 必須將貝殼在爐中加熱至600 ℃以上煅燒, 方可使碳酸鈣發(fā)生分解[88], 為了進行這種高溫處理, 會導致大量燃料消耗以及溫室氣體的排放, 存在環(huán)境污染和能源消耗等問題。
綜上所述, 貝殼土壤改良劑的研究與開發(fā)仍處于起步階段, 需要加大投入力度, 使貝殼變廢為寶, 這對水產(chǎn)養(yǎng)殖產(chǎn)業(yè)的可持續(xù)發(fā)展、“綠色農(nóng)業(yè)”的推廣具有重要意義。
[1] 蔣增杰, 方建光, 毛玉澤, 等. 濾食性貝類養(yǎng)殖碳匯功能研究進展及未來值得關(guān)注的科學問題[J]. 漁業(yè)科學進展, 2022, 43(5): 106-114. JIANG Zengjie, FANG Jianguang, MAO Yuze, et al. Research progress on the carbon sink function of filter-feeding shellfish mariculture and future scientific issues[J]. Progress in Fishery Sciences, 2022, 43(5): 106-114.
[2] WANG X, DING S, YIN D, et al. Response to selection for growth in the second generation of two shell color lines of the bay scallop[J]. Aquaculture, 2020, 528: 735536.
[3] 顏墩煒, 武小霞, 郭媛貞, 等. 貝殼類土壤調(diào)理劑在農(nóng)業(yè)生產(chǎn)中的應用研究進展[J]. 安徽農(nóng)學通報, 2022, 28(10): 102-105. YAN Dunwei, WU Xiaoxia, GUO Yuanzhen, et al. Research progress on application of shellfish soil conditioner in agricultural production[J]. Anhui Agricultural Science Bulletin, 2022, 28(10): 102-105.
[4] 代銀平, 王雪瑩, 葉煒宗, 等. 貝殼廢棄物的資源化利用研究[J]. 資源開發(fā)與市場, 2017, 33(2): 203-208. DAI Yinping, WANG Xueying, YE Weizong, et al. Study on resource utilization of mollusk shell waste[J]. Resource Development & Market, 2017, 33(2): 203-208.
[5] 王洪波. 廢棄貝殼資源化利用現(xiàn)狀及研究進展[J]. 水產(chǎn)養(yǎng)殖, 2021, 42(5): 15-19. WANG Hongbo. The current situation and research progress of resource utilization of waste mollusk shell[J]. Journal of Aquaculture, 2021, 42(5): 15-19.
[6] 趙暉, 宣衛(wèi)紅, 封家蕊, 等. 廢棄貝殼循環(huán)再生利用技術(shù)研究進展[J]. 金陵科技學院學報, 2019, 35(1): 34-39. ZHAO Hui, XUAN Weihong, FENG Jiarui, et al. Research of waste shell recycling technology[J]. Journal of Jinling Institute of Technology, 2019, 35(1): 34-39.
[7] 袁焙嘉, 宋文東. 廢棄貝殼在制備功能性飼料添加劑中的應用[J]. 農(nóng)村經(jīng)濟與科技, 2020, 31(20): 37-38. YUAN Beijia, SONG Wendong. Application of waste shells in the preparation of functional feed additives[J]. Rural Economy and Science-Technology, 2020, 31(20): 37-38.
[8] LI L, WANG S J, SHEN X Q, et al. Ecological risk assessment of heavy metal pollution in the water of China’s coastal shellfish culture areas[J]. Environmental Science and Pollution Research, 2020, 27(15): 18392-18402.
[9] LIAO Y B, SHOU L, JIANG Z B, et al. Effects of fish cage culture and suspended oyster culture on macrobenthic communities in Xiangshan Bay, a semi-enclosed subtropical bay in eastern China[J]. Marine Pollution Bulletin, 2019, 142: 475-483.
[10] HAN D Y, CHEN Y, ZHANG C L, et al. Evaluation of effects of shellfish aquaculture and capture fishery on a semi-closed bay ecosystem[J]. Estuarine Coastal and Shelf Science, 2018, 207: 175-182.
[11] LIU Y, WANG X M, WU W G, et al. Experimental study of the environmental effects of summertime cocultures of seaweed() and Japanese scallopin Sanggou Bay, China[J]. Fishes, 2021, 6(4): 53.
[12] KUANG Z X, FAN Z Q, WANG H J, et al. Heavy metal(loid)s in multiple media within a mussel maricu-lture area of Shangchuan Island, China: Partition, transfer and health risks[J]. Environmental Research, 2022, 211: 113100.
[13] ALONSO A A, ALVAREZ-SALGADO X A, ANTELO L T. Assessing the impact of bivalve aquaculture on the carbon circular economy[J]. Journal of Cleaner Production, 2021, 279: 123873.
[14] CHANG L, FENG Y, WANG B, et al. Dual functional oyster shell-derived Ag/ZnO/CaCO3nanocomposites with enhanced catalytic and antibacterial activities for water purification[J]. Rsc Advances, 2019, 9(70): 41336-41344.
[15] LAONAPAKUL T, SUTTHI R, CHAIKOOL P, et al. Optimum conditions for preparation of bio-calcium from blood cockle and golden apple snail shells and characterization[J]. Scienceasia, 2019, 45(1): 10-20.
[16] ZENG T, GUO J X, LI Y Y, et al. Oyster shell amendment reduces cadmium and lead availability and uptake by rice in contaminated paddy soil[J]. Environmental Science and Pollution Research, 2022, 29(29): 44582- 44596.
[17] FERNANDEZ-CALVINO D, CUTILLAS-BARREIRO L, NOVOA-MUNOZ J C, et al. Using pine bark and mussel shell amendments to reclaim microbial functions in a Cu polluted acid mine soil[J]. Applied Soil Ecology, 2018, 127: 102-111.
[18] CURTIN D, STEPPUHN H, SELLES F. Effects of magnesium on cation selectivity and structural stability of sodic soils[J]. Soil Science Society of America Journal, 1994, 58(3): 730-737.
[19] PORCELLI C A, BOEM F H G, LAVADO R S. The K/Na and Ca/Na ratios and rapeseed yield, under soil-salinity or sodicity[J]. Plant and Soil, 1995, 175(2): 251-255.
[20] JALALI M, ARIAN T M, RANJBAR F. Selectivity coefficients of K, Na, Ca, and Mg in binary exchange systems in some calcareous soils[J]. Environmental Monitoring and Assessment, 2020, 192(2): 80.
[21] CHEN M, DUAN Z, LIN X. Status quo and prospects of the study on soil quality standards in China[J]. Acta Pedologica Sinica, 2011, 48(5): 1059-1071.
[22] LI J, PU L, HAN M, et al. Soil salinization research in China: Advances and prospects[J]. Journal of Geographical Sciences, 2014, 24(5): 943-960.
[23] CHEN N, WIDJAJANTO D W, ZHENG Y. Soil problems in China and its lessons for other developing countries[C]// 2nd International Symposium on Food and Agro-biodiversity (ISFA), IOP Conference Series-Earth and Enviromental Science, September 26-27, 2018, Semarang: Iop Publishing Ltd, 102: 012001.
[24] KRYZEVICIUS Z, JANUSIENE L, KARCAUSKIENE D, et al. Aluminium leaching response to acid precipitation in a lime-affected soil[J]. Zemdirbyste-Agriculture, 2019, 106(4): 315-320.
[25] WANG Y, YAO Z, ZHAN Y, et al. Potential benefits of liming to acid soils on climate change mitigation and food security[J]. Global Change Biology, 2021, 27(12): 2807-2821.
[26] YIN F, LI Y-J, ZHAO Q, et al. Experimental and model predictive investigation into the relationship of pH alternation with addition of lime in acid tin tailing treatments[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(6): 1202-1207.
[27] PAZ-FERREIRO J, BAEZ-BERNAL D, INSUA J C, et al. Effects of mussel shell addition on the chemical and biological properties of a Cambisol[J]. Chemosphere, 2012, 86(11): 1117-1121.
[28] YAMADA M, TATSUNO T, SANO H, et al. A study on stabilization effect of the acid sulfate soil by using crushed oyster shell(ground improvement)[J]. Journal of the Society of Materials Science Japan, 2005, 54(11): 1117-1122.
[29] CHANG H L, LEE D K, ALI M A, et al. Effects of oyster shell on soil chemical and biological properties and cabbage productivity as a liming material[J]. Waste Management, 2008, 28(12): 2702-2708.
[30] ALVAREZ E, FERNANDEZ-SANJURJO M J, SECO N, et al. Use of mussel shells as a soil amendment: Effects on bulk and rhizosphere soil and pasture production[J]. Pedosphere, 2012, 22(2): 152-164.
[31] YANG X F, HUANG Y X, LIU K X, et al. Effects of oyster shell powder on leaching characteristics of nutrients in low-fertility latosol in South China[J]. Environmental Science and Pollution Research, 2022, 29(37): 56200-56214.
[32] 王日新, 李漢燕, 李海濤, 等. 山東乳山市酸化土壤改良在小麥種植上的試驗研究[J]. 農(nóng)業(yè)工程技術(shù), 2016, 36(5): 26-27. WANG Rixin, LI Hanyan, LI Haitao, et al. Experimental study on acidified soil improvement in wheat planting in Rushan, Shandong[J]. Applied Engineering Technology, 2016, 36(5): 26-27.
[33] 趙曉紅, 柴姍姍, 張曼曼, 等. 施用貝殼粉對酸化土壤微生物多樣性及平邑甜茶幼苗生長的影響[J]. 林業(yè)科學, 2020, 56(9): 153-163. ZHAO Xiaohong, CHAI Shanshan, ZHANG Manman, et al. Effects of shell powder on microbial diversity in acidified soil and growth ofvar. mengshanensis seedlings[J]. Scientia Silvae Sinicae, 2020, 56(9): 153-163.
[34] 韓天富, 柳開樓, 黃晶, 等. 近30年中國主要農(nóng)田土壤pH時空演變及其驅(qū)動因素[J]. 植物營養(yǎng)與肥料學報, 2020, 26(12): 2137-2149. HAN Tianfu, LIU Kailou, HUANG Jing, et al. Spatio-temporal evolution of soil pH and its driving factors in the main Chinese farmland during past 30 years[J]. Plant Nutrition and Fertilizer Science, 2020, 26(12): 2137-2149.
[35] GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010.
[36] SUMMER M E, SHAHANDEH H, BOUTON J, et al. Amelioration of an acid soil-profile through deep liming and surface application of gypsum[J]. Soil Science Society of America Journal, 1986, 50(5): 1254-1258.
[37] MARSH B H, GROVE J H. Surface and subsurface soil acidity - soybean root response to sulfate-bearing spent lime[J]. Soil Science Society of America Journal, 1992, 56(6): 1837-1842.
[38] TANG C, RENGEL Z, DIATLOFF E, et al. Responses of wheat and barley to liming on a sandy soil with subsoil acidity[J]. Field Crops Research, 2003, 80(3): 235-244.
[39] LEE Y H, ISLAM S M A, HONG S J, et al. Composted oyster shell as lime fertilizer is more effective than fresh oyster shell[J]. Bioscience Biotechnology and Biochemistry, 2010, 74(8): 1517-1521.
[40] FERNANDEZ-SANJURJO M J, RODRIGUEZ E A, CORTI G. Effect of the addition of cattle slurry plus different types of livestock litter to an acid soil and on the production of grass and corn crops[J]. Waste Management & Research, 2011, 29(3): 268-276.
[41] MOON D H, CHANG Y Y, OK Y S, et al. Amelioration of acidic soil using various renewable waste resources[J]. Environmental Science and Pollution Research, 2014, 21(1): 774-780.
[42] SOGNNES L S, FYSTRO G, OPSTAD S L, et al. Effects of adding moraine soil or shell sand into peat soil on physical properties and grass yield in western Norway[J]. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 2006, 56(3): 161-170.
[43] 羅華漢, 柳開樓, 余跑蘭, 等. 牡蠣殼粉對水稻產(chǎn)量和土壤重金屬鈍化的影響[J]. 中國稻米, 2016(3): 30-33. LUO Huahan, LIU Kailou, YU Paolan, et al. Effects of oyster shell powder on rice yield and heavy metal stabilization in paddy soil[J]. China Rice, 2016(3): 30-33.
[44] 代小青, 郝秀明. 不同鈍化劑對砷污染農(nóng)田水稻的鈍化修復作用比較試驗[J]. 農(nóng)村科學實驗, 2022(9): 222-224. DAI Xiaoqing, HAO Xiuming. Comparative experiment on the passivation and remediation effect of different passivators on arsenic polluted farmland rice[J]. Scientific Experiment in Countryside, 2022(9): 222-224.
[45] 周紅梅, 孫薊鋒, 段成鼎, 等. 5種土壤調(diào)理劑對大蒜田土壤理化性質(zhì)和大蒜產(chǎn)量的影響[J]. 中國土壤與肥料, 2013(3): 26-30. ZHOU Hongmei, SUN Jifeng, DUAN Chengding, et al. Effects of five soil conditioners on soil physical and chemical properties and yied of garlic[J]. Soil and Fertilizer Sciences in China, 2013(3): 26-30.
[46] 嚴建輝. 牡蠣殼土壤調(diào)理劑對黃泥田花生產(chǎn)量及土壤酸化改良的影響[J]. 農(nóng)學學報, 2019, 9(11): 17-20.YAN Jianhui. Oyster shell soil conditioner: Effects on peanut yield and acidified soil amendment in yellow clayey field[J]. Journal of Agriculture, 2019, 9(11): 17-20.
[47] 周恩生. 施用不同鈣肥防治紅黃壤區(qū)花生空秕的效果研究[J]. 江西農(nóng)業(yè)學報, 2007, 19(8): 91-93. ZHOU Ensheng. Effect of different kinds of calcium fertilizer on preventing empty shell of peanut planted in red-yellow soil[J]. Acta Agriculturae Jiangxi, 2007, 19(8): 91-93.
[48] 許玲玲, 章騫, 王永明, 等. 煅燒牡蠣殼粉對土壤酸化及玉菇甜瓜品質(zhì)的改良效果[J]. 集美大學學報(自然科學版), 2020, 25(5): 336-343. XU Lingling, ZHANG Qian, WANG Yongming, et al. Effect of calcined oyster shell powder on soil acidification and fruit quality of mushroom melon[J]. Journal of Jimei University(Natural Science), 2020, 25(5): 336-343.
[49] 許玲玲, 翁凌, 章騫, 等. 牡蠣殼土壤調(diào)理劑對春桃番茄產(chǎn)量與品質(zhì)的改善效果[J]. 集美大學學報(自然科學版), 2022, 27(1): 37-44. XU Lingling, WENG Ling, ZHANG Qian, et al. Effect of oyster shell soil conditioner on the production and quality of 'Chuntao' tomato[J]. Journal of Jimei University(Natural Science), 2022, 27(1): 37-44.
[50] 羅軍元, 胡秋萍, 熊文, 等. 貝殼源鈣肥對蜜橘品質(zhì)和產(chǎn)量的影響[J]. 湖南農(nóng)業(yè)科學, 2020(6): 42-44. LUO Junyuan, HU Qiuping, XIONG Wen, et al. Effect of shell-source calcium fertilizer on quality and yield of tangerine ()[J]. Hunan Agricultural Sciences, 2020(6): 42-44.
[51] YANG Q, LI Z, LU X, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment[J]. Science of the Total Environment, 2018, 642: 690-700.
[52] HU B, SHAO S, NI H, et al. Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at province level[J]. Environmental Pollution, 2020, 266(3): 114961.
[53] 孟敏, 楊林生, 韋炳干, 等. 我國設施農(nóng)田土壤重金屬污染評價與空間分布特征[J]. 生態(tài)與農(nóng)村環(huán)境學報, 2018, 34(11): 1019-1026. MENG Min, YANG Linsheng, WEI Binggan, et al. Contamination assessment and spatial distribution of heavy metals in greenhouse soils in China[J]. Journal of Ecology and Rural Environment, 2018, 34(11): 1019-1026.
[54] 楊樹深, 孫衍芹, 鄭鑫, 等. 重金屬污染農(nóng)田安全利用: 進展與展望[J]. 中國生態(tài)農(nóng)業(yè)學報, 2018, 26(10): 1555-1572. YANG Shushen, SUN Yanqin, ZHENG Xin, et al. Safe utilization of farmland contaminated with heavy metals in China: Progress and outlook[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10): 1555-1572.
[55] ZHENG X K, ZOU M Y, ZHANG B W, et al. Remediation of Cd-, Pb-, Cu-, and Zn-contaminated soil using cow bone meal and oyster shell meal[J]. Ecotoxicology and Environmental Safety, 2022, 229: 113073.
[56] ZHANG S, SONG J, CHENG Y, et al. Derivation of reliable empirical models describing lead transfer from metal-polluted soils to radish (L.): Determining factors and soil criteria[J]. Science of the Total Environment, 2018, 613/614: 72-80.
[57] PARK J H. Contrasting effects of Cr(III) and Cr(VI) on lettuce grown in hydroponics and soil: Chromium and manganese speciation[J]. Environmental Pollution, 2020, 266(2): 115073.
[58] BI D X, YUAN G D, WEI J, et al. Conversion of oyster shell waste to amendment for immobilising cadmium and arsenic in agricultural soil[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 105(2): 277-282.
[59] KOMAREK M, VANEK A, ETTLER V. Chemical stabilization of metals and arsenic in contaminated soils using oxides–A review[J]. Environmental Pollution, 2013, 172: 9-22.
[60] 曹英蘭, 陳麗娜, 張金麗, 等. 牡蠣殼粉對酸性土壤的修復及其對鎘的鈍化作用研究[J]. 環(huán)境科學與技術(shù), 2016, 39(1): 178-182. CAO Yinglan, CHEN Lina, ZHANG Jinli, et al. Effects of oyster shell powder on the remediation and stabilization of acid Cd pollution soil[J]. Environmental Science & Technology, 2016, 39(1): 178-182.
[61] 王沛文, 杜立宇, 吳巖, 等. 不同類型貝殼粉對土壤鎘賦存形態(tài)的影響差異[J]. 水土保持學報, 2019, 33(2): 331-335.WANG Peiwen, DU Liyu, WU Yan, et al. Effects of different shell powder types on soil cadmium speciation[J]. Journal of Soil and Water Conservation, 2019, 33(2): 331-335.
[62] 張曦. 四種土壤調(diào)理劑對鎘鉛形態(tài)及生物效應的影響[D]. 北京: 中國農(nóng)業(yè)科學院, 2012. ZHANG Xi. Effects of four soil conditioners on cadmium and lead forms and biological effects[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012.
[63] 柴冠群. 不同改良劑對重慶植煙土壤鎘生物有效性的影響[D]. 重慶: 西南大學, 2017. CHAI Guanqun. Effect of different soil amendments on cadmium bioavailability in tobacco-growing soils in Chongqing[D]. Chongqing: Southwest University, 2017.
[64] ZHAO H D, DU L Y, AN T T, et al. Evaluation of shell powder remediation effect in cadmium-contaminated soil: A score approach based on entropy indexes[J]. Clean-Soil Air Water, 2022, 50(5): 2000261.
[65] 張琢, 王梅, 任杰, 等. 貝殼粉對污染土壤中Pb、Zn、Cd的穩(wěn)定化作用[J]. 環(huán)境污染與防治, 2016, 38(1): 14-18.ZHANG Zhuo, WANG Mei, REN Jie, et al. Effects of sea shell powder on the stabilization of Pb, Zn and Cd in contaminated soil[J]. Environmental Pollution and Control, 2016, 38(1): 14-18.
[66] LEE H H, KIM S Y, OWENS V N, et al. How does oyster shell immobilize cadmium?[J]. Archives of Environmental Contamination and Toxicology, 2017, 74(1): 114-120.
[67] YUAN G D, BI D X, WEI J, et al. Calcined oyster shell-humic complex as soil amendment to remediate Cd- and As-contaminated soil[J]. Agronomy-Basel, 2022, 12(6): 1413.
[68] HE L Z, MENG J, WANG Y, et al. Attapulgite and processed oyster shell powder effectively reduce cadmium accumulation in grains of rice growing in a contaminated acidic paddy field[J]. Ecotoxicology and Environmental Safety, 2021, 209: 111840.
[69] WU B, LI J, SHENG M P, et al. The application of biochar and oyster shell reduced cadmium uptake by crops and modified soil fertility and enzyme activities in contaminated soil[J]. Soil, 2022, 8(1): 409-419.
[70] WANG F, ZHANG W W, MIAO L J, et al. The effects of vermicompost and shell powder addition on Cd bioavailability, enzyme activity and bacterial community in Cd-contaminated soil: A field study[J]. Ecotoxicology and Environmental Safety, 2021, 215: 112163.
[71] WU Q C, WANG D F, WEN J M, et al. Remediation of Cd-contaminated acid soil with shell powder-based nanocomposite[J]. Surfaces and Interfaces, 2022, 32: 102117.
[72] MOON D H, CHEONG K H, KOUTSOSPYROS A, et al. Assessment of waste oyster shells and coal mine drainage sludge for the stabilization of As-, Pb-, and Cu-contaminated soil[J]. Environmental Science and Pollution Research, 2016, 23(3): 2362-2370.
[73] OK Y S, OH S E, AHMAD M, et al. Effects of natural and calcined oyster shells on Cd and Pb immobilization in contaminated soils[J]. Environmental Earth Sciences, 2010, 61(6): 1301-1308.
[74] 郝春莉, 李劍, 黃志勇. 基于同位素標記和連續(xù)提取法研究磷基材料對土壤鉛的鈍化行為[J]. 中國土壤與肥料, 2021(4): 283-288. HAO Chunli, LI Jian, HUANG Zhiyong. Study of the passivation of soil Pb by phosphorous materials based on isotope labeling method coupled with Tessier sequential extraction procedure[J]. Soils and Fertilizers Sciences in China, 2021(4): 283-288.
[75] GARRIDO-RODRIGUEZ B. FERNANDEZ-CALVINA D, MUNOZ J C N. pH-dependent copper release in acid soils treated with crushed mussel shell[J]. International Journal of Environmental Science and Technology, 2013, 10(5): 983-994.
[76] AHMAD M, MOON D H, WAZNE M, et al. Effects of natural and calcined oyster shells on antimony solubility in shooting range soil[J]. Journal of the Korean Society for Applied Biological Chemistry, 2013, 56(4): 461-464.
[77] RIVAS-PEREZ I M, CONDE-CID M, NOVOA- MUNOZ J C, et al. As(V)/Cr(VI) retention on un-amended and waste-amended soil samples: competitive experiments[J]. Environmental Science and Pollution Research, 2017, 24(1): 1051-1059.
[78] PENA-RODRIGUEZ S, BERMUDEZ-COUSO A, NOVOA-MUNOZ J C, et al. Mercury removal using ground and calcined mussel shell[J]. Journal of Environmental Sciences, 2013, 25(12): 2476-2486.
[79] COBAN O, DE DEYN G B, van der PLOEG M. Soil microbiota as game-changers in restoration of degraded lands[J]. Science, 2022, 375(6584): eabe0725.
[80] FIERER N, WOOD S A, de MESQUITA C P B. How microbes can, and cannot, be used to assess soil health[J]. Soil Biology & Biochemistry, 2021, 153: 108111.
[81] 沈桂花, 劉曉姣, 張淑婷, 等. 牡蠣殼粉對煙草根際土壤微生物代謝多樣性及青枯病發(fā)生的影響[J]. 煙草科技, 2017, 50(12): 22-28. SHEN Guihua, LIU Xiaojiao, ZHANG Shuting, et al. Effects of oyster shell powder on metabolic diversity of microorganism in tobacco rhizosphere soil and incidence of bacterial wilt[J]. Tobacco Science & Technology, 2017, 50(12): 22-28.
[82] 張小遠, 肖瑤, 田浩, 等. 貝殼砂改良土壤中反硝化細菌的分析[J]. 微生物學通報, 2014, 41(1): 35-42. ZHANG Xiaoyuan, XIAO Yao, TIAN Hao, et al. Analysis of denitrifying bacteria in a long-term shell sand amended soil[J]. Microbiology China, 2014, 41(1): 35-42.
[83] 單曉鵬. 黔江區(qū)烤煙主要病害發(fā)生動態(tài)與土壤改良劑防控技術(shù)研究[D]. 重慶: 西南大學, 2020. SHAN Xiaopeng. Study on the occurrence trends and green prevention and control techniques of the main diseases of tobacco in Qianjiang[D]. Chongqing: Southwest university, 2020.
[84] 龔杰, 陳瑜欣, 付小秋, 等. 土壤酸化改良劑對煙株農(nóng)藝性狀、土壤pH值及青枯病發(fā)生的影響[J]. 植物醫(yī)生, 2021, 34(1): 35-40. GONG Jie, CHEN Yuxin, FU Xiaoqiu, et al. Effects of 3 soil acidification amendment agents on agronomic characters of tobacco plants, pH of acidic soil and occurrence of bacterial wilt[J]. Plant Doctor, 2021, 34(1): 35-40.
[85] 劉烈花, 丁偉. 3種土壤改良劑對榨菜根腫病的防治效果和根際微生物的影響[J]. 植物醫(yī)生, 2021, 34(3): 19-25. LIU Liehua, DING Wei. Effects of three soil modifiers on the control efficacy of mustard club root and onmicroorganisms[J]. Plant Doctor, 2021, 34(3): 19-25.
[86] SILVA T H, MESQUITA-GUIMAR?ES J, HENRIQUES B, et al. The potential use of oyster shell waste in new value-added by-product[J]. Resources, 2019, 8(1): 13.
[87] 孫薊鋒, 王旭, 劉紅芳, 等. 我國土壤調(diào)理劑中重金屬元素及其相關(guān)原料農(nóng)業(yè)資源化利用現(xiàn)狀[J]. 中國土壤與肥料, 2017(6): 149-154. SUN Jifeng, WANG Xu, LIU Hongfang, et al. Study on current situation of harmful elements in soil conditioners of China and the agricultural resource utilization of relevant raw materials[J]. Soils and Fertilizers Sciences in China, 2017(6): 149-154.
[88] 梁艷, 趙杰, 王來. 貝殼的傅立葉變換紅外光譜和熱分析[J]. 礦物巖石, 2007, 27(2): 12-16. LIANG Yan, ZHAO Jie, WANG Lai. The Fourier transform infrared spectroscopy(FT-IR) and thermal analysis of the mollusc shell[J]. Journal of Mineralogy and Petrology, 2007, 27(2): 12-16.
Study and application of a shell soil conditioner
LIU Wei-xiang1, 2, 3, QIN Yu-kun1, 2, 3, FAN Zhao-qian1, 2, 3, ZHANG Hai-bo4, WANG Zhong-wei1, 2, 3, 5, LI Peng-cheng1, 2, 3
(1. Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; 2. National Laboratory of Marine Science and Technology, Qingdao 266237, China; 3. Marine Research Center, Chinese Academy of Sciences, Qingdao 266071, China; 4. Yellow River Delta Saline-alkali Agro-ecosystem Observation and Research Station, Dongying 257345, China; 5. College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China)
Shellfish are the most common part of aquaculture in China. Shells are often discarded as waste or used in low-value feed production, which results in a waste of resources and serious environmental pollution. Thus, effective use of shell resources can not only lessen pollution but also increase the value of shellfish, which is of great significance for improving the technical level of sustainable utilization of the shellfish industry and promoting sustainable development of the marine biological industry. In this paper, the research progress of the development of soil conditioners that utilize seashells as raw materials in recent years is reviewed. In addition, potential risks are identified, and future research directions of shell soil conditioners are presented. Thus, this work offers a guide for future application and development of marine shellfish wastes.
shell soil conditioner; saline-alkali soil improvement; heavy metal exchange; increased production; microbial abundance
Jul. 16, 2022
[The National Key R&D Program of China, No. 2019YFD0900705; Shandong Provincial Natural Science, No. ZR2021QD014]
S156.2; P745
A
1000-3096(2023)8-0141-09
10.11759/hykx20220716001
2022-07-16;
2022-08-26
國家重點研發(fā)計劃(2019YFD0900705); 山東省自然科學基金(ZR2021QD014)
劉衛(wèi)翔(1988—), 男, 山東青島人, 特別研究助理, 理學博士, 研究方向為農(nóng)用海洋生物制品研發(fā), E-mail:liuweixiang@qdio. ac.cn; 秦玉坤(1982—), 通信作者, 男, 山東日照人, 副研究員, 碩士生導師, 研究方向為海洋生物農(nóng)藥開發(fā), E-mail: ykqin@qdio.ac.cn; 李鵬程(1957—), 通信作者, 男, 山東青州人, 研究員, 博士生導師, 研究方向為海洋生物制品研發(fā), E-mail: pcli@qdio.ac.cn
(本文編輯: 楊 悅)